06,5'-CYCLONUCLEOSIDES. REACTIONS OF 5-IODOPYRIMIDINE NUCLEOSIDES WITH BASE (1)
D. Lipkin, C. Cori, and M. Sano (2)

Chemistry Dept., Washington University, St. Louis, Mo. 63130

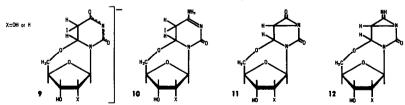
(Received in USA 27 July 1968; received in UK for publication 24 October 1968)

The recent note by Fox et al., (3) prompts us to report the synthesis of four 0^6 ,5'-cyclopy-rimidine nucleosides (4) (3a, 3b, 4a, 4b) from the corresponding 5-iodopyrimidine nucleosides. (5) Such cyclonucleosides are of interest since they can be used as intermediates in the synthesis of 6-substituted pyrimidine nucleosides, a class of compounds that may prove to be of biological importance, but which to date have been little explored. (6,7,8) Thus, when 5-iodouridine (1a) was treated with an excess of potassium t-butoxide in a 1:1 (v/v) mixture of t-butyl alcohol and DMSO (60°, 24 hr), 0^6 ,5'-cyclouridine (9) (3a) [mp 283-285° dec; $\lambda_{\text{max}}^{\text{pH}}$ 262 mµ (ϵ , 12,080)] was obtained. Analogously, starting with 5-iodocytidine (2a) and 5-iodo-2'-deoxycytidine (2b), 0^6 ,5'-cyclocytidine 1/2H₂O (4a) [mp > 320°, $\lambda_{\text{max}}^{\text{pH}}$ 7 271.5 mµ (ϵ , 11,320)] and 0^6 ,5'-cyclo-2'-deoxycytidine (4b) [mp > 300°, $\lambda_{\text{max}}^{\text{pH}}$ 7 272 mµ (ϵ , 10,400)], resp., were obtained. When 5-iodo-2'-

deoxyuridine (1b) replaced 1a in the above type of reaction, only a 19% yield of 0^6 ,5'-cyclo-2'-deoxyuridine· $1/2H_20^{(10)}$ (3b) [mp 209-210° dec; $\lambda_{\rm max}^{\rm pH}$ 7 262.5 m μ (ϵ , 12,600)] was isolated. The remainder of the reaction mixture was 40% unreacted 1b, 2% barbituric acid (13), and 27% 6-hydroxy-2'-deoxyuridine (5b). Preparatively it proved advantageous to obtain 3b by treating 4b with an excess of LiNO₂ and glacial acetic acid in DMSO.

5994 No.57

The structures of 3a and 3b were confirmed by the following observations. Treatment of 3aand 3b with 60% $\mathrm{HF}^{(5,11)}$ (25°, 15 hr) yielded 13 and ribose (14) or deoxyribose (15), resp. On the other hand, 0.1N H₂SO₄ converted 3a and 3b (70°, 1 hr) to 6-hydroxyuridine.H₂O (5a) [mp 114.5-115°; λ_{max}^{pH} 7 264 m μ (ϵ , 21,890)] and 6-hydroxy-2'-deoxyuridine ($\frac{5b}{max}$) (λ_{max}^{pH} 7 265 m μ), resp. This indicates that the position of attachment of the cyclo-linkage is at C_6 of the aglycon. It is possible to differentiate $\frac{5a}{2}$ from the isomeric 5-hydroxyuridine (12) (16) [λ_{max}^{pH} 280 m μ (ϵ , 8,200)] by comparison of their UV spectra; the lack of blue color when 5a is treated with aqueous FeCl₃; (13,14) and the orange color produced when 5a or 13 are treated with Ehrlich's reagent. $^{(15)}$ No color is produced when 16 is treated with Ehrlich's reagent. NMR spectra of 3aand 3b in DMSO-d₆ showed a single vinylic proton at 5.32 δ and 5.19 δ , resp. These singlet resonances are assigned to the H_5 protons (16a) of 3a and 3b. The H_5 ' resonances of 3a and 3b, on the other hand, are pairs of doublets (16b) centered at 3.95 δ and 4.58 δ (J_{H.5}, H.5, = 13 cps) and 3.89 δ and 4.51 δ (J_{Hc}', Hc' = 12 cps), resp. Such a pattern has been reported (3,17) as typical of cyclonucleosides that have an oxygen cyclo-linkage to C_5 . Compound 3a rapidly consumed one mole of metaperiodate. (18) This is consistent with a ribofuranosyl structure and a cyclo-linkage which does not involve C2' or C3'.


