
Subscriber access provided by UNIV OF LOUISIANA

is published by the American Chemical Society. 1155 Sixteenth Street N.W.,
Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

Note

Access to Functionalized Quaternary Stereocenters via the
Copper-Catalyzed Conjugate Addition of Monoorganozinc

Bromide Reagents Enabled by N,N-Dimethylacetamide
Tyler Fulton, Phebe L. Alley, Heather R. Rensch, Adriana

M. Ackerman, Cameron B. Berlin, and Michael R Krout
J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b02201 • Publication Date (Web): 30 Oct 2018

Downloaded from http://pubs.acs.org on October 30, 2018

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a service to the research community to expedite the dissemination
of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in
full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully
peer reviewed, but should not be considered the official version of record. They are citable by the
Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore,
the “Just Accepted” Web site may not include all articles that will be published in the journal. After
a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web
site and published as an ASAP article. Note that technical editing may introduce minor changes
to the manuscript text and/or graphics which could affect content, and all legal disclaimers and
ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or
consequences arising from the use of information contained in these “Just Accepted” manuscripts.



Access to Functionalized Quaternary Stereocenters via the Copper-Catalyzed Conjugate 

Addition of Monoorganozinc Bromide Reagents Enabled by N,N-Dimethylacetamide 

 

Tyler J. Fulton,† Phebe L. Alley,‡ Heather R. Rensch,§ Adriana M. Ackerman,‡ Cameron B. 

Berlin,‡ Michael R. Krout‡,* 

 
†Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, 

California Institute of Technology, Pasadena, California 91125, United States 

 
§Research and Development, Bimax, Inc., Glen Rock, Pennsylvania 17327, United States 

 
‡Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States 

 

michael.krout@bucknell.edu 

 

Abstract Image 

 

 
Abstract 

Monoorganozinc reagents, readily obtained from alkyl bromides, display excellent reactivity 

with β,β-disubstituted enones and TMSCl in the presence of Cu(I) and Cu(II) salts to synthesize 

a variety of cyclic functionalized β-quaternary ketones in 38–99% yields and 9:1–20:1 

diastereoselectivities. The conjugate addition features a pronounced improvement in DMA using 

monoorganozinc bromide reagents. A simple one-pot protocol that harnesses in situ generated 

monoorganozinc reagents delivers comparable product yields. 

 

 

The metal-catalyzed formation of C–C bonds with organometallics represents a versatile 

technology in organic synthesis. Organozinc reagents comprise an important class of 
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 2 

organometallics that have earned widespread use due to their outstanding functional group 

compatibility while maintaining sufficient reactivity.1,2,3,4 This enhanced chemoselectivity 

coupled with reagent accessibility facilitates applications in the construction of highly 

functionalized organics for complex molecule synthesis. Strategies have been developed to 

modulate the reactivity of mild organozinc species when engaged with challenging substrates, as 

demonstrated in their conjugate addition to β,β-disubstituted α,β-unsaturated carbonyls. The 

application of sensitive diorganozinc5,6,7 or mixed diorganozinc8 reagents has enabled the 

synthesis of β-quaternary carbonyls that include recent enantioselective achievements.9,10,11 

Monoorganozinc reagents, however, have been underutilized despite the appeal of their 

simplified preparation via the direct insertion of zinc into a carbon–halogen bond. Examples that 

leverage the addition of monoorganozinc reagents to sterically demanding β,β-disubstituted α,β-

unsaturated carbonyls are surprisingly limited and require stoichiometric cyanocuprate 

reagents.12,13,14 Moreover, a single example demonstrating minimal catalyst turnover has been 

reported.15 Our interest in this transformation came from a desire to prepare functionalized β-

quaternary ketones for synthesis applications. A key goal in this endeavor was to harness mild, 

functionalized organometallics that are both economical and trivial to access. To this end, we 

have developed a simple and efficient Cu-catalyzed addition of alkyl monoorganozinc bromide 

(RZnBr) reagents to cyclic α,β-unsaturated ketones augmented by the polar solvent N,N-

dimethylacetamide (DMA). 

 

 

We began our studies with monoorganozinc iodide reagent 1 (RZnI) and 3-

methylcyclohexenone (3) as our model substrates. A variety of conditions were examined that 

comprised CuCN•2LiCl in combination with Lewis acids in order to establish a baseline of 

reactivity for the production of β-quaternary ketone 6. The conjugate addition of 1 promoted by 

stoichiometric CuCN•2LiCl with BF313 afforded only a modest yield of 6 (Table 1, entry 1). 

Employing sub-stoichiometric copper failed to produce 6, although measurable quantities could 

be realized with TMSCl upon acid or fluoride-mediated hydrolysis of an intermediate silyl enol 

ether (entries 2 and 3). HMPA has been established as a beneficial component for conjugate 

additions with TMSCl,15,16,17,18 and indeed the use of this polar additive improved the catalyst 

efficiency and yield of 6 to 73% (entry 4). While there is an advantage with HMPA, the use of 
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 3 

alternative non-carcinogenic Lewis bases is desirable.17 To this end, various polar, aprotic 

solvents were considered for their compatibility with organozinc reagents.19,20,21 We were 

pleased to find that the inclusion of DMA as an additive doubled the reaction efficiency 

compared to no polar additive, generating 6 in 49% yield (entry 5). Further utilizing DMA as the 

reaction solvent with 1 (solution in DMA) yielded a modest increase in 6 to 56% (entry 6). 

Organozinc iodide preparation is aided by the relative ease of zinc insertion into the weaker C–I 

bond, although this limits application with respect to the modest options of commercial alkyl 

iodides ostensibly due to their instability. Organozinc bromides are accessible from ubiquitous 

alkyl bromides,19,20,22 including Huo’s convenient method of preparing stable23 solutions of 

RZnBr reagents in polar, aprotic solvents. Gratifyingly, RZnBr reagent 2 performed 

exceptionally in this conjugate addition to provide 6 in up to 90% yield with 5 mol% catalyst 

(entries 7 and 8). The proficiency of this Cu-catalyzed conjugate addition for the synthesis of β-

quaternary ketone 6 is remarkable considering the use of simple RZnBr reagents in DMA, and it 

is arguably superior to HMPA in terms of feasibility and chemical safety. Although further 

investigation is necessary to ascertain to role of the halide (Br) and DMA in this transformation, 

we posit that both components augment the reactivity of the monoorganozinc to facilitate 

transmetalation to the Cu-catalyst. Recent studies have demonstrated similar halide effects in 

polar solvents for both Cu-catalyzed24 and Pd-catalyzed25,26 Negishi cross-couplings. Amidic 

solvents have also been hypothesized to increase the reactivity of organozinc reagents through 

coordination to the zinc center.27 

 

Table 1. Optimization of the Cu-Catalyzed Conjugate Addition of Monoorganozinc Reagents. 

 

entrya RZnX Cu 
(mol%) 

Lewis acid solvent additive 
(equiv) 

yield 
(%)b 

1 1 122 BF3•Et2O THF/Et2O – 56 
2 1 10 BF3•Et2O THF/Et2O – 0 
3 1 10 TMSCl THF/Et2O – 25 
4 1 10 TMSCl THF/Et2O HPMA (2.4) 73 

O
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2 (X = Br) 3 6

OR

Me

CO2Et
AcOH

or 
TBAF

4 (R = BF3)
5 (R = TMS)

Page 3 of 27

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 4 

5 1 10 TMSCl THF/Et2O DMA (2.4) 49 
6 1 10 TMSCl DMA – 56 
7 2 10 TMSCl DMA – 89 
8 2 5 TMSCl DMA – 90 

a 1.00 mmol 3, 1.4–2.0 equiv 1 or 2, and 2.4 equiv Lewis acid for up to 24 h. b 
Isolated yields. 

 

Our identification of DMA as an optimal solvent with RZnBr reagents (i.e., 2) led to further 

examination of the reaction catalyst and conditions. A brief survey of common catalysts revealed 

that a number of Cu(I) and Cu(II) salts are effective in the production of 6 (Table 2). It is 

noteworthy that LiCl is no longer necessary for the solvation of CuCN, affording 6 in 

comparable yield (cf. entries 1 and 2). Halide and carboxylate salts of Cu(I) and Cu(II) are 

generally efficacious for this transformation (entries 3–6 and 8–10), whereas copper oxides 

(entries 7 and 11) and Ni(acac)25 (entry 12) are substantially less effective. Although various 

copper salts could be utilized in this transformation, we chose to advance our study with 

CuBr•DMS given the convenience and reproducibility of this catalyst. Lowering the CuBr•DMS 

loading to 2 mol% resulted in a diminished yield of 6 due to the incomplete conversion of 3 (cf. 

entries 3 and 13). Further analysis of TMSCl and 2 revealed that lowering the equivalence to 1.2 

also decreased the product yield due to incomplete conversion (entries 14 and 15). No product 

was formed in the absence of either Cu-catalyst or TMSCl (entries 16 and 17). It is plausible that 

DMA can also enhance enone silylation through activation of TMSCl.7 

 

Table 2. Conjugate Addition Catalyst Survey. 

