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ABSTRACT: The first asymmetric decarboxylative [4 + 3]
annulation of propargylic carbamates with C,N-cyclic
azomethine imines has been developed successfully by a
copper−N-heterocyclic carbine system. This strategy led to a
series of optically active isoquinoline-fused triazepine
derivatives in good yields and with excellent enantio- and
diastereoselectivities. Remarkably, Cu−allenylidene inter-
mediates play a crucial role in this transformation.

Seven-membered dinitrogen-fused N-heterocycles are im-
portant structural motifs in organic synthesis1 and have

been found as key structural elements commonly appearing in
a series of bioactive natural alkaloids and clinically useful
pharmaceuticals, including acetyl-CoA carboxylase inhibitors,
acaricides, and herbicides.2 Therefore, the development of
highly efficient asymmetric synthetic methods to access these
compounds is particularly appealing. Notably, among the wide
variety of synthetic approaches,3 the 1,3-dipolar cycloaddition
reaction of cyclic azomethine imines has emerged as one of the
most efficient strategies. However, the [4 + 3] cycloaddition
reaction of cyclic azomethine imines, especially of catalytic
asymmetric variants, still remains elusive and much less
developed than their [3 + 2]4 and [3 + 3]5 cycloaddition
reactions. To our knowledge, only a few reports of asymmetric
catalytic [4 + 3] cycloadditions of N,N-cyclic azomethine
imines have been described by Chi’s group6a and Wang’s
group,6b respectively. Furthermore, the more versatile C,N-
cyclic azomethine imine involved enantioselective [4 + 3]
reaction has not yet been achieved to date (Scheme 1a).
Enantioselective decarboxylation of allylic benzoxazinanones

has been attracting considerable interest7 since the develop-
ment of the palladium-catalyzed [4 + 2] asymmetric
decarboxylative cycloaddition (ADC) through in situ gen-
eration of an allylpalladium intermediate by Tunge and co-
workers in 2008.8 In 2016, Glorius and co-workers9 reported
the first Pd/NHC-catalyzed ADC [4 + 3] reaction between
vinyl benzoxazinanones and α,β-unsaturated aldehydes to
synthesize seven-membered dinitrogen-fused N-heterocycles
(Scheme 1b). Alternatively, Xiao and co-workers10 reported
the first copper-catalyzed ADC [4 + 1] reaction employing
ethynyl benzoxazinanones by a different copper−allenylidene
intermediate activation. In the wake of the emergence of this
elegant work, several remarkable asymmetric variants of

copper−allenylidene intermediate mediated [4 + 2] annula-
tions have been achieved from the groups of Gong,11a You,11b
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Scheme 1. Catalytic Asymmetric [4 + 3] Annulation with
Different Strategies
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and Wu,11c,d respectively. However, although these efficient
catalytic asymmetric reactions have been well-established,12 to
date, a catalytic asymmetric higher order annulation reaction
such as [4 + 3] ADC has not yet been established, and we
believe this represents a considerable challenge (Scheme 1c).
Herein, we introduce a copper−NHC catalytic system for a
strategy of in situ generating copper−NHC−allenylidene as a
new platform for the design of catalytic intermolecular [4 + 3]
ADC processes, and we also hope to expand our studies
beyond model compounds to develop an efficient protocol for
accessing potentially bioactive seven-membered chiral dini-
trogen-fused N-heterocycles. In this context, we document
decarboxylative [4 + 3] annulation of propargylic carbamates
with C,N-cyclic azomethine imines.

To explore the possibility of the proposed [4 + 3]
annulation process, a model reaction of ethynyl benzoxazina-
none (1a) with benzoyl (3,4-dihydroisoquinolin-2-ium-2-
yl)amide (2a) in the presence of Cu(OAc)2 (10 mol %),
chiral ligand L (20 mol %), and DIPEA (2.0 equiv) was
performed at room temperature in methanol (Table 1, entries
1−11). These results indicate that the NHC ligand L10
provided the highest chemical yield and enantioselectivity of
the ligands tested, furnishing the desired product 3aa in 80%
yield and 53% ee (entry 10). Subsequently, a survey of solvents
was carried out (entries 12−17). We found that the solvent
had a significant effect on the enantioselective outcome.
Among the solvents tested, chlorobenzene was optimal, giving
the product with 85% yield in high stereoselectivity (82% ee
and a >20:1 diastereomeric ratio (dr), entry 17). Gratifyingly,
the more favorable outcome of 93% ee was observed without a
significant decrease in yield when the reaction was performed
at −20 °C (entry 19).
Having established the optimal reaction conditions, we

explored a new method for the asymmetric [4 + 3] annulation
with a variety of substituted ethynyl benzoxazinanones 1. As
summarized in Scheme 2, various substituted ethynyl
benzoxazinanones including those bearing electron-withdraw-
ing and electron-donating substituents at different positions on
the aromatic ring could be tolerated and gave the
corresponding compounds 3ba−ga in high yields (78%−

Table 1. Condition Optimizationa

entry L* solvent yieldb (%) eec (%)

