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Abstract—Two C-glycosides related to the recurrent a-DD-arabinofuranosyl-(1!5)-a-DD-arabinofuranosyl structural motif of myco-
bacterial arabinan have been prepared by routes involving acetylenic intermediates.
� 2005 Elsevier Ltd. All rights reserved.
Tuberculosis remains one of the major infectious dis-
eases worldwide, responsible for around two million
deaths annually, particularly in the developing world.1

Additionally, the synergism of the disease with HIV
and the appearance of multi-drug resistant strains of
the causative agent, Mycobacterium tuberculosis, raises
the prospect that tuberculosis may become prevalent
as a disease only curable with great difficulty in devel-
oped nations.2

In a search for new drug targets, the mycobacterial cell
envelope3 is attractive. Major components of the cell
wall are two polysaccharide structures, lipoarabino-
mannan (LAM) and arabinogalactan (AG), this latter
structure being covalently linked to the bacterial
peptidoglycan and esterified as the non-reducing termini
of the arabinan component with long-chain fatty acids
(mycolic acids).

In seeking to block the biosynthesis of AG4 and/or
LAM,5 the glycosyl transferases responsible for assem-
bly of the arabinan components of both these polymers6

are appealing targets for inhibitor design, given that the
DD-arabinose units are exclusively in their furanose form,
and the xenobiotic status of the furanose form of
DD-arabinose. It is known that arabinofuranosyl transfer
to the growing arabinan from the sugar donor b-DD-ara-
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binofuranosyl-1-monophosphoryldecaprenol is inhib-
ited by one major anti-tuberculosis agent in clinical
use, ethambutol.7

The most common recurrent structural motif in myco-
bacterial arabinan is the a-DD-arabinofuranosyl-(1!5)-
a-DD-arabinofuranosyl unit 1. C-Glycosides are close
analogues of oligosaccharide structures, which are resis-
tant to chemical and enzymic degradation.8 We here de-
scribe direct routes for the synthesis of two C-glycosides
2 and 3 related to motif 1, by the use of acetylenic inter-
mediates. An alternative route to 2 using a Wittig-based
approach had recently been reported,9 whilst a synthesis
of 3 using the Henry reaction as a key step has been
claimed.10

For the synthesis of 2 (see Scheme 1) the lactone 4,
prepared by oxidation11 of commercially available tri-
O-benzyl-DD-arabinofuranose, was treated with lithio(tri-
methylsilyl)ethyne at low temperature to give the lactol 5
(66%). Treatment of this with triethylsilane and BF3Æ
Et2O gave the separable isomers 6a (60%) and 6b
(13%).12 That the major isomer 6a was the expected13

isomer in which hydride delivery had occurred cis to
the vicinal benzyloxy group was confirmed by the obser-
vation of an NOE interaction between H-1 0 and H-3 0,
which was absent in the spectrum of 6b, which however
showed a strong interaction between H-1 0 and H-2 0.
Desilylation of 6a gave 7 (97%), which again showed
an NOE interaction between H-1 0 and H-3 0, confirming
the stereochemistry of this material. The synthesis could
then be completed by an iterative route. Treatment of 7
with n-BuLi, followed by addition of lactone 4 gave the
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Scheme 1. Reagents and conditions: (a) TMS–acetylene, n-BuLi, THF, �78 �C; (b) BF3ÆEt2O, Et3SiH, DCM, �78 �C; (c) K2CO3, MeOH; (d) BuLi,

THF, �78 �C, then 4; (e) Pd(OH)2/C, H2 (1 atm), MeOH–EtOAc (5:1).
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hemiacetal 8 (85%), which on reduction with Et3SiH and
BF3ÆEt2O gave the disubstituted alkyne 9 (83%) as the
major product. The stereochemistry of 9 was clear from
its NMR spectra,14 which indicated C2 symmetry, and
the observation of NOEs between H-5/8 and both H3/
10 and (weakly) H-1/12. Reduction–hydrogenolysis of
9 then gave the C-disaccharide 215 in near-quantitative
yield.

For the synthesis of the methyl glycoside 3 (see Scheme
2), methyl 2,3-di-O-benzyl-a-DD-arabinofuranoside (10)16

was prepared by modifications of the original route.17

Swern oxidation of 10, followed by treatment of the
aldehyde with CBr4–Ph3P gave the dibromoalkene 11
(73% overall), which on treatment with n-BuLi gave
alkyne 12 (75%).18 Reaction of the lithio-derivative of 12
with lactone 4 gave hemiacetal 13 (87%), which on treat-
ment with Et3SiH and BF3ÆEt2O gave 14a (66%) and 14b
(20%),19 separable by chromatography. The stereochem-
istry of the major product 14a was indicated by an NOE
between H-7 and H-9; by comparison, the minor prod-
uct 14b showed an NOE between H-7 and H-10. Addi-
tionally, the signal for C-8 in 14b was significantly
shielded (d 83.4) as compared with the equivalent signal
for 14a (d 88.8), a correlation, which was also found for
alkynes 6a and 6b,12 and for 7 and its b-isomer. Both
14a and 14b showed C-3 in the region of d 88. For 14a,
the signals for H-8 (d 4.23), and to a smaller extent,
H-10 (d 4.25), were also deshielded by the anisotropic
effect of the alkyne as compared with the equivalent
signals for 14b (d 4.00 and 4.06, respectively). It should
also be noted that alkyne 9 showed signals for positions
4/9 at dC 88.8 and dH 4.23.

Catalytic hydrogenation of 14a gave the C-disaccharide
3 in quantitative yield. The data for 320 was similar to,
but significantly different from, that noted in the previ-
ous report10 on the synthesis of this compound. How-
ever, in the 1H NMR data of 3, NOEs were observed
between the multiplet for H-5/6 and both H-8 and H-
3, in support of its stereostructure. Given these discrep-
ancies, 14a was subjected to diimide reduction to give
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Scheme 2. Reagents and conditions: (a) i. DMSO, (COCl)2, DCM, �78 �C, then Et3N; ii. CBr4, Ph3P, DCM, 0 �C; (b) n-BuLi, THF, �78 to 0 �C;
(c) n-BuLi, THF, �78 �C, then 4; (d) BF3ÆEt2O, Et3SiH, DCM, �78 �C; (e) Pd(OH)2/C, H2 (1 atm), MeOH; (f) dipotassium azodicarboxylate,

MeOH–pyridine, then HOAc.
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the saturated compound 1521 (83%), which had also
been reported by the previous workers.10 This com-
pound, as prepared here, had spectroscopic data in full
agreement with its structure, but at considerable vari-
ance from the data reported earlier.10 In the 1H NMR
data of 15, NOEs were again observed between H-5/6
and both H-8 and H-3. We thus must question the pre-
vious report on the synthesis of 3, and suggest that our
work constitutes the first definitive synthesis of this
compound.
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