 

entrya catalyst (mol%) yield (%)b 
1 CuCN•2LiCl (5) 90 
2 CuCN (5) 87 
3 CuBr•DMS (5) 92 
4 CuCl (5) 90 
5 CuI (5) 90 

O

Me

O

Me

CO2Et

BrZn

CO2Et
catalyst
TMSCl

DMA
0 → 23 °C

2 3 6(H+ or F– workup)
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 5 

6 CuTC (5)c 82 
7 Cu2O (10) 35 
8 CuBr2 (5) 92 
9 CuCl2 (5) 92 

10 Cu(OAc)2 (5) 92 
11 CuO (10) 11 
12 Ni(acac)2 (10) 0 
13 CuBr•DMS (2) 78 
14 CuBr•DMS (5) 81d 
15 CuBr•DMS (5) 67e 
16 CuBr•DMS (5) 0f  
17 – 0 

a 1.00 mmol 3, 2 equiv 2, and 2.4 equiv TMSCl for 
up to 24 h. b Isolated yields. c TC = thiophene-2-
carboxylate. d 1.2 equiv 2. e 1.2 equiv TMSCl. f No 
TMSCl. 

 

With optimized conditions in hand, we examined the scope of monoorganozinc and α,β-

unsaturated ketones (enones; Scheme 1). A variety of functional monoorganozinc reagents 

proved effective in this reaction, affording β-quaternary ketones that incorporate ester (6 and 7), 

chloro (8), nitrile (9), and carbamate (10) groups in high yields. The cyclic enones could also 

possess alternative β-functionality, with n-butyl (11), benzyl (12), and phenyl (13) groups well-

tolerated. The absence of examples of quaternary center formations with monoorganozinc 

additions to enones of various ring sizes led us to survey five- and seven-membered ring 

substrates. Both systems were effective in this reaction, demonstrated by the formation of 

cycloheptenone 14 in 69% yield and cyclopentenone 15 in 51% yield. The yield of 15 could be 

improved to 62% by increasing the catalyst loading, although the enone conversion remained 

incomplete presumably due to the poor overlap of the conjugated system. The stereoselectivity of 

the addition reaction with a variety of γ- and δ-substituted enones was also investigated. We 

were pleased to find that the Cu-catalyzed reactions of simple monoorganozinc reagents 

proceeds with excellent efficiencies and high diastereoselectivities (16–19). Isophorone was used 

to examine the steric constraints of this reaction based on the highly methylated core of this 

enone.28 Addition product 20 was obtained in a modest 45% yield due to incomplete conversion. 
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 6 

Importantly, this positive result highlights the feasibility and potential of Cu-catalyzed additions 

of monoorganozinc reagents to sterically demanding substrates. 

 

Scheme 1. Substrate Scope of the Cu-Catalyzed Conjugate Addition of Moonorganozinc 

Reagents to Enonesa,b 

 
 

The use of isolated monoorganozinc reagents in this transformation motivated our 

development of a practical one-pot procedure to leverage in situ generated monoorganozincs in a 

sequential addition reaction. This simplified protocol would minimize reagent manipulation, and 

moreover, has the potential to facilitate expedient access to a more diverse collection of products 

considering the accessibility and stability of 1° and 2° organobromides. The monoorganozinc 

reagent was obtained by the direct insertion of zinc into organobromides (e.g., 21) at elevated 

temperature in DMA.21 Upon completion, the reagent was cooled to 0 °C followed by addition of 

CuBr•DMS, TMSCl and enone 3 to produce 6 in 34% yield (Equation 1). We surmised that the 

remaining zinc and related insoluble salts may impact the catalyst efficiency, and accordingly 

observed improved yields using higher catalyst loadings. Comparable yields were realized using 

20 mol% catalyst, and we proceeded with these conditions as our standard one-pot procedure to 

explore a broad substrate scope (Scheme 2). Monoorganozinc reagents that incorporate ester 

functionality at various chain lengths afford addition products in high yields (7, 22, and 23), 

including 6 in 92% yield on 5.0 mmol scale. Nitrogen-containing monoorganozincs were well 
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 7 

tolerated to afford nitrile (9 and 24), carbamate (10), and phthalimide (25) products in good 

yields. The addition reaction was efficient with various β-substituted cyclohexenones (11–13) 

and cycloheptenone (14). Homoallyl (26), homobenzyl (27), and benzyl (28) monoorganozinc 

reagents provide high yields of addition products, including para substituted benzyl-containing 

products (29 and 30). The introduction of alkyl groups is facile (31), highlighted by use of a 2° 

monoorganozinc reagent to afford 32 in 87% yield. Cyclopentenone substrates remained a 

challenge, affording modest and variable yields with the incorporation of ester (15 and 33), 

nitrile (34), and chloro (35) functionality with our conditions. Cyclohexenone substrates with γ- 

and δ-substitution proceeded in high yields and diastereoselectivities for the one-pot additions 

(16–19). Cyclohexenone is among the most utilized substrates for this type of conjugate addition 

reaction, and the expected 3° product (36) was formed in excellent yield.12,14,15,29 

 

 
 

O

Me

CO2Et

21 (X = Br) 6

X

CO2Et

Zn
DMA
80 °C

CuBr•DMS (cat.)
3, TMSCl

DMA, 0 → 23 °C
(1)

5 mol% CuBr•DMS 34% yield
10 mol% 72% yield
20 mol% 90% yield

2 (X = ZnBr)

(H+ or F– workup)
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 8 

Scheme 2. Substrate Scope for the One-Pot Synthesis and Conjugate Addition of 

Monoorganozinc Reagentsa,b 

 
 

The efficient one-pot procedure enabled us to demonstrate a broad scope of the 

monoorganozinc bromide reagents in the addition reaction with a few exceptions. Stabilized 

monoorganozincs, such as enolate 37, homoenolate 38,30 and allyl (39) did not yield any addition 

products (Figure 1). Benzylic monoorganozincs appear to deviate from this trend (28–30), 

although electronic tuning by a withdrawing p-ester group (40) resulted in a failed addition. 

Monoorganozincs that contain β- or γ-NHBoc groups (41 and 42) did not provide addition 

products despite their reported use with less demanding electrophiles.31 The conjugate addition 

was also found to be sensitive to organozinc sterics, indicated by unsuccessful additions with 

ortho substituted (43) or β-quaternary (44) organozincs. 
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 9 

 
Figure 1. Unreactive Monoorganozinc Reagents in Conjugate Additions. 

 

The standard reaction conditions and one-pot procedure both provide facile access to a 

variety of chiral β-quaternary ketones. The addition products shown in Scheme 1 and Scheme 2 

are obtained via the hydrolysis of an intermediate silyl enol ether. Importantly, these reactive 

intermediates poised for subsequent functionalization32,33,34 are moderately stable35 and can be 

isolated in high yield using a modified workup (Equation 2). 

 

 
 

We have established a general and practical reaction protocol for the Cu-catalyzed conjugate 

addition of simple monoorganozinc reagents to form diverse functionalized β-quaternary ketones 

with excellent efficiency. In contrast to the limited known examples, this method is highlighted 

by a significant positive influence of the solvent DMA with RZnBr reagents, facilitating access 

to five-, six-, and seven-membered ring products in high yields and diastereoselectivities. Efforts 

to expand the unsaturated carbonyl substrate scope, clarify the nature of the reagent 

enhancement, as well as further applications are under investigation. 

