Synthesis of Mycinose from 1,2:5,6-Di-*O*-Isopropylidene-α-D-glucofuranose

Kai Bao^{#,1,2}, Hao Gao^{#,1}, Zhibin Zhu², Jinhong Wang², Guoning Zhang², Jun Sun², Weige Zhang^{*,2} and Xinsheng Yao^{*,1,3}

¹Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, P. R. China

²Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China

³School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China

Received February 08, 2011: Revised April 25, 2011: Accepted April 25, 2011

Abstract: A facile synthesis of mycinose from commercially available 1,2:5,6-Di-*O*-isopropylidene- α -D-glucofuranose was developed. A selective and direct reductive debromination of α -hydroxy bromides in a simple NaBH₄/EtOH/H₂O system was found.

Keywords: 1,2:5,6-Di-*O*-Isopropylidene-α-D-glucofuranose, debromination, mycinose, synthesis.

INTRODUCTION

Mycinose (6-deoxy-2,3-di-O-methyl-D-allose) is a structural component of many macrolide antibiotics such as tylosin, chalcomycin, and angolamycin [1-3]. In the past few decades, a number of macrolides from both natural and synthetic sources were found to contain mycinose [4-6]. However, there have only been a few synthetic approaches established for the preparation of mycinose after its structure determination [7,8]. In addition, a number of drawbacks of these methods were revealed, such as the unsatisfactory overall yields and not readily available starting material. 1,2:5,6-Di-O-isopropylidene-a-D-glucofuranose is a commercially available and versatile synthon in carbohydrate chemistry. It has been used in a variety of applications in the construction of many bioactive substances. As part of our study of the structure activity relationships and chemistry of new antibiotics agents, we sought to develop a reliable and efficient synthetic route from cheap, commercial sources that would allow ready access to mycinose. In this letter, we describe a new and efficient synthesis of mycinose from 1,2:5,6-Di-O-isopropylidene- α -D-glucofuranose, which could be a useful addition to the synthesis of mycinose and its analogs.

RESULTS AND DISCUSSION

The synthetic route to mycinose is outlined in Scheme 1. Our synthesis started with oxidation of 1,2:5,6-Di-*O*- isopropylidene- α -D-glucofura- nose 1, in the presence of chromium trioxide to give the corresponding keton, which was reduced to furnish 2 in 78% yield. *O*-Methylation of 2 was achieved by treating with sodium hydride and methyl iodide in THF. Microwave assisted deprotection of the 5,6-diol of 3 with aqueous acetic acid at 40°C afforded 4 in 87% yield. Compared with the conventional hydrolysis at room temperature, microwave irradiation could accelerate the reaction rate significantly (3h:20h).

In the course of the synthesis of the C6 bromo derivative **5**, CBr_4/PPh_3 and N-bromosuccinimide/PPh₃ bromination systems at room temperature were tested [9,10], and the latter was found to be a more efficient agent. Furthermore, the influences of stoichiometry and solvent on the yields were also examined (Table 1). Thus the selective bromination of the primary hydroxyl group in **4** was achieved by using NBS and PPh₃ in pyridine to give **5** in 91% yield (entry 6).

Since LiAlH₄ and H₂/Pd systems had been proved to be efficient and convenient methods for the reduction of organic bromine compounds [8,11], we treated **5** under the above mentioned conditions, respectively. However, the rates of reaction and yields of **6** were not satisfied (less than 60%). To our surprise, **5** was reduced smoothly to give **6** in 88% yield by the use of sodium borohydride (3.0 equiv) in EtOH/H₂O at room temperature.

Then the secondary hydroxy function of **6** was protected with a benzyl group and the resulting benzyl ether **7** was treated with trifluoroacetic acid to give **8** in a 1.5:1 ratio of α : β anomers, respectively. Conversion of **8** into the corresponding benzyl ether by the treatment of benzyl alcohol and *p*-toluene sulfonic acid under reflux yielded **9** in 79% yield [12]. The β -stereochemistry at the anomeric position was determined by ¹H NMR (5.06 ppm, J = 0.9 Hz). Treatment of **9** with sodium hydride and methyl iodide in THF afforded compound **10**. Deprotection of the benzyl protecting groups *via* hydrogenolysis under ultrasound irradiation afforded an

^{*}Address correspondence to these authors at the Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China; Tel: +86-24-23986422; Fax: +86-24-23986393; E-mail: zhangweige2000@sina.com

Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, 510632, P. R. China; Tel: +86-20-85225849; Fax: +86-20-85221559; E-mail: yaoxinsheng@vip.tom.com

^{*}These authors contributed equally to this work.