Similar methods were used to determine the structures of $\underline{4a}$ and $\underline{4b}$. Using deaminating conditions analogous to those used for the conversion of $\underline{4b}$ to $\underline{3b}$, it was possible to convert $\underline{4a}$ to $\underline{3a}$. This indicates that the cyclo-linkage does not involve C_4 of the aglycon. It was possible, furthermore, to open the cyclo-linkage of $\underline{4a}$ and $\underline{4b}$ by refluxing (1 hr) in aqueous 0.2M Ba(OH)₂. 6-Hydroxycytidine·H₂0 (6a) [mp 181-182° dec; $\lambda_{\max}^{\text{PH}}$ 267 m_{\mu} (ϵ , 19,800)] and 6-hydroxy-2'-deoxycytidine·H₂0 (6b) [mp 195-197° dec; $\lambda_{\max}^{\text{PH}}$ 267 m_{\mu} (ϵ , 19,990)], resp., were obtained. The H₅ protons of $\underline{4a}$ and $\underline{4b}$ were single unsplit resonances at 5.40 δ and 5.33 δ resp., while the H₅' protons in each were again pairs of doublets centered at 4.50 δ and 3.87 δ (J_{H₅',H₅'}= 14 cps) and 4.49 δ and 3.82 δ (J_{H₅',H₅'}= 13 cps), resp. Compound $\underline{4a}$ rapidly consumed one mole of metaperiodate. Once again, this is consistent with a ribofuranosyl structure and a cyclo-linkage that is to C₅' rather than to C₂' or C₃'.

By treatment of <u>2a</u> and <u>2b</u> with excess aqueous tetramethylammonium hydroxide in DMSO (25°, 3 days) it is possible to isolate <u>6a</u> and <u>6b</u>, resp. In all likelyhood <u>4a</u> and <u>4b</u>, resp., are intermediates. This supposition is supported by the observations that during the conversion of <u>2a</u> to <u>6a</u> a small amount of <u>4a</u> always is present and that the cyclo-linkage in <u>4a</u> and <u>4b</u> is opened with Ba(OH)₂ to form <u>6a</u> and <u>6b</u>, resp. Compounds <u>6a</u> and <u>6b</u> can be deaminated to <u>5a</u> and <u>5b</u>, resp.,

by treatment with aqueous 0.1M $_2SO_4$ (25°, 18 hr). The structures of $\underline{6a}$ and $\underline{6b}$ were further confirmed by cleavage with 60% HF (25°, 16 hr) to 6-hydroxycytosine ($\underline{17}$) and $\underline{14}$ or $\underline{15}$, resp. It was possible also to distinguish $\underline{6a}$ from the isomeric 5-hydroxycytidine ($\underline{19}$) [λ_{max}^{pH-7} 292 m $_{\mu}$ (ϵ , 7837)] by comparison of their UV spectra and the lack of blue color when $\underline{6a}$ was treated with aqueous FeCl $_3$. (13) Finally, it was possible to convert $\underline{5a}$ to 5-nitroso-6-hydroxyuridine ($\underline{7a}$) [mp 166-167° dec; λ_{max}^{pH-7} 311 m $_{\mu}$ (ϵ , 8000)] by treatment with excess HNO $_2$. This is further evidence that the cyclo-linkage in $\underline{3a}$ does not involve C_5 of the aglycon. The structure of $\underline{7a}$ was confirmed by comparison of its UV spectrum with violuric acid [λ_{max}^{pH-7} 311 m $_{\mu}$]. Likewise, reaction of $\underline{6a}$ with aqueous HNO $_2$ at pH > 4 yielded 5-nitroso-6-hydroxycytidine·1/2H $_2$ O ($\underline{8a}$) [mp 210-211° dec; λ_{max}^{pH-7} 317 m $_{\mu}$ (ϵ , 17,400)]. Compound $\underline{8a}$ then was deaminated to $\underline{7a}$ by treatment with aqueous 0.1M H $_2$ SO $_4$ (25°, 15 hr).

