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Furan-2-carbaldehydes as C1 building blocks for the synthesis of 

quinazolin-4(3H)-ones via ligand-free photocatalytic C–C bond 

cleavage 

Wenjia Yu,
a,b

 Xianwei Zhang,
b
 Bingjie Qin,

b
 Qiyang Wang,

a,b
 Xuhong Ren

a,*
 and Xinhua He

b,c,*

Furan-2-carbaldehydes, as biomass-derived chemicals, are used as 

efficient green C1 building blocks to synthesize bioactive 

quinazolin-4(3H)-ones by ligand-free photocatalytic C–C bond 

cleavage. Notably, protection of hydroxyl, carboxyl, amide, or 

secondary amino groups is not required. Mechanistic studies 

suggest that conjugated N,O-tridentate copper complexes act as 

novel photoinitiators under visible light. 

The synthesis of quinazolin-4(3H)-ones (Fig. 1) has attracted 

the interest of many organic chemists, owing to their 

important roles in pharmaceuticals, pesticides, and functional 

materials.
1
 Several traditional C1 building blocks have been 

reported for the synthesis of quinazolin-4(3H)-ones, including 

formaldehyde/I2, N,N-dimethylformamide/(t-Bu-O)2 or POCl3, 

pivalaldehyde/I2, carbon dioxide/poly(methylsiloxane)/1,3-

bis(2,6-diisopropyl-phenyl)imidazol-2-ylidene, formic acid–

triethylamine/Pd, 1H-imidazole/C:Cu(OAc)/(t-Bu-O)2, 

trimethoxymethane, and ethyl formate.
2
 However, the use of 

these C1 building blocks has many disadvantages, such as the 

needs for costly and hazardous materials, moisture-sensitive 

agents, non-green solvents, multistep processes, and high 

temperatures. For example, trimethoxymethane, which is the 

most widely used C1 building block, is moisture-sensitive and 

requires complicated and energy-intensive preparation.
3
 (t-Bu-

O)2 and POCl3 are hazardous materials. Moreover, the reaction 

yields of these C1 building blocks are sometimes unsatisfactory 

(27%–55%).
2
 

 

Fig. 1 Structures of selected bioactive quinazolinones. 

In this study, we employed furan-2-carbaldehydes, which are 

biomass agents produced from rice bran or corn hull, as green 

and renewable C1 building blocks for the synthesis of 

quinazolin-4(3H)-ones via photocatalytic C–C bond cleavage.
4,5

 

Only moderate reaction conditions were required, and the 

synthesis could proceed in the presence of various 

unprotected active functional groups, including hydroxyl, 

carboxyl, and secondary amino groups (Scheme 1).  
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Scheme 1 Furan-2-carbaldehydes as C1 feedstocks via photocatalytic C–C bond 

cleavage, and the proposed reaction mechanism.
7,8

 

Photoredox catalysis has emerged as a powerful method 

for initiating radical reactions under mild conditions using low-
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energy irradiation.
9
 However, photocatalysis usually relies on 

heavy metal-based photocatalysts, e.g. ruthenium,
10

 iridium,
11

 

copper,
7
 gold,

12
 or cobalt

13
 complexes with complicated 

ligands. For green synthesis, it is essential to develop ligand-

free photocatalytic methods.
8,14

  

Recently, we found that conjugated N,O-bidentate 

copper(II) complexes act as photoinitiators for intramolecular 

C–H bond activation via a free radical mechanism.
8
 Herein, we 

envisioned that complexes between conjugated N,O-tridentate 

copper and furan-2-carbaldehydes
15

 could function as novel 

photoinitiators for C1 building blocks in the synthesis of 

quinazolin-4(3H)-one derivatives via a C–C bond cleavage. 

Therefore, the application of 5-methylfuran-2-carbaldehyde as 

a C1 building block via ligand-free photocatalytic C–C bond 

cleavage was first investigated using 2-amino-N-

phenylbenzamide (1) as a model substrate. Compound 1 was 

reacted with 5-methylfuran-2-carbaldehyde to obtain 2-[(5-

methyl-furan-2-ylmethylene)-amino]-N-phenylbenzamide (2). 

Based on our previous study, the photoinitiator complex of 2 

and copper(II) forms in solution by activating the C–C bond of 

the furan-2-ylmethylene motif when irradiated by light from a 

high-voltage mercury lamp commonly used in industry. The 

desired product 3 was then successfully obtained by 

intramolecular cyclization, and its structure was characterized 

using single-crystal X-ray diffraction (Fig. S1).  

Encouraged by this result, we optimized the reaction 

conditions by varying the base, solvent, catalyst, and reaction 

time. As shown in Table 1, the highest yields of about 90%–

91% were obtained when ethanol was used as the solvent, 

CuCl2 as the catalyst, and CsOAc or TEA as the base. Notably, 

when CsOAc was used as the base, the reaction was easy to 

handle. 