Scheme 1. Synthesis of mycinose. Reagents and conditions: (a) i) CrO₃, Ac₂O, py, CH₂Cl₂, r.t.; ii) NaBH₄, EtOH/H₂O (2.5:1), 0°C to r.t., 78%; (b) NaH, CH₃I, THF, r.t., 82%; (c) AcOH/H₂O (2:1), MW, 800W, 40°C, 87%; (d) NBS, PPh₃, py, r.t., 91%; (e) NaBH₄, EtOH/H₂O (2.5:1), r.t., 88%; (f) NaH, BnBr, THF, r.t., 76%; (g) TFA, H₂O, r.t., 83%; (h) TsOH, Benzyl alcohol, CH₂Cl₂, reflux, 79%; (i) NaH, CH₃I, THF, r.t., 84%; (j) Pd/C, H₂, AcOH, ultrasound, r.t., 91%; (k) Ac₂O, py, r.t., 80%.

Entry	Bromination Systems	Molar Ratio ^a	Solvent	Yield(%)
1		1:2:2	THF	40
2	CBr ₄ , PPh ₃		DMF	25
3			Ру	35
4		1:2:2	THF	28
5	NBS, PPh ₃		DMF	31
6			Ру	91
7		1:1:2	Ру	74

Table 1. Selective Bromination of 4

^aThe molar ratio of 4 to CBr₄/NBS to PPh₃.

equilibrium mixture of pyranose **11** (75%) and furanose **12** (25%) in 91% yield.

Acetylation of compound **11** and **12**, with acetic anhydride in pyridine, gave diacetate **13** as the major product (80% yield), which was assigned to the β -configuration at C1 on the basis of NMR spectroscopy. In addition, 7% of furanose diacetate was yielded in this reaction. Synthetic **13** (11 steps in 14% overall yield) was identical in all respects (¹H NMR, ¹³C NMR, MS) to synthetic product reported previously [8]. During the process from 5 to 6, an uncommon reductive debromination of 5 using 3.0 equiv NaBH₄ in EtOH/H₂O (volume ratio 2.5:1) at room temperature was found. It is known that reduction of organic bromine compounds could be achieved by using NaBH₄ in dimethyl sulfoxide [13,14]. To the best our knowledge, however, direct reductive debromination of α -hydroxy bromides only using NaBH₄ in alcohol, has never been documented to date.

We believed that the α -hydroxyl group of **5** played a key role in the reduction and an epoxy intermediate might be involved. To test our speculation, we designed the following

Entry	Substrate	NaBH4 (eqiuv)	Product	Yield (%)
1	Br HO''	1:3	HO''' O	88
2		1:1		65
3	O Br	1:3	ОН ОН	62 17
4	o-Co-Co-Br	1:3	O-COH	39 46
5	O ₂ N	1:3	O_2N OH O_2N OH OH	50 41
6	Br	1:3		
7	Br	1:3		

Table 2. Reductive Debromination of Bromine Compounds Under NaBH₄, EtOH/H₂O Conditions

reactions. As indicated in Table 2 (entry 1 and 2), the use of 3.0 equiv NaBH₄ in this reaction could generate **6** in 88% yield; by decreasing the quantity of NaBH₄ from 3.0 to 1.0 equiv, 65% of **5** was converted to the epoxy product.

We further investigated the reactions of several α bromoketones (entry 3-5) under the standard conditions. It is known that the treatment of α -bromoketones with NaBH₄ resulted in reduction of the carbonyl bond [15,16]. Thus the resulting α -hydroxy bromides were epoxidized and then reduced by the residual NaBH₄ to give the expected mixture of primary and secondary alcohols, respectively. Attempts to reduce 2-bromoethyl benzyl ether and 2-bromoethyl phenyl ether under certain condition were failed, and only the unreacted starting materials were recovered. These results clearly indicated that the α -hydroxyl was necessary and an epoxy intermediate was generated during the reduction. Thus, the simple reduction system reported here (NaBH₄ in EtOH/H₂O), afforded a selective and direct reductive debromination of α -hydroxy bromides under mild conditions.

CONCLUSION

In conclusion, we have developed a new and efficient synthesis of mycinose using commercially available 1,2:5,6diisopropyl-idene- α -D-glucose as the starting material under mild conditions. Furthermore, a selective and direct reductive debromination of α -hydroxy bromides in a simple NaBH₄/EtOH/H₂O system was found. Mechanism research revealed that the α -hydroxyl was necessary and an epoxy intermediate was generated during the reduction.

ACKNOWLEDGEMENTS

This work was supported by grants from the National Science Foundation for Post-doctoral Scientists of China (Grant No. 20080440774), the Ministry of Science and Technology of China (2009CB522300, 2008ZX09401-05 and 2009ZX09302-004) and the Ministry of Education of China/Fok Ying Tung Education Foundation (121039).