 

 

Experimental Section 

General Methods. Reactions, Reagents and Solvents. Unless otherwise noted, all reactions 

were performed in flame-dried Schlenk glassware under an argon or nitrogen atmosphere using 

dry solvents. Solvents were dried by passage through an activated alumina column under 

nitrogen and stored over activated 3 Å MS. Molecular sieves were activated by microwave 
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 10 

irradiation and cooled under vacuum. All starting materials were purchased from commercial 

sources and used as received, unless otherwise stated. A 1 M solution of CuCN•2LiCl in THF 

was prepared according to Knochel12 and stored in a sealed tube. Liquids and solutions were 

transferred via syringe or positive-pressure cannulation. Brine solutions refer to saturated 

aqueous sodium chloride solutions. Zinc dust was activated over 1 M HCl. The following liquids 

were refluxed over CaH2 and stored in a Straus flask over 3 Å molecular sieves prior to use: 

toluene, HMPA, DMF, Et3N. TMSCl was cannulated into a sealed tube and stored under 

nitrogen. Reagent grade acetone was stored over CaSO4. MeOH was refluxed over Mg turnings, 

distilled and stored over 3 Å molecular sieves. Unless stated otherwise, all reactions were stirred 

with a magnetic stir bar and monitored by gas chromatography (GC) with an FID or thin layer 

chromatography (TLC). 

Instruments, Purification and Analysis. Thin-layer chromatography was performed using 6.5 

x 2.2 cm EMD Milipore 60 g F254 precoated plates (9.5–11.5 µm particle size) and visualized by 

UV fluorescence quenching and p-anisaldehyde staining. Column or flash chromatography 

(silica) was performed with the indicated solvents using SiO2 (VWR, 60 Å pore size, 40–63 µm 

particle size; or Biotage KP-Sil, 60 Å pore size, 40–60 µm particle size). Automated flash 

chromatography was performed on a Biotage Isolera One with UV/VIS detection (254, 280, 

200–400 nm), unless otherwise noted. All crude samples were dissolved in a minimal amount of 

Et2O or CH2Cl2 and loaded onto a Biotage dry load vessel (DLV) packed with SiO2 (generally 

10–25 g). A reduced pressure was then used to pull the sample onto the DLV and remove excess 

solvent. The DLV was then used with the Biotage Isolera One pre-packed SiO2 columns as 

indicated. Infrared spectra were obtained on a Thermo Nicolet 4700 FT-IR with a Pike 

GladiATR ATR using a diamond cell and are reported in wavenumbers (cm–1). 1H and 13C{1H} 

NMR spectra were recorded on a Varian 400 MHz (400 and 101 MHz, respectively) or an 

Oxford 600 MHz (600 and 151 MHz, respectively). Chemical shifts (δ) are reported relative to 

internal Me4Si (1H and 13C{1H}, δ 0.00 ppm), chloroform (1H, δ  7.26 ppm, 13C{1H} 77.16 ppm) 

or benzene (1H, δ  7.16 ppm, 13C{1H} 128.06 ppm). High-resolution mass spectra were acquired 

using a Thermo Exactive Orbitrap mass spectrometer with an IonSense ID-Cube DART source 

in APCI ionization mode. Melting point measurements are uncorrected. 
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 11 

General Procedure. To a 25 mL Schlenk tube charged with CuBr•DMS (10.3 mg, 0.050 

mmol, 0.050 equiv) and DMA (0.3 M; volume adjusted to account for RZnX) at 0 °C was added 

a solution of the RZnX (2.00 mmol, 2.0 equiv). After 10 min, TMSCl (305 µL, 2.40 mmol, 2.4 

equiv) and enone (1.00 mmol, 1.0 equiv) were added. The solution was allowed to warm to 23 °C 

after ca. 1 h and stirred until consumption of the enone by TLC analysis, or 24 h. The reaction was 

quenched with glacial acetic acid (290 µL, 5.0 mmol, 5.0 equiv) and stirred until hydrolysis of the 

silyl enol ether was observed by TLC. In some cases, the addition of TBAF (0.5–1.1 mL of a 1.0 

M solution in THF) was required for complete hydrolysis of the silyl enol ether. The reaction was 

then added HCl (5 mL, 1 M aq) and transferred to a separatory funnel with Et2O (5 mL) and H2O 

(5 mL). The layers were mixed, separated, and the aqueous layer was extracted with Et2O (3 x 10 

mL). The combined organics were washed with NaHCO3 (5 mL), brine (5 mL), and then dried 

over anhydrous MgSO4, filtered, and concentrated to provide a crude oil. Purification by 

automated flash column chromatography on SiO2 afforded the conjugated addition products. 

 

Organozinc Reagents. DMA solutions of the organozinc bromide reagents employed in Table 

1, Table 2 and Scheme 1 were prepared according to Huo21 and Fu,36 as represented by the 

preparation of 2. To a 100 mL sealed reaction tube was added zinc dust (4.908 g, 75.07 mmol, 

1.25 equiv), I2 (760 g, 2.99 mmol, 0.05 equiv) and DMA (25.0 mL, 2.4 M). The contents were 

stirred vigorously until the color faded (ca. 1–5 min), and to this gray suspension was added ethyl 

4-bromobutyrate (21; 8.60 mL, 60.1 mmol, 1.0 equiv). The reaction tube was sealed, immersed in 

an 80 °C oil bath and monitored by GC analysis for consumption of the organohalide (NH4Cl 

aliquot quench; Et2O extraction; required 6–10 h depending on scale). Upon completion of the 

organozinc formation, the reaction is cooled to ambient temperature and the stirring is ceased to 

allow the solids to settle for 12–24 h. The partially separated suspension was slowly filtered into a 

dry disposable syringe equipped with a 0.45 µm PTFE syringe filter, the needle was exchanged 

and the reagent was then transferred to a dry sealed storage tube. The resulting clear, dark red 

orange solution of 2 was quantified using iodometric titration to give concentrations in the range 

of 1.3–1.5 M.37 It is recommended to perform the first titration past the end point due to the varied 

color of organozinc solutions. We have observed only minor changes in the titer (< 0.05–0.1 M) 

over a period of at least 6 months for the RZnBr solutions used in this study. Organozinc iodide 

reagent 1 required warming the ethyl 4-iodobutyrate to 40–50 °C. 
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 12 

 

General One-Pot Procedure. To a 25 mL Schlenk tube charged with zinc dust (163.5 mg, 

2.50 mmol, 2.5 equiv) and iodine (25.4 mg, 0.10 mmol, 0.10 equiv) was added DMA (1.2 mL). 

The contents were stirred vigorously until the color faded (ca. 1–5 min), and to this gray suspension 

was added organohalide (2.0 mmol, 2.0 equiv). The reaction tube was immersed in an 80 °C oil 

bath and monitored by GC analysis for consumption of the organohalide (NH4Cl aliquot quench; 

Et2O extraction). Upon completion of the organozinc formation, the reaction was cooled to 0 °C 

and was added CuBr•DMS (41.1 mg, 0.200 mmol, 0.20 equiv) and DMA (2.1 mL, 0.3 M total). 

After 10 min, TMSCl (305 µL, 2.40 mmol, 2.4 equiv) and enone (1.00 mmol, 1.0 equiv) were 

added. The solution was allowed to warm to 23 °C after ca. 1 h and stirred until consumption of 

the enone by TLC analysis, or 24 h. The reaction was then quenched, worked up and purified 

according to the General Procedure. 

 

Enol ether isolation. Upon completion of the reaction as described in the General Procedure, 

NaHCO3 (5 mL) is slowly added with vigorous stirring. The reaction was then transferred to a 

separatory funnel with Et2O and H2O (10 mL). The layers were mixed, separated, and the aqueous 

layer was extracted with Et2O (3 x 10 mL). The combined organics were washed with brine (5 

mL), dried over anhydrous MgSO4, filtered, and concentrated to provide a crude oil. Purification 

by automated flash column chromatography on SiO2 afforded the silyl enol ether product. 

 

Initial Screening Procedure of 1. To a 25 mL sealed reaction tube38 charged with zinc dust 

(94.8 mg, 1.45 mmol, 1.45 equiv) was added 1,2-dibromoethane (3.5 µL, 0.04 mmol, 0.04 equiv) 

and THF (1.0 mL, 1.4 M with respect to 1). The reaction tube was sealed and the gray suspension 

was heated for approximately 20 seconds with a heat gun until a slight reflux of THF was observed, 

and then cooled to room temperature. To this was added TMSCl (5.1 µL, 0.04 mmol, 0.04 equiv) 

and ethyl 4-iodobutyrate (338.9 mg, 1.40 mmol, 1.4 equiv), and the reaction tube was sealed and 

immersed in a 40 °C oil bath. The reaction was monitored by GC analysis for consumption of 1 

(NH4Cl aliquot quench), and cooled to 0 °C upon completion. A solution of CuCN•2LiCl (110 µL, 

0.10 mmol, 0.10 equiv or 1.3 mL, 1.22 mmol, 1.22 equiv of a 0.92 M solution in THF) and the 

polar additive (2.4 mmol, 2.4 equiv) were added. [Note: when 110 µL of CuCN•2LiCl solution 

was used, an additional 1.1 mL of THF was also added.] After 10 min, a solution of 3 (113 µL, 
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1.00 mmol, 1.0 equiv) and Lewis acid (2.40 mmol, 2.4 equiv) in Et2O (1.0 mL, 0.30 M overall; 

solution prepared in a 5 mL sealed tube) were added via syringe transfer. The solution was allowed 

to warm to 23 °C overnight and stirred until consumption of the enone by TLC analysis, or 24 h. 