Further, we examined other green and renewable furan-2-

carbaldehydes as potential C1 building blocks. In order to 

identify abundant, green C1 feedstocks for ligand-free 

photocatalytic C–C bond cleavage, the comparative cost and 

availability were considered, and furan-2-carbaldehyde and 5-

methylfuran-2-carbaldehyde were chosen as good candidates. 

To evaluate the effect of electron-withdrawing groups, 5-

nitrofuran-2-carbaldehyde was also tested. Kinetic studies 

showed that 5-methylfuran-2-carbaldehyde and furan-2-

carbaldehyde gave similarly high yields and reaction rates. In 

contrast, the yield of quinazolin-4(3H)-one was only about 20% 

when 5-nitrofuran-2-carbaldehyde was employed instead, 

although the starting material was almost completely 

consumed within 6 h (Fig. 2). Hence, both 5-methylfuran-2-

carbaldehyde and furan-2-carbaldehyde proved to be excellent 

C1 building blocks. However, the former, which is used as for 

food flavoring and hence very safe, has the advantage of 

reacting with 2-amino-N-phenylbenzamides to form easy-to-

handle imines in high yields. Therefore, 5-methylfuran-2-

carbaldehyde was determined to be an excellent green C1 

feedstock candidate. 

With the optimized conditions and C1 feedstock candidates 

in hand, the substrate scope of the reaction was investigated 

(Fig. 3). Notably, quinazolin-4(3H)-ones with an alkyl, fluorine,  

Table 1 Optimization of the reaction conditions 

 

Entry Solvent Base Catalyst Time (h) Yield (%)
a
 

1 acetone Cs2CO3 20% CuCl2 4 61 

2 ethanol Cs2CO3 20% CuCl2 4 84 

3 THF Cs2CO3 20% CuCl2 4 65 

4 CH3CN Cs2CO3 20% CuCl2 4 68 

5 EtOAc Cs2CO3 20% CuCl2 4 83 

6 ethanol Cs2CO3 20% CuCl2 0.5 64 

7 ethanol Cs2CO3 20% CuCl2 1 77 

8 ethanol Cs2CO3 20% CuCl2 2 81 

9 ethanol Cs2CO3 20% CuCl2 5 87 

10 ethanol Cs2CO3 
20% CuCl2, 

No light 
5 0 

11 ethanol No base 20% CuCl2 5 68 

12 ethanol CsOAc 20% CuCl2 5 91 

13 ethanol K2CO3 20% CuCl2 5 87 

14 ethanol TEA
b
 20% CuCl2 5 90 

15 ethanol NMM
c
 20% CuCl2 5 82 

16 ethanol pyridine 20% CuCl2 5 74 

17 ethanol DMAP
d
 20% CuCl2 5 63 

18 ethanol HOBT
e
 20% CuCl2 5 17 

19 ethanol KOH 20% CuCl2 5 89 

20 ethanol DIPEA
f
 20% CuCl2 5 86 

21 ethanol NaOH 20% CuCl2 5 81 

22 ethanol CsOAc 20% CuCl 5 79 

23 ethanol CsOAc 20% CuBr 5 84 

24 ethanol CsOAc 20% CuI 5 73 

25 ethanol CsOAc 20% CuBr2 5 84 

26 ethanol CsOAc 10% CuCl2 5 88 

27 ethanol CsOAc 5% CuCl2 5 90 

28 ethanol CsOAc 1% CuCl2 5 60 

a
HPLC yields. 

b
TEA, triethylamine. 

c
NMM, 4-methylmorpholine. 

d
DMAP, 4-

dimethylaminopyridine. 
e
HOBT, 1-hydroxybenzotriazole. 

f
DIPEA, N,N-

diisopropylethylamine. 

 

Fig. 2 Kinetic data of various furan-2-carbaldehydes used as C1 building blocks. The 

yields were determined by HPLC using an internal standard. 
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Fig. 3 Reaction scope and isolated yields for the conditions in Table 1, entry 27. 

or alkoxy substituent on the phenyl ring were obtained in 

isolated yields of 59%–82%. Moreover, quinazolin-4(3H)-ones 

with a phenyl, pyrazol-4-yl, or alkyl substituent at the N3-

position were also obtained in good to excellent yields. In 

particular, for substrates with hydroxyl or secondary amino 

groups, traditional C1 feedstocks require an additional step to 

protect these groups,
16 

whereas 5-methylfuran-2-

carbaldehyde can be used directly.  

In the aforementioned experiments, a high-voltage 

mercury lamp was used because of its low cost and durability. 

However, its spectrum contains some UV light (Fig. S2), 

therefore, the role of UV light played in the reaction was then 

explored. Interestingly, the reaction proceeded even in the  

 

Fig. 4 Reaction kinetics using different light sources (300 W). The yields were 

determined by HPLC. The curves of 2 are surplus ratio–time curves. 