1 L1 MeOH 68 <5
2 L2 MeOH 63 <5
3 L3 MeOH 65 16
4 L4 MeOH 64 16
5 L5 MeOH 61 22
6 L6 MeOH 57 17
7 L7 MeOH 72 <5
8 L8 MeOH 70 20
9 L9 MeOH 74 30
10 L10 MeOH 80 53
11 L11 MeOH 78 −20
12 L10 CH2Cl2 75 32
13 L10 THF 64 <5
14 L10 CHCl3 74 10
15 L10 CH3CN 35 <5
16d L10 Tol 58 55
17 L10 PhCl 85 82
18e L10 PhCl 82 90
19f L10 PhCl 80 93
20g L10 PhCl 74 93

aUnless noted, reactions were conducted with 1a (0.20 mmol), 2a
(0.24 mmol), DIPEA (0.40 mmol), Cu(OAc)2 (10 mol %), L* (20
mol %), and 2.0 mL of solvent under argon and stirred at room
temperature for 0.5 h. bIsolated yields. cThe ee values were
determined by HPLC. The dr (>20:1) values were determined by
1H NMR spectroscopy. dStirred for 12 h. eStirred at 0 °C for 1 h.
fStirred at −20 °C for 6 h. gStirred at −30 °C for 10 h.

Scheme 2. Scope of Substituents of 1 for Enantioselective [4
+ 3] Annulationa

aUnless noted, all of the reactionsfollowed the conditions of entry 19
in Table 1. Yields are of isolated of 3. The ee values were determined
by HPLC. The dr values were determined by 1H NMR spectroscopy.
The configuration was assigned by comparison of HPLC data and X-
ray crystal data of 3da.
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83%), diastereoselectivities (>20:1 dr), and high to excellent
enantioselectivities (89%−94% ee). Additionally, 1h and 1i
bearing electron-donating and electron-withdrawing substitu-
ents at the C8 position also gave the desired products in good
yields and excellent enantioselectivities (3ha: 70% yield, 91%
ee; 3ia: 75% yield, 90% ee).
We then sought to expand the reaction to various C,N-cyclic

azomethine imines (Scheme 3). Variation of the electronic
properties of the substituents at different positions on the
aromatic ring of C,N-cyclic azomethine imines was tolerated,

and 3ab−ag were obtained with excellent enantioselectivities
(90%−93% ee) and diastereoselectivities (>20:1 dr) in yields
ranging from 75% to 84%. The catalytic system also proved to
be efficient with 2h bearing a naphthyl substituent, furnishing
the distinct pentacyclic compound 3ah in a higher
enantioselectivity (95% ee). In addition, the reactions of 7-
chlorine-substituted 2e with differently substituted 1 (1b, 1c,
and 1e) were successful and provided the optically pure
products (3be, 3ce, and 3ee) with high enantioselectivities
(90%−91% ee), albeit in reduced yields (74%−78% yields).
The absolute configurations of the products were determined
to be (9R,14aR) by X-ray crystal structure analysis of 3da
(Scheme 3; see the Supporting Information for details).
As an illustration in Scheme 4, the ethynyl moiety of the

optically active benzazepine 3aa could be converted smoothly
into the triazole 4 via Huisgen cycloaddition with tosyl azide in
the presence of the copper(I) thiophene-2-carboxylate
(CuTc). As expected, 4 was formed in 89% yield and without
a significant loss in enantiopurity (89% ee).
On the basis of our experimental results and recent studies,11

a plausible catalytic cycle has been proposed in Figure 1.
Initially, the alkyne of substrate 1a could be activated by a
CuII−NHC complex, which was formed from Cu(OAc)2 and
L10, generating a π-complex A, and a subsequent deprotona-
tion to deliver intermediate B. Then the decarboxylation
reaction of B could successfully afford the copper π-alkyne
complex C′ or its resonance structure C. Next, a thermal [4 +
3] cycloaddition between the copper−allenylidene intermedi-
ate C as a 1,3-dipolarophile and N-cyclic azomethine imine 2a
enables intermediates D and E. Finally, the intermediate E with
the top face blocked by the substituents on NHC undergoes a
protonation to yield the chiral tetracyclic product 3aa and
releases the active copper catalyst. As a result of the main
stereochemical control from π−π stacking and steric hindrance
from the substituents on NHC, high Re face and endo
diastereoselectivity would be enforced to give the desired chiral
product, which is consistent with the experimental results.
In summary, we have disclosed a highly efficient asymmetric

[4 + 3] annulation of ethynyl benzoxazinanones with C,N-

Scheme 3. Scope of Substituents of 2 for Enantioselective [4
+ 3] Annulationa

aUnless noted, all the reactions followed the conditions of entry 19 in
Table 1. Yields are of isolated of 3. The ee values were determined by
HPLC. The dr values were determined by 1H NMR spectroscopy.
The configuration was assigned by comparison of HPLC data and X-
ray crystal data of 3da.

Scheme 4. Synthetic Transformations of 3aa

Figure 1. Proposed mechanism for Cu-catalyzed asymmertric [4 + 3]
annulation.
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cyclic azomethine imines using a copper catalyst combined
with chiral NHC ligand. This process provides a direct method
for the enantioselective construction of isoquinoline-fused
triazepine derivatives with excellent stereoselectivities (up to
85% yield, 95% ee, >20:1 dr). Additional studies and
applications of this type of copper−allenylidene intermediate
to other asymmetric cycloaddition reactions are ongoing.
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