The reaction was then quenched, worked up and purified according to the General Procedure. 

 

Ethyl 4-(1-methyl-3-((trimethylsilyl)oxy)cyclohex-2-en-1-yl)butanoate (5). Purification: 

25 g SiO2, 3 ® 25% EtOAc in hexanes; General Procedure: isolated 280.9 mg (0.9410 mmol, 94 

% yield) of a clear, colorless oil. Rf = 0.48 (6:1 hexanes/EtOAc); 1H NMR (400 MHz, C6D6): δ 

4.75 (s, 1H), 3.97 (q, J = 7.1 Hz, 2H), 2.13 (t, J = 7.3 Hz, 2H), 1.98 (td, J = 6.4, 1.2 Hz, 2H), 1.62 

(dt, J = 16.4, 7.9 Hz, 2H), 1.57–1.51 (m, 2H), 1.32 (ddd, J = 13.0, 8.3, 4.8 Hz, 1H), 1.27–1.13 (m, 

3H), 0.98 (t, J = 7.1 Hz, 3H), 0.95 (s, 3H), 0.20 (s, 9H); 13C{1H} NMR (101 MHz, C6D6): δ 172.9, 

150.1, 113.7, 60.0, 43.3, 35.1, 34.79, 34.75, 30.4, 28.4, 20.4, 20.0, 14.4, 0.5; IR (ATR): 2954, 

2938, 1737, 1662, 1365, 1251, 1186, 842, 7545; HRMS (DART+) m/z: [M + H]+ calcd for 

C16H31O3Si 299.2037, found 299.2028. 

 

Ethyl 4-(1-methyl-3-oxocyclohexyl)butanoate (6). Purification: 25 g SiO2, 5 ® 25% EtOAc 

in hexanes; General Procedure: isolated 208.4 mg (0.9208 mmol, 92% yield) as a clear, colorless 

oil; One-Pot Procedure: isolated 1.0372 g (4.583 mmol, 92% yield; 5.00 mmol scale). Rf = 0.21 

(4:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 4.13 (q, J = 7.1 Hz, 2H), 2.32–2.23 (m, 4H), 

2.15 (ABq, DdAB = 0.06, JAB = 13.5 Hz, 2H), 1.87 (quintet, J = 6.4 Hz, 2H), 1.60 (dtt, J = 23.3, 

15.4, 7.6 Hz, 4H), 1.34–1.21 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H), 0.94 (s, 3H). All other spectral data 

are consistent with reported values.39 

 

4-(1-Methyl-3-oxocyclohexyl)butyl acetate (7). Purification: 25 g SiO2, 8 ® 50% EtOAc in 

hexanes; General Procedure: isolated 211.5 mg (0.9345 mmol, 93% yield) as a clear, colorless oil; 

One-Pot Procedure: isolated 208.8 mg (0.9226 mmol, 92% yield). Rf = 0.31 (2:1 hexanes/EtOAc); 
1H NMR (400 MHz, CDCl3): δ 4.06 (t, J = 6.7 Hz, 2H), 2.29–2.26 (m, 2H), 2.15 (ABq, DdAB = 

0.07, JAB = 13.5 Hz, 2H), 2.05 (s, 3H), 1.89–1.85 (m, 2H), 1.63–1.52 (m, 4H), 1.32–1.24 (m, 4H), 

0.92 (s, 3H). All other spectral data are consistent with reported values.9 
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3-(4-Chlorobutyl)-3-methylcyclohexan-1-one (8). Purification: 25 g SiO2, 5 ® 25% EtOAc 

in hexanes; General Procedure: isolated 170.5 mg (0.8411 mmol, 84% yield) as a clear, colorless 

oil; One-Pot Procedure: isolated 175.7 mg (0.8667 mmol, 87% yield). Rf = 0.28 (4:1 

hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 3.55 (t, J = 6.6 Hz, 2H), 2.28 (app t, J = 6.8 Hz, 

2H), 2.15 (ABq, DdAB = 0.06, JAB = 13.4, 2H), 1.87 (tt, J = 8.8, 4.5 Hz, 2H), 1.78–1.71 (m, 2H), 

1.64 (dt, J = 13.4, 6.6 Hz, 1H), 1.56 (dt, J = 13.5, 6.6 Hz, 1H), 1.45–1.38 (m, 2H), 1.30–1.24 (m, 

2H), 0.93 (s, 3H). All other spectral data are consistent with reported values.8 

 

4-(1-Methyl-3-oxocyclohexyl)butanenitrile (9). Purification: 25 g SiO2, 13 ® 50% EtOAc 

in hexanes; General Procedure: isolated 145.0 mg (0.8089 mmol, 81% yield) as a clear, colorless 

oil; One-Pot Procedure: isolated 166.7 mg (0.9299 mmol, 93% yield). This compound has been 

reported but characterization data was not included.15 Rf = 0.33 (1:1 hexanes/EtOAc); 1H NMR 

(400 MHz, CDCl3): δ 2.36 (td, J = 7.0, 1.8 2H), 2.29 (app t, J = 6.8 Hz, 2H), 2.17 (ABq, DdAB = 

0.06 , JAB = 13.4, 2H), 1.92–1.85 (m, 2H), 1.67–1.55 (m, 4H), 1.47–1.35 (m, 2H), 0.95 (s, 3H); 

13C{1H} NMR (101 MHz, CDCl3): δ 212.3, 173.5, 60.4, 52.3, 41.2, 40.9, 36.91, 36.74, 34.7, 

33.8, 25.1, 23.4, 21.7, 18.6, 14.34, 14.14; IR (ATR): 2942, 2875 2244, 1706, 1459, 1425, 1313, 

1292, 1229, 508; HRMS (DART+) m/z: [M + H]+ calcd for C11H18NO 180.1383, found 

180.1379. 

 

Benzyl 4-((1-methyl-3-oxocyclohexyl)methyl)piperidine-1-carboxylate (10). Purification: 

25 g SiO2, 13 ® 50% EtOAc in hexanes; General Procedure: isolated 305.0 mg (0.8880 mmol, 

89% yield) as a clear, viscous colorless oil; One-Pot Procedure: isolated 273.4 mg (0.7960 mmol, 

80% yield). Rf = 0.40 (1:1 hexanes/EtOAc); 1H NMR (600 MHz, CDCl3): δ 7.35–7.30 (m, 5H), 

5.12 (br s, 2H), 4.10 (br s, 2H), 2.79 (br s, 2H), 2.31–2.24 (m, 2H), 3.24 (ABq, DdAB = 0.11, JAB = 

13.4, 2H), 1.87 (dq, J = 12.3, 6.4 Hz, 2H), 1.66–1.50 (m, 4H), 1.23 (d, J = 4.8 Hz, 2H), 1.19 (br s, 

2H), 0.96 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3): δ 211.8, 155.2, 136.9, 128.4, 127.9, 127.8, 

66.9, 54.0, 48.3, 44.2, 40.9, 39.3, 36.5, 34.4, 31.6, 25.4, 22.1; IR (ATR): 2917, 2851, 1692, 1427, 

1283, 1223, 1111, 1072, 731, 697; HRMS (DART+) m/z: [M + H]+ calcd for C21H30NO3 344.2220, 

found 344.2210. 
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Ethyl 4-(1-butyl-3-oxocyclohexyl)butanoate (11). Purification: 25 g SiO2, 6 ® 25% EtOAc 

in hexanes; General Procedure: isolated 230.1 mg (0.8573 mmol, 86% yield) as a clear, colorless 

oil; One-Pot Procedure: isolated 259.4 mg (0.9057 mmol, 91% yield). Rf = 0.35 (3:1 

hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 4.13 (q, J = 7.1 Hz, 2H), 2.33–2.22 (m, 4H), 2.17 

(app t, J =13.5 Hz, 2H), 1.84 (dt, J = 12.6, 6.4 Hz, 2H), 1.61 (dd, J = 6.3, 5.7 Hz, 2H), 1.57–1.49 

(m, 2H), 1.32–1.13 (m, 11H), 0.90 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (101 MHz, CDCl3): δ 212.3, 

173.5, 60.4, 52.3, 41.2, 40.9, 36.9, 36.7, 34.7, 33.8, 25.1, 23.4, 21.7, 18.6, 14.3, 14.1; IR (ATR): 

2932, 2871, 1731, 1708, 1458, 1372, 1175, 1033; HRMS (DART+) m/z: [M + H]+ calcd for 

C16H29O3 269.2111, found 269.2109. 