Two plausible mechanisms can explain the conversion of 5-iodopyrimidine nucleosides to the corresponding 0^6 ,5'-cyclopyrimidine nucleosides. The first is an addition-elimination mechanism. This would involve the anion $\underline{9}$ or the intermediate $\underline{10}$, which could either eliminate HI directly by the loss of \underline{H}_6 and $\underline{iodide}^{(3)}$ or it could form the α -lactam $\underline{11}$ or the α -iminolactam $\underline{12}$ by displacement of iodide at \underline{C}_5 by \underline{N}_3 . \underline{H}_6 could then be lost with concomitant lactam ring opening to form the observed product. Related mechanisms (20,21,22) have been proposed to explain reaction at \underline{C}_6 in various other pyrimidine nucleosides and the conversion (23) of showdomycin to cycloshowdomycin. The second plausible mechanism involves a hetaryne. In this case the first step is abstraction of \underline{H}_6 by base followed by loss of iodide and the attack of the \underline{C}_5 ' oxygen on the hetaryne. Hetaryne intermediates have been observed with other 5-halopyrimidines. (24) Evidence obtained thus far in This Laboratory supports either mechanism. No matter which is operative, however, it need not function only intramolecularly, since treatment of 5-iodocytidine-5'-phosphate (25) with aqueous tetramethylammonium hydroxide in DMSO yields the 5'-phosphate of $\underline{4}$ a.

Further work is in progress in order to elucidate mechanisms for these reactions and to determine the scope of ring-opening reactions of the cyclonucleosides with common nucleophiles.

References

- (1) This investigation was supported, in part, by Public Health Service Research Grant No. CA-03870 from the National Cancer Institute and, in part, by National Science Foundation Grant No. GB-2980.
- (2) Present address: Central Research Laboratory, Daiichi Seiyaku Co., Tokyo, Japan.
- (3) B. Otter, E. Falco, and J. Fox, Tetrahedron Letters, 2967 (1968).
- (4) D. Lipkin, F. Howard, D. Nowotny, and M. Sano, Abstr. 6th Int. Congr. Biochem, N.Y., paper #1-117 (1964); D. Lipkin, C. Cori and M. Sano, Abstr. Midwest Regional ACS Meeting, Columbia, Mo., p 20, paper #320 (1967).
- (5) D. Lipkin, F. Howard, D. Nowotny, and M. Sano, <u>J. Biol</u>. <u>Chem.</u>, <u>283</u>, PC 2249 (1963).
- (6) T. Ukita, M. Yoshida, A. Hamada, and Y. Kato, Chem. Pharm. Bull., 12, 459 (1964).
- (7) M. Winkley and R. Robins, Abstr. ACS Meeting, San Francisco, paper #C-52 (1968).
- (8) M. Sprinzl, J. Farkas, and F. Sorm, Czechoslov. Chem. Comm., 32, 4280 (1968).
- (9) Satisfactory elemental analyses were obtained for compounds with melting points reported herein. Waters of crystallization are indicated as xH₂O after the name of the compound. Unless otherwise noted, yields obtained in reactions were greater than 60%. NMR spectra (relative to TMS) were determined on a 60 MHz spectrometer.
- (10) P. Chang, J. Org. Chem., 30, 3913 (1965).
- (11) D. Lipkin, W. Cook, and R. Markham, J. Am. Chem. Soc., 81, 6198 (1959).
- (12) M. Roberts and D. Visser, J. Am. Chem. Soc., 74, 688 (1952).
- (13) D. Davidson and O. Baudish, <u>J. Biol. Chem.</u>, <u>64</u>, 619 (1925).
- (14) B. Lythgoe, Quart. Rev., 3, 181 (1948).
- (15) A. Wischenk, <u>Ber.</u>, <u>34</u>, 1685 (1901).
- (16) (a) The H₅ resonance of uridine in D₂0 is a doublet cantered at 5.9 δ, while the H₅ resonance of cytidine is a doublet centered at 6.04 δ. See Varian Cat. spectra #535, and #540. (b) The 100 MHz spectra of 3a and 3b show a clear resolution of this pair of doublets with the correct relative chemical shifts and coupling constants.
- (17) I. Doerr and J. Fox, J. Am. Chem. Soc., 89, 1760 (1967).
- (18) J. Dixon and D. Lipkin, Anal. Chem., 26, 1092 (1954).
- (19) T. Fukuhara and D. Visser, Biochemistry, 1, 563 (1962).
- (20) J. Fox, N. Miller, and R. Cushley, Tetrahedron Letters, 4927 (1966).
- (21) R. Chambers and V. Kurkov, <u>J. Am. Chem. Soc.</u>, <u>85</u>, 2160 (1963).
- (22) R. Shapiro and R. Klein, Biochemistry, 6, 3576 (1967).
- (23) Y. Nakagawa, H. Kano, Y. Tsukuda, and H. Koyama, Tetrahedron Letters, 4150 (1967).
- (24) H.C. van der Plas, P. Smit, and A. Koudijs, <u>Tetrahedron Letters</u>, 9 (1968), and refs. therein.
- (25) D. Lipkin and D. Borovas, unpublished results.