 

Fig. 5 UV-visible absorption spectrum of a mixed solution of 2 (2 × 10
-5

 mmol/mL) and 

CuCl2 (2 × 10
-5

 mmol/mL) in ethanol (red curve). The blue curve was the sum of 

absorbances of 2 (2 × 10
-5

 mmol/mL) and CuCl2 (2 × 10
-5

 mmol/mL) in ethanol alone. 

absence of UV light (the lamp was equipped with an optical 

filter to remove UV light, < 420 nm). Therefore, the reaction 

kinetics was compared to that under a metal halide lamp 

(thallium, ~530 nm). As shown in Fig. 4, similar yields and 

reaction rates were obtained with the two light sources, 

indicating that this reaction can be initiated by visible light 

irradiation. 

Next, the reaction mechanism was investigated. UV-visible 

and IR spectra were recorded to confirm the successful 

complex formation between compound 2 and copper(II) in 

solution, as suggested in our previous study.
8
 As shown in Fig. 

5, the absorption bands observed at around 212 and 300 nm 

could not be accounted for by summing the spectra of 2 and 

CuCl2, suggesting the association between these two species. 

Moreover, the IR peaks (Fig. S3) of 2 at around 768.8, 1405.8, 

and 1666.9 cm
-1

, which correspond to the copper(II)-chelating 

functionalities, were weaker for the mixture of 2 and CuCl2. In 

particular, the N–H out-of-plane bending vibration (δN–H: 

1551.3 cm
-1

) observed for the mixture was not detected for 

the individual solutions (Fig. S4).  
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Fig. 6 Electron paramagnetic resonance spectra of (a) 2 in ethanol and (b) the complex 

of 2 and copper(II) in ethanol. The solutions were irradiated using a high-voltage 

mercury lamp, and the signals were collected after 0, 45, 90, 135, 180, 225, and 270 s. 
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Scheme 2 Possible reaction pathways. 

These findings confirmed the complex formation between 2 

and copper(II) in solution. 

Electron paramagnetic resonance (EPR) studies were 

performed to determine whether the reaction proceeds via a 

free radical mechanism. Under light irradiation (high-voltage 

mercury lamp), small amounts of free radicals including 

superoxide, nitrogen, and carbon radicals were generated in 

the solution of 2 (Fig. 6a), whereas the CuCl2 solution gave no 

EPR signals (Fig. S5). In contrast, in the mixed solution of 2 and 

CuCl2, only carbon free radicals were produced, the amount of 

which increased with time (Fig. 6b). These results suggest that 

copper(II) ions play a key role in this reaction. The complex of 2 

and copper(II) acts as a photoinitiator, and 5-methylfuran-2-

carbaldehyde as a C1 building block via a free radical 

mechanism. 

Based on these observations, two possible reaction 

pathways were proposed (Scheme 2). In pathway 1, compound 

2 forms the photoinitiator by chelating copper(II) ions, and the 

obtained complex cyclizes to give intermediate 34 (Fig. S6). 

Next, 34 chelates copper(II) and its furan ring is decomposed 

under light irradiation to form 3. In contrast, in pathway 2, the 

decomposition of the furan ring of the photoinitiator occurs 

before the cyclization. To determine which pathway was 

followed, we attempted to monitor the formation of 

intermediate 34 by HPLC and LC/MS, but no  

 

Fig. 7 Kinetics of the two possible reaction pathways. Pathway 1 starts from 

intermediate 34, and pathway 2 from intermediate 2. The curves of 34 and 2 are 

surplus ratio–time curves. The yields were determined by HPLC using an internal 

standard.  

evidence of it was observed. Next, two kinetic assays were 

performed: from 34 to 3 and from 2 to 3. As shown in Fig. 7, 34 

decomposed under irradiation from the mercury lamp, but the 

yield of 3 was below 10%. In contrast, 2 was rapidly converted 

to 3 at a rate matching that of the free radical formation as 

revealed by the EPR study. Hence, we concluded that the 

reaction proceeded via pathway 2. 

Conclusions 

In summary, we demonstrated two renewable green agents, 5-

methylfuran-2-carbaldehyde and furan-2-carbaldehyde, which 

can be produced from rice bran or corn hull, as efficient C1 

building blocks for the synthesis of quinazolin-4(3H)-ones by 

photocatalytic C–C bond cleavage under visible light irradiation. 

The reaction conditions were more moderate and greener 

than those using traditional C1 building blocks. In particular, 

for substrates with hydroxyl, secondary amino, amide, or 

carboxyl groups, protection reactions are not required before 

using furan-2-carbaldehydes. Importantly, the complex 

between 2-[(5-methylfuran-2-ylmethylene)-amino]-N-

phenylbenzamide and copper(II) was found to be a novel 

ligand-free photoinitiator that produces a moderate amount of 

carbon free radicals. Therefore, this study provides a useful 

tool for constructing new skeletons by intermolecular 

reactions of in-situ generated carbon radicals. 
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