 

Ethyl 4-(1-benzyl-3-oxocyclohexyl)butanoate (12). Purification: 25 g SiO2, 6 ® 25% EtOAc 

in hexanes; General Procedure: isolated 281.8 mg (0.9318 mmol, 93% yield) as a clear, pale yellow 

oil; One-Pot Procedure: isolated 278.5 mg (0.9209 mmol, 92% yield). Rf = 0.29 (3:1 

hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 7.30–7.21 (m, 3H), 7.10 (d, J = 6.8 Hz, 2H), 4.13 

(q, J = 7.1 Hz, 2H), 2.62 (ABq, DdAB = 0.07, JAB = 13.4 Hz, 2H), 2.30–2.16 (m, 5H), 2.10 (d, J = 

13.6 Hz, 1H), 1.99–1.91 (m, 1H), 1.88–1.79 (m, 1H), 1.76–1.54 (m, 4H), 1.27–1.13 (m, 2H), 1.25 

(t, J = 7.1 Hz, 3H); 13C{1H} NMR (101 MHz, CDCl3): δ 212.2, 173.5, 137.4, 130.7, 128.2, 126.5, 

60.5, 51.5, 44.5, 42.2, 40.9, 36.0, 34.6, 32.8, 21.7, 18.8, 14.4; IR (ATR): 2939, 2873, 1728, 1706, 

1453, 1265, 1178, 1031, 731, 702; HRMS (DART+) m/z: [M + H]+ calcd for C19H27O3 303.1955, 

found 303.1952. 

 

Ethyl 4-(3-oxo-1-phenylcyclohexyl)butanoate (13). Purification: 25 g SiO2, 5 ® 25% EtOAc 

in hexanes; General Procedure: isolated 258.9 mg (0.8977 mmol, 90% yield) as a clear, colorless 

oil that solidifies over time; One-Pot Procedure: isolated 249.8 mg (0.8662 mmol, 87% yield). Rf 

= 0.32 (2:1 hexanes/EtOAc); white waxy solid, mp 54–57 °C; 1H NMR (400 MHz, CDCl3): δ 

7.33–7.25 (m, 4H), 7.21–7.18 (m, 1H), 4.06 (q, J = 7.1 Hz, 2H), 2.92 (d, J = 14.2 Hz, 1H), 2.45 

(d, J = 14.3 Hz, 1H), 2.31–2.28 (m, 2H), 2.20–2.13 (m, 1H), 2,14 (t, J = 7.2 Hz, 2H), 2.01 (ddd, J 

= 13.6, 10.1, 4.3 Hz, 1H), 1.84 (dtd, J = 16.8, 6.3, 3.2 Hz, 1H), 1.75 (td, J = 13.0, 4.5 Hz, 1H), 

1.66–1.54 (m, 2H), 1.44–1.33 (m, 1H), 1.26–1.15 (m, 1H), 1.21 (t, J = 7.1 Hz, 3H); 13C{1H} NMR 

(101 MHz, CDCl3): δ 211.2, 173.3, 144.8, 128.6, 126.4, 126.3, 60.3, 51.2, 46.1, 42.5, 41.1, 36.4, 
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34.4, 21.5, 19.2, 14.3; IR (ATR): 2943, 2902, 2869, 1717, 1707, 1364, 1201, 1177, 1096, 700; 

HRMS (DART+) m/z: [M + H]+ calcd for C18H25O3 289.1798, found 289.1797. 

 

Ethyl 4-(1-methyl-3-oxocycloheptyl)butanoate (14). Purification: 25 g SiO2, 6 ® 25% 

EtOAc in hexanes; General Procedure: isolated 164.9 mg (0.6861 mmol, 69% yield) as a clear, 

pale yellow oil; One-Pot Procedure: isolated 166.7 mg (0.6936 mmol, 69% yield). Rf = 0.28 (3:1 

hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 4.13 (q, J = 7.1 Hz, 2H), 2.52 (d, J = 12.1 Hz, 

1H), 2.42–2.38 (m, 3H), 2.26 (td, J = 7.4, 4.1 Hz, 2H), 1.80–1.48 (m, 8H), 1.32-1.20 (m, 2H), 1.26 

(t, J = 7.1 Hz, 3H), 0.92 (s, 3H); 13C{1H} NMR (151 MHz, CDCl3): δ 213.8, 173.5, 60.2, 54.7, 

44.0, 42.3, 41.7, 35.2, 34.7, 26.0, 24.6, 24.1, 19.1, 14.3; IR (ATR): 2930, 1730, 1693, 1457, 1374, 

1249, 1179, 1033; HRMS (DART+) m/z: [M + H]+ calcd for C14H25O3 241.1798, found 241.1797. 

 

Ethyl 4-(1-methyl-3-oxocyclopentyl)butanoate (15). Purification: 25 g SiO2, 5 ® 33% 

EtOAc in hexanes; General Procedure: isolated 131.7 mg (0.6204 mmol, 62% yield) as a clear, 

colorless oil; One-Pot Procedure: isolated 147.3 mg (0.6939 mmol, 69% yield). Rf = 0.37 (2:1 

hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 4.14 (q, J = 7.1 Hz, 2H), 2.33–2.27 (m, 4H), 2.06 

(ABq, DdAB = 0.04, JAB = 17.7 Hz, 2H), 1.86–1.76 (m, 2H), 1.72–1.57 (m, 2H), 1.45–1.41 (m, 

2H), 1.26 (t, J = 7.1 Hz, 3H), 1.07 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3): δ 219.8, 173.5, 60.5, 

52.3, 41.3, 39.6, 36.9, 35.2, 34.8, 25.0, 20.5, 14.4; IR (ATR): 2957, 1730, 1374, 1180, 1155, 1025, 

499; HRMS (DART+) m/z: [M + NH4]+ calcd for C12H24O3N 230.1751, found 230.1750. 

 

Ethyl 4-(2-((tert-butyldimethylsilyl)oxy)-1-methyl-5-oxocyclohexyl)butanoate (16). 

Purification: 25 g SiO2, 6 ® 25% EtOAc in hexanes; General Procedure: isolated 333.6 mg 

(0.9356 mmol, 94% yield, 9.2:1 dr) as a clear, colorless oil; One-Pot Procedure: isolated 317.0 

mg (0.9254 mmol, 93% yield, 8:1 dr). The diastereomer ratio was measured by 1H NMR 

integration of the –CH(OTBS)– absorption at δ 3.72 (major) and δ 3.68 (minor). Relative 

stereochemical assignment based upon literature precedent.40 Rf = 0.44 (3:1 hexanes/EtOAc); 

major diastereomer: 1H NMR (600 MHz, CDCl3): δ 4.12 (q, J = 7.1 Hz, 2H), 3.72 (dd, J = 5.0, 

2.7 Hz, 1H), 2.55–2.50 (m, 1H), 2.50 (d, J = 13.1 Hz, 1H), 2.30–2.17 (m, 3H), 2.03–1.97 (m, 

1H), 2.01 (d, J = 13.7 Hz, 1H), 1.91–1.86 (m, 1H), 1.61–1.52 (m, 2H),1.27–1.17 (m, 2H),1.25 (t, 

J = 7.1 Hz, 3H), 0.95 (s, 3H), 0.92 (s, 9H), 0.101(s, 3H), 0.097 (s, 3H); 13C{1H} NMR (151 

Page 16 of 27

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 17 

MHz, CDCl3): δ 211.7, 173.3, 72.4, 60.3, 49.1, 43.1, 38.4, 36.4, 34.7, 29.6, 25.9, 21.8, 18.7, 

18.1, 14.3, -4.2, -4.8; minor diastereomer (selected peaks): 1H NMR (600 MHz, CDCl3): δ 3.68 

(dd, J = 3.5, 3.5 Hz, 0.9H), 0.86 (s, 0.24H); 13C{1H} NMR (151 MHz, CDCl3): δ 211.7, 173.4, 

72.5, 60.3, 49.1, 43.0, 37.6, 36.3, 34.9, 29.6, 25.9, 22.5, 18.9, 18.2, 14.3, -4.1, -5.0; IR (ATR): 

2953, 2929, 2856, 1733, 1713, 1472, 1463, 1251, 1176, 1077, 835, 773; HRMS (DART+) m/z: 

[M + H]+ calcd for C19H37O4Si 357.2456, found 357.2453. 