SUPPLEMENTARY MATERIAL

Supplementary material is available on the publishers Web site along with the published article.

REFERENCES

- Hamill, R. H.; Haney, M. E. Jr.; Stamper, M. C.; Wiley, P. F. Tylosin, a new antibiotic. II. Isolation, properties, and preparation of desmycosin, a microbiologically active degradation product. *Antibiot Chemother.*, **1961**, *11*, 328-334.
- [2] Woo, P. W. K.; Rubin, J. R. Chalcomycin: Single-crystal X-ray crystallographic analysis; Biosynthetic and stereochemical correlations with other polyoxo macrolide antibiotics. *Tetrahedron*, 1996, 52(11), 3857-3872.
- [3] Kadar-Pauncz, J.; Podanyi, B.; Horvath, G. Isolation and structure elucidation of new antibiotics related to angolamycin. J. Antibiot., 1992, 45(8), 1231-1238.
- [4] Park, J. S.; Yang, H. O.; Kwon, H. C. Aldgamycin I, an antibacterial 16-membered macrolide from the abandoned mine bacterium, *Streptomyces* sp. KMA-001. J. Antibiot., 2009, 62(3), 171-175.
- [5] Blatter, F.; Brenner, M.; Hu, G. X.; Rager, T.; Warrass, R. Macrolide solid-state forms. PCT Int. Appl. WO 2009013351, January 29, 2009.
- [6] Qiu, Y. L.; Liu, T. Z.; Or, Y. S.; Phan, L. T. 3, 6-Bridged tylosin derivatives. PCT Int. Appl. WO 2008019240, February 14, 2008.
- [7] Brimacombe, J. S.; Ching, O. A.; Stacey, M. A New Synthesis of Mycinose (6-Deoxy-2,3-di-O-methyl- D-allose). J. Chem. Soc.C., 1969, 2, 197-198.

- [8] Poss, J.; Smyth, M. S. The total synthesis of D-mycinose. *Tetrahedron Lett.*, **1988**, 29(45), 5723-5724.
- [9] Chaveriat, L.; Stasik, I.; Demailly, G.; Beaupère, D. Improved synthesis of 6-amino-6-deoxy-D- galactono-1,6-lactam and Dmannono-1,6-lactam from corresponding unprotected D-hexono-1,4-l actones. *Tetrahedron*, 2004, 60(9), 2079-2081.
- [10] Barradas, J. S.; Errea, M. I.; D'Accorso, N. B.; Sepúlveda, C. S.; Talarico, L. B.; Damonte, E. B. Synthesis and antiviral activity of azoles obtained from carbohydrates. *Carbohydr. Res.*, 2008, 343(14), 2468-2474.
- [11] Compernolle, F.; Mao, H.; Tahri, A.; Kozlecki, T.; Eycken, E. Van der; Medaer, B.; Hoornaert, G. J. Stereoselective synthesis of transfused tetrahydrofuran derivatives of 5H-dibenzo[*a*,*d*] cycloheptene. *Tetrahedron Lett.*, **2002**, *43*(16), 3011-3015.
- [12] Clive, D. L. J.; Ardelean, E.-S. Synthesis of (+)-Juruenolide C: Use of Sequential 5-Exo-Digonal Radical Cyclization, 1,5-Intramolecular Hydrogen Transfer, and 5-Endo-Trigonal Cyclization. J. Org. Chem., 2001, 66(14), 4841-4844.
- [13] Bell, H. M.; Vanderslice, C. W.; Spehar, A. Reduction of organic halogen compounds by sodium borohydride. J. Org. Chem., 1969, 34(12), 3923-3926.
- [14] Gu, Z. H.; Wang, X. K.; Shu, W.; Ma, Shengming. Palladium Acetate-Catalyzed Cyclization Reaction of 2,3-Allenoic Acids in the Presence of Simple Allenes: An Efficient Synthesis of 4-(1'-Bromoalk- 2'(Z)-en-2'-yl)furan-2(5H)-one Derivatives and the Synthetic Application. J. Am. Chem. Soc., 2007, 129(35), 10948-10956.
- [15] Wierenga, W.; Harrison, A. W.; Evans, B. R.; Chidester, C. G. Antibacterial benzisoxazolones. An unusual rearrangement product from o-nitrostyrene oxide en route to the photolabile carbonyl protecting group, (o-nitrophenyl)ethylene glycol. J. Org. Chem., 1984, 49(3), 438-442.
- Perrone, R.; Berardi, F.; Leopoldo, M.; Tortorella, V. Lograno, M. D.; Daniele, E.; Govoni, S. Oxygen isosteric derivatives of 3-(3-hydroxyphenyl)-N-n- propylpiperidine *J. Med. Chem.*, 1992, 35(16), 3045-3049.