 

Methyl 2-(4-ethoxy-4-oxobutyl)-2-methyl-4-oxocyclohexane-1-carboxylate (17). 

Purification: 25 g SiO2, 8 ® 50% EtOAc in hexanes; General Procedure: isolated 261.7 mg 

(0.9203 mmol, 92% yield, 15.5:1 dr) as a clear, colorless oil; One-Pot Procedure: isolated 257.0 

mg (0.9038 mmol, 90% yield, 16:1 dr). The diastereomer ratio was measured by 1H NMR 

integration of the 4° –CH3 at δ 1.02 (minor) and δ 0.99 (major). Relative stereochemical 

assignment based upon literature precedent.41 Rf = 0.24 (2:1 hexanes/EtOAc); major diastereomer: 
1H NMR (600 MHz, CDCl3): δ 4.12 (q, J = 7.1 Hz, 2H), 27.1 (s, 3H), 2.73 (dd, J = 8.5, 34.7 Hz, 

1H), 2.57 (dtd, J = 14.5, 6.2, 1.4 Hz, 1H), 2.43 (dd, J = 13.8, 1.5 Hz, 1H), 2.32–2.22 (m, 4H), 

2.15–2.04 (m, 2H), 10.73–1.66 (m, 1H), 1.60–1.53 (m, 1H), 1.36 (td, J = 13.0, 4.6 Hz, 1H), 1.31 

(td, J = 12.6, 4.7 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 0.99 (s, 3H); 13C{1H} NMR (151 MHz, CDCl3): 

δ 210.4, 174.3, 173.3, 60.5, 51.7, 47.7, 40.6, 40.3, 38.9, 34.6, 24.9, 22.0, 18.9, 14.4; minor 

diastereomer (selected peaks): 1H NMR (600 MHz, CDCl3): δ 3.72 (s, 0.21H), 1.02 (s, 0.21H) ; 
13C{1H} NMR (151 MHz, CDCl3): δ 60.5, 50.8, 48.6, 40.3, 38.2, 37.9, 34.8, 25.1, 24.8; IR (ATR): 

2954, 1724, 1434, 1368, 1156, 1025, 757; HRMS (DART+) m/z: [M + H]+ calcd for C15H25O5 

285.1696, found 285.1693. 

 

Ethyl 4-(1-methyl-3-oxo-5-phenylcyclohexyl)butanoate (18). Purification: 25 g SiO2, 6 ® 

25% EtOAc in hexanes; General Procedure: isolated 299.2 mg (0.9894 mmol, 99% yield, > 20:1 

dr) as a clear, viscous colorless oil; One-Pot Procedure: isolated 296.6 mg (0.9808 mmol, 73% 

yield, 8:1 dr; 1.34 mmol scale). The minor diastereomer was not observed by 1H NMR. Relative 

stereochemistry is assigned by analogy to product 17. Rf = 0.35 (3:1 hexanes/EtOAc); 1H NMR 

(600 MHz, CDCl3): δ 7.35–7.32 (m, 2H), 7.25–7.23 (m, 3H), 4.14 (q, J = 7.1 Hz, 2H), 3.11 (tt, J 

= 13.0, 3.9 Hz, 1H), 2.55 (ddd, J = 13.8, 4.2, 2.0 Hz, 1H), 2.45 (app t, J = 13.4 Hz, 1H), 2.35–2.24 

(m, 4H), 1.95 (dt, J = 13.8, 1.6 Hz, 1H), 1.74 (app t, J = 13.4 Hz, 1H), 1.60 (dq, J = 9.7, 7.3 Hz, 
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2H), 1.41–1.36 (m, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.27–1.22 (m, 1H), 1.08 (s, 3H); 13C{1H} NMR 

(151 MHz, CDCl3): δ 210.9, 173.4, 144.2, 128.8, 126.84, 126.72, 60.4, 53.9, 48.1, 43.7, 39.6, 37.8, 

37.0, 34.5, 28.3, 19.1, 14.4; IR (ATR): 2955, 1730, 1710, 1454, 1372, 1184, 1028, 754, 700; 

HRMS (DART+) m/z: [M + H]+ calcd for C19H27O3 303.1955, found 303.1951. 

 

Ethyl 4-(1,3-dimethyl-5-oxocyclohexyl)butanoate (19). Purification: 25 g SiO2, 6 ® 25% 

EtOAc in hexanes; General Procedure: isolated 232.0 mg (0.9653 mmol, 97% yield, > 20:1 dr) as 

a clear, colorless oil; One-Pot Procedure: isolated 170.0 mg (0.7073 mmol, 71% yield, > 20:1 dr). 

Relative stereochemistry of the cis-methyl relationship is assigned by 1H chemical shift 

comparison to analogous compounds.8,42 Rf = 0.35 (3:1 hexanes/EtOAc); 1H NMR (600 MHz, 

CDCl3): δ 4.12 (q, J = 7.1 Hz, 2H), 2.33 (dt, J = 13.4, 2.0 Hz, 1H), 2.29–2.19 (m, 2H), 2.13 (ABq, 

DdAB = 0.02, JAB = 13.6 Hz, 2H), 1.99–1.93 (m, 1H), 1.88 (app t, J = 13.0 Hz, 1H), 1.74 (dt, J = 

13.8, 1.5 Hz, 1H), 1.59–1.49 (m, 2H), 1.25 (t, J =7.1 Hz, 3H), 1.26–1.19 (m, 2H), 1.13 (td, J = 

12.9, 5.0 Hz, 1H), 1.01 (d, J = 6.2 Hz, 3H), 1.01 (s, 3H); 13C{1H} NMR (151 MHz, CDCl3): δ 

211.9, 173.6, 60.5, 53.8, 49.4, 44.7, 37.8, 37.3, 34.7, 29.2, 28.4, 22.7, 19.2, 14.4; IR (ATR): 2954, 

2871, 1731, 1711, 1456, 1375, 1271, 1177; HRMS (DART+) m/z: [M + H]+ calcd for C14H25O3 

241.1798, found 241.1791. 

 

Ethyl 4-(1,3,3-trimethyl-5-oxocyclohexyl)butanoate (20). Purification: 25 g SiO2, 5 ® 25% 

EtOAc in hexanes; General Procedure: isolated 113.7 mg (0.4470 mmol, 45% yield) as a clear, 

colorless oil. Rf = 0.21 (4:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 4.13 (q, J = 7.1 Hz, 

2H), 2.27 (app t, J = 7.4 Hz, 2H), 2.15 (ABq, DdAB = 0.06, JAB = 13.2 Hz, 4H), 1.65–1.58 (m, 2H), 

1.57 (ABq, DdAB = 0.09, JAB = 15.9 Hz, 2H), 1.38 (td, J = 11.5, 6.8 Hz, 1H), 1.30-1.22 (m, 1H), 

1.26 (t, J = 7.1 Hz, 3H), 1.05 (s, 3H), 1.04 (s, 3H), 1.02 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3): 

δ 212.2, 173.5, 60.3, 54.3, 53.1, 48.9, 44.2, 38.7, 36.1, 34.7, 32.3, 30.6, 27.3, 19.5, 14.3; IR (ATR): 

2954, 2908, 1732, 1711, 1462, 1368, 1280, 1181, 1030; HRMS (DART+) m/z: [M + H]+ calcd for 

C15H27O3 255.1955, found 255.1946. 

 

Ethyl 5-(1-methyl-3-oxocyclohexyl)pentanoate (22). Purification: 25 g SiO2, 3 ® 25% 

EtOAc in hexanes; One-Pot Procedure: isolated 201.9 mg (0.8400 mmol, 84% yield) as a clear, 

pale yellow oil. Rf = 0.17 (4:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 4.13 (q, J = 7.1 
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Hz, 2H), 2.29 (dt, J = 12.4, 6.5 Hz, 4H), 2.14 (ABq, DdAB = 0.07, JAB = 13.5 Hz, 2H), 1.86 (quintet, 

J = 6.4 Hz, 2H), 1.65–1.50 (m, 4H), 1.34–1.24 (m, 4H), 1.25 (t, J = 7.1 Hz, 3H), 0.91 (s, 3H); 
13C{1H} NMR (400 MHz, CDCl3): δ 212.3, 173.7, 60.4, 53.9, 41.4, 41.2, 38.7, 35.9, 34.4, 25.7, 

25.1, 23.1, 22.3, 14.4; IR (ATR): 2937, 2870, 1731, 1710, 1462, 1170, 1031; HRMS (DART+) 

m/z: [M + H]+ calcd for C14H25O3 241.1798, found 241.1793. 

 

Ethyl 6-(1-methyl-3-oxocyclohexyl)hexanoate (23). Purification: 25 g SiO2, 5 ® 25% 

EtOAc in hexanes; One-Pot Procedure: isolated 231.4 mg (0.9097 mmol, 91% yield) as a clear, 

colorless oil. Rf = 0.20 (4:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 4.13 (q, J = 7.1 Hz, 

2H), 2.28 (q, J = 6.9 Hz, 4H), 2.14 (DdAB = 0.07 , JAB = 13.5 Hz, 2H), 1.86 (quintet, J = 6.4 Hz, 

2H), 1.66–1.50 (m, 4H), 1.30–1.24 (m, 6H), 1.26 (t, J = 7.1 Hz, 3H), 0.91 (s, 3H); 13C{1H} NMR 

(400 MHz, CDCl3): δ 212.4, 173.9, 60.3, 53.9, 41.6, 41.2, 38.7, 36.0, 34.4, 29.9, 25.19, 25.05, 

23.2, 22.3, 14.4; IR (ATR): 2933, 2870, 1731, 1710, 1463, 1176, 1031; HRMS (DART+) m/z: [M 

+ H]+ calcd for C15H27O3 255.1955, found 255.1948. 

 

7-(1-Methyl-3-oxocyclohexyl)heptanenitrile (24). Purification: 25 g SiO2, 4 ® 25% EtOAc 

in hexanes; One-Pot Procedure: isolated 211.1 mg (0.9537 mmol, 95% yield) as a clear, colorless 

oil. Rf = 0.27 (2:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 2.35 (t, J = 7.1 Hz, 2H), 2.27 

(t, J = 6.8 Hz, 2H), 2.14 (ABq, DdAB = 0.07, JAB = 13.4 Hz, 2H), 1.86 (quintet, J = 6.4 Hz, 2H), 

1.69–1.42 (m, 6H), 1.30–1.26 (m, 6H), 0.91 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3): δ 212.2, 

119.7, 53.7, 41.3, 41.0, 38.5, 35.8, 29.4, 28.5, 25.3, 25.0, 23.0, 22.1, 17.0; IR (ATR): 2931, 2859, 

2245,1706, 1457, 1424, 1227, 731, 510; HRMS (DART+) m/z: [M + H]+ calcd for C14H24ON 

222.1852, found 222.1851. 

 

2-(3-(1-Methyl-3-oxocyclohexyl)propyl)phthalimide (25). Purification: 25 g SiO2, 12 ® 

50% EtOAc in hexanes; One-Pot Procedure: isolated 198.9 mg (0.6641 mmol, 66% yield) as a 

clear, viscous colorless oil. Rf = 0.44 (1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 7.85 

(dd, J = 5.3, 3.0 Hz, 2H), 7.73 (dd, J = 5.3, 3.0 Hz, 2H), 3.66 (t, J = 7.2 Hz, 2H), 2.32–2.24 (m, 

2H), 2.14 (ABq, DdAB = 0.08, JAB = 13.6 Hz, 2H), 1.86 (dq, J = 12.0, 6.3 Hz, 2H), 1.71–1.53 (m, 

4H), 1.36–1.32 (m, 2H), 0.91 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3): δ 211.7, 168.3, 133.9, 

132.1, 123.2, 53.6, 41.0, 38.9, 38.42, 38.35, 35.7, 24.6, 22.8, 22.1; IR (ATR): 2941, 2873, 2843, 
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1770, 1702, 1395, 1359, 717; HRMS (DART+) m/z: [M + H]+ calcd for C18H22O3N 300.1592, 

found 300.1591. 

 

3-(But-3-en-1-yl)-3-methylcyclohexan-1-one (26). Purification: 25 g SiO2, 5 ® 25% EtOAc 

in hexanes; One-Pot Procedure: isolated 136.3 mg (0.8198 mmol, 82% yield) as a clear, colorless 

oil. Rf = 0.42 (4:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 5.79 (ddt, J = 17.0, 10.3, 6.6 

Hz, 1H), 5.01 (dd, J =17.2, 1.3 Hz, 1H), 4.94 (dt, J = 10.1, 0.5 Hz, 1H), 2.28 (t, J = 6.8 Hz, 2H), 

2.16 (ABq, DdAB = 0.08, JAB = 13.5 Hz, 2H), 2.05–1.99 (m, 2H), 1.91–1.84 (m, 2H), 1.68–1.53 

(m, 2H), 1.38–1.34 (m, 2H), 0.94 (s, 3H); IR (ATR): 2935, 2851, 1709, 1640, 1452, 1427, 1312, 

1227, 995, 908, 507; HRMS (DART+) m/z: [M + H]+ calcd for C11H19O 167.1430, found 

167.1430. All other spectral data are consistent with reported values.43 

 

3-Methyl-3-phenethylcyclohexan-1-one (27). Purification: 25 g SiO2, 5 ® 25% EtOAc in 

hexanes; One-Pot Procedure: isolated 210.7 mg (0.9740 mmol, 97% yield) as a clear, pale yellow 

oil. Rf = 0.31 (4:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 7.26 (app t, J = 7.4 Hz, 2H), 

7.16 (app t, J = 7.4 Hz, 3H), 2.56 (td, J = 8.6, 3.2 Hz, 2H), 2.32–2.27 (m, 2H), 2.21 (ABq, DdAB = 

0.08, JAB = 13.4 Hz, 2H), 1.92–1.85 (m, 2H), 1.73–1.55 (m, 4H), 1.01 (s, 3H). All other spectral 

data are consistent with reported values.44 

 

3-Benzyl-3-methylcyclohexan-1-one (28). Purification: 25 g SiO2, 5 ® 25% EtOAc in 

hexanes; One-Pot Procedure: isolated 194.4 mg (0.9634 mmol, 96% yield) as a clear, viscous pale 

yellow oil. Rf = 0.31 (4:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 7.30–7.23 (m, 3H), 

7.12 (d, J = 6.9 Hz, 2H), 2.59 (ABq, DdAB = 0.05, JAB = 13.2 Hz, 2H), 2.34–2.20 (m, 3H), 2.08 (dt, 

J = 13.4, 1.4 Hz, 1H), 2.03–1.81 (m, 2H), 1.70–1.54 (m, 2H), 0.91 (s, 3H); 13C{1H} NMR (101 

MHz, CDCl3): δ 212.0, 137.4, 130.6, 127.9, 126.2, 52.8, 48.3, 40.8, 39.7, 35.7, 24.8, 22.0. All 

other spectral data are consistent with reported values.45 

 

3-Methyl-3-(4-methylbenzyl)cyclohexan-1-one (29). Purification: 25 g SiO2, 8 ® 50% 

EtOAc in hexanes; One-Pot Procedure: isolated 168.9 mg (0.7808 mmol, 78% yield) as a clear, 

colorless oil. Rf = 0.47 (2:1 hexanes/EtOAc); 1H NMR (600 MHz, CDCl3): δ 7.09 (d, J = 7.6 Hz, 

2H), 7.00 (d, J = 7.8 Hz, 2H), 2.54 (ABq, DdAB = 0.05, JAB = 13.3 Hz, 2H), 2.33 (s, 3H), 2.30–2.20 
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(m, 3H), 2.07 (d, J = 13.4 Hz, 1H), 1.99–1.94 (m, 1H), 1.89–1.81 (m, 1H), 1.64 (td, J = 11.8, 3.8 

Hz, 1H), 1.56–1.54 (m, 1H), 0.90 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3): δ 212.4, 135.8, 

134.4, 130.6, 128.7, 53.0, 48.0, 41.0, 39.8, 35.7, 25.0, 22.2, 21.1; IR (ATR): 2920, 1707, 1513, 

1455, 1227, 811, 508; HRMS (DART+) m/z: [M + NH4]+ calcd for C15H24ON 234.1852, found 

234.1846. 

 

3-(4-Bromobenzyl)-3-methylcyclohexan-1-one (30). Purification: 25 g SiO2, 5 ® 25% 

EtOAc in hexanes; One-Pot Procedure: isolated 177.0 mg (0.6295 mmol, 63% yield) as a clear, 

colorless oil. Rf = 0.28 (4:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 7.41 (d, J = 8.3 Hz, 

2H), 6.99 (d, J = 8.3 Hz, 2H), 2.54 (ABq, DdAB = 0.06, JAB = 13.3, 2H), 2.34–2.21 (m, 3H), 2.07 

(d, J = 13.4 Hz, 1H), 2.02–1.81 (m, 2H), 1.67–1.54 (m, 3H), 0.89 (s, 3H); 13C{1H} NMR (101 

MHz, CDCl3): δ 211.8, 136.5, 132.4, 131.1, 120.4, 52.8, 47.6, 40.9, 39.8, 35.9, 25.0, 22.1;IR 

(ATR): 2935, 2875, 2848, 1706, 1487, 1456, 1422, 1227, 1142, 1071, 1011, 840, 770, 729, 645, 

506; HRMS (DART+) m/z: [M + NH4]+ calcd for C14H21ONBr 298.0801, found 298.0797. 

 

3-Hexyl-3-methylcyclohexan-1-one (31). Purification: 25 g SiO2, 5 ® 25% EtOAc in 

hexanes; One-Pot Procedure: isolated 175.4 mg (0.8934 mmol, 89% yield) as a clear, colorless oil. 

Rf = 0.44 (4:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 2.27 (t, J = 6.8 Hz, 2H), 2.14 (ABq, 

DdAB = 0.08, JAB = 13.5 Hz, 2H), 1.86 (quintet, J = 6.5 Hz, 2H), 1.63 (dt, J = 13.5, 6.6 Hz, 1H), 

1.53 (dt, J =12.7, 5.8 Hz, 1H), 1.32–1.21 (m, 10H), 0.91 (s, 3H), 0.88 (t, J = 6.9 Hz, 3H). All other 

spectral data are consistent with reported values.46 

 

1-Methyl-[1,1'-bi(cyclohexan)]-3-one (32). Purification: 25 g SiO2, 5 ® 25% EtOAc in 

hexanes; One-Pot Procedure: isolated 170.3 mg (0.8764 mmol, 88% yield) as a clear, pale yellow 

oil. Rf = 0.47 (4:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 2.30–2.24 (m, 3H), 2.08 (d, J 

=13.4 Hz, 1H), 1.92–1.52 (m, 9H), 1.24–1.08 (m, 4H), 1.01–0.91 (m, 2H), 0.82 (s, 3H); IR (ATR): 

2924, 2851, 1706, 1449, 1226, 520. All other spectral data are consistent with reported 

values.Error! Bookmark not defined. 

 

Ethyl 5-(1-methyl-3-oxocyclopentyl)pentanoate (33). Purification: 25 g SiO2, 5 ® 25% 

EtOAc in hexanes; One-Pot Procedure: isolated 122.6 mg (0.5417 mmol, 54% yield) as a clear, 
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colorless oil. Rf = 0.18 (4:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 4.13 (q, J = 7.1 Hz, 

2H), 2.33–2.26 (m, 4H), 2.04 (ABq, DdAB = 0.04, JAB = 17.9 Hz , 2H), 1.84–1.72 (m, 2H), 1.63 

(quintet, J = 7.3 Hz, 2H), 1.45–1.30 (m, 4H), 1.26 (t, J = 7.1 Hz, 3H), 1.04 (s, 3H). 13C{1H} NMR 

(101 MHz, CDCl3): δ 220.0, 173.7, 60.4, 52.4, 41.6, 39.6, 36.9, 35.4, 34.4, 25.7, 25.1, 24.5, 14.4; 

IR (ATR): 2937, 2870, 1730, 1405, 1175, 1031, 501; HRMS (DART+) m/z: [M + H]+ calcd for 

C13H23O3 227.1647, found 227.1637. 

 

4-(1-Methyl-3-oxocyclopentyl)butanenitrile (34). Purification: 25 g SiO2, 12 ® 100% 

EtOAc in hexanes; One-Pot Procedure: isolated 62.3 mg (0.3770 mmol, 38% yield) as a clear, 

yellow oil. Rf = 0.31 (1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 2.38 (m, 2H), 2.32 (td, 

J = 7.9, 3.1 Hz, 2H), 2.12–2.03 (app s, 2H), 1.82 (t, J = 7.9 Hz, 2H), 1.74–1.55 (m, 4H), 1.08 (s, 

3H); 13C{1H} NMR (101 MHz, CDCl3): δ 218.9, 119.5, 52.0, 40.8, 39.2, 36.6, 35.1, 24.7, 21.1, 

17.7; IR (ATR): 2953, 2875, 2245, 1733, 1457, 1404, 1160, 1160, 497; HRMS (DART+) m/z: [M 

+ H]+ calcd for C10H16ON 166.1226, found 166.1227. 

 

3-(4-Chlorobutyl)-3-methylcyclopentan-1-one (35). Purification: 25 g SiO2, 5 ® 25% 

EtOAc in hexanes; One-Pot Procedure: isolated 124.5 mg (0.6598 mmol, 66% yield) as a clear, 

colorless oil. Rf = 0.29 (4:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 3.56 (t, J = 6.6 Hz, 

2H), 2.32–2.27 (m, 2H), 2.06 (ABq, DdAB = 0.04, JAB = 17.8 Hz, 2H), 1.83–1.77 (m, 4H), 1.56–

1.43 (m, 4H), 1.07 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3): δ 219.8, 52.3, 45.0, 41.1, 39.6, 36.9, 

35.3, 33.2, 25.1, 22.3; IR (ATR): 2953, 2670, 1745, 1457, 1404, 1287, 1154; HRMS (DART+) 

m/z: [M + H]+ calcd for C10H18OCl 189.1041, found 189.1041. 

 

ethyl 4-(3-oxocyclohexyl)butanoate (36). Purification: 25 g SiO2, 5 ® 25% EtOAc in 

hexanes; One-Pot Procedure: isolated 195.4 mg (0.9158 mmol, 92% yield) as a clear, pale yellow 

oil. Rf = 0.32 (2:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 4.13 (q, J = 7.1 Hz, 2H), 2.43 

(ddt, J = 13.7, 4.0, 1.9 Hz, 1H), 2.38–2.33 (m, 1H), 2.31–2.21 (m, 3H), 2.08–1.98 (m, 2H), 1.94–

1.88 (m, 1H), 1.84–1.73 (m, 1H), 1.70–1.59 (m, 3H), 1.43–1.29 (m, 3H), 1.26 (t, J = 7.1 Hz, 3H). 

All other spectral data are consistent with reported values.47 
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δ-Substituted enones 3,5-dimethylcyclohex-2-en-1-one (45) and 5-methyl-1,6-dihydro-

[1,1’-biphenyl]-3(2H)-one (46). Enones 45 and 46 were prepared using the same method,48 as 

represented by the following procedure for 46. To a round-bottom flask was added methyl 3-

methyl-5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-2-carboxylate (1.009 g, 4.130 mmol, 1.0 equiv), 

DMSO (14.7 mL), H2O (6 mL; 2.5:1 DMSO/H2O, 0.2 M) and LiCl (700 mg, 16.5 mmol, 4 equiv). 

A condenser was affixed to the flask and the contents were warmed to 145 °C until consumption 

by TLC analysis. The reaction was then cooled to ambient temperature and the contents were 

transferred to a separatory funnel with Et2O (125 mL). The contents were mixed, separated, and 

the organic layer was washed with H2O (6 x 20 mL). The combined aq layers were extracted with 

Et2O (4 x 20 mL), and the combined organic layers were washed with brine (20 mL), dried over 

MgSO4, filtered and concentrated in vacuo. Purification by manual flash chromatography (2.5 x 

17 cm SiO2, 1:1 pet. ether/Et2O) afforded 46 (739.0 mg, 3.969 mmol, 96% yield) as a pale 

orange/brown oil that partially solidifies upon refrigeration. Rf = 0.23 (3:1 hexanes/EtOAc); 1H 

NMR (400 MHz, CDCl3): δ 7.35 (t, J = 7.3 Hz, 2H), 7.28–7.24 (m, 3H), 5.98 (s, 1H), 3.37–3.29 

(m, 1H), 2.66 (dd, J = 16.1, 4.1 Hz, 1H), 2.59–2.51 (m, 3H), 2.01 (s, 3H). All other spectral data 

were consistent with reported values.49 

 

Supporting Information 

Additional preliminary reaction screen and compound spectra (1H and 13C{1H}) are available 

in the Supporting Information. 
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