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ABSTRACT: A catalytic asymmetric vinylogous Mannich-type 
reaction of -halo-,-unsaturated N-acylpyrazoles and N-Boc-
aldimines was disclosed, which afforded an array of halogenated (F-, 
Cl-, and Br-) allylic stereogenic carbon centers in high yields with 
good to high regio-, diastereo- and enantioselectivity. The brominated 
product served as a suitable electrophile for common SN2 nucleophilic 
substitution and copper-mediated SN2' allylic alkylation with metal 
reagents. The utility of present methodology was demonstrated by the 
asymmetric synthesis of a common intermediate towards the synthesis 
of two chiral 2,3-disubstituted piperidine pharmaceuticals.

Halogenated stereogenic carbon centers are found in naturally 
occurring compounds.1 Although the chiral carbon centers bearing 
fluorine or iodine in natural products are few, the molecules 
containing chlorine or bromine are much more. For examples, one 
chiral quaternary center containing chlorine and one chiral tertiary 
carbon center with bromine present in (+)-halomon, an anticancer 
lead.2 Clindamycin, used to treat a variety of bacterial infections, 
owns a chiral chlorinated tertiary carbon center as well.2 In manmade 
bioactive molecules, the chiral carbon centers with fluorine are much 
more frequently encountered.3 Some of them exhibited significant 
bioactivity, such as LY-5034304 (used to treat Parkinson’s disease). 
Actually, halogenation, as well as the stereochemistry of the halogen-
bearing carbons, can significantly alter the bioactivity of molecules.2 
Moreover, halogen atoms have a profound effect on the bonding 
through halogen bonding interactions.2 Therefore, exploring effective 
stereoselective construction of halogenated chiral carbon centers is an 
important synthetic task.5 

Alkyl halides are among the most versatile compounds in synthetic 
chemistry and regularly employed in alkylation reactions, radical 
cascades, and alkyl cross-coupling chemistry.2b,6 As one special type 
of alkyl halides, allyl halides attract the most attention of synthetic 
community due to its high reactivity and abundant transformation 
chemistry. First, allyl halides were employed in transition metal-free 
asymmetric allylic alkylation using Grignard reagents.7 Second, allyl 
halides were utilized in transition metal-catalyzed asymmetric allylic 
substitution with various nucleophiles.8 Third, allyl halides were 
utilized in nickel-catalyzed asymmetric Negishi cross-coupling and 
palladium-catalyzed enantioselective allyl-allyl cross-coupling.9 
Moreover, asymmetric Nozaki-Hiyama-Kishi allylation of carbonyl 
compounds afforded synthetically versatile homoallylic alcohols, 
which can go further structure elaboration if multiply halogenated 
allylic halides were utilized.10 However, the allyl halides employed in 
literature mainly focused on the racemic compounds or the ones 
without stereogenic carbon center. The preparation of chiral allyl 
halides would offer a new opportunity for the asymmetric allylation 
of various nucleophiles with or without transition metal catalysts.11

Scheme 1. Catalytic Asymmetric Direct Vinylogous Mannich-
Type Reaction (DVMR) of -Halogenated ,-Unsaturated N-
Acylpyrazoles Catalyzed by a Copper(I) Complex
(a) Reported Catalytic Asymmetric Direct Vinylogous Mannich-Type Reaction (DVMR)
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The catalytic asymmetric construction of halogenated chiral carbon 
centers consists of two pathways. One is catalytic asymmetric 
introduction of a halogen into prochiral compounds, including 
electrophilic halofunctionalization of alkenes12 and halogenation of 
various nucleophiles and electrophiles.13 Denmark,12b,12d Burns14 and 
many others15 are pioneers in the former case. In the latter case, 
methods for enantioselective -chlorination or -bromination of 
carbonyl compounds and related reactions have rapidly progressed in 
the last decade.16 The other is the catalytic asymmetric 
functionalization of a halogenated prochiral carbon, comprising of 
enantioselective transformation with halogenated alkenes,5b,17 
asymmetric allylation with halogenated allyl metal reagents,18 
asymmetric -functionalization of -halo enolsilanes or enolates,19 
and asymmetric -elimination of trihalides.20 However, to the best of 
our knowledge, the chemistry of -halo dienolates has never been 
investigated in literature. Herein, we disclosed a copper(I)-catalyzed 
direct asymmetric vinylogous Mannich-type reaction of -halo(F, Cl 
or Br)-,-unsaturated N-acylpyrazoles and N-Boc-aldimines, 
constructing chiral halogenated allylic carbon centers in high yields 
with good to high regio-, diastereo-, and enantioselectivity.

Previously, we reported a copper(I)-catalyzed direct catalytic 
asymmetric vinylogous Mannich-type reaction of ,-unsaturated N-
acylpyrazole and various aldimines (Scheme 1a).21 Combination of an 
N-acyl-3,5-Ph2-pyrazole and a bulky bisphosphine ligand ((R)-
DTBM-SEGPHOS) was found to be the key to perfectly control the 
regioselectivity. It was envisioned that a weakly electron-withdrawing 
halogen (F, Cl and Br) would acidify the -protons but would not 
reduce the nucleophilicity of the -carbon significantly, which would 
allow an atom-economic22 vinylogous Mannich-type reaction to 
construct halogenated stereogenic carbon centers in the presence of a 
copper catalyst23 (Scheme 1b).
Table 1. Optimization of the Reaction Conditionsa
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+

Cu(CH3CN)4PF6 (5 mol %)
ligand (5 mol %)

base (5 mol %)

THF (0.1 M), T oC, 24 h

entry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ligand

(R)-BINAP

(R)-TOL-BINAP

(R)-SEGPHOS

(R)-QUINAP

(R)-DIFLUORPHOS

(R,R)-QUINOXP*

(R,R)-Ph-BPE

(R,Rp)-TANIAPHOS

(R)-DTBM-SEGPHOS

(R)-DTBM-SEGPHOS

(R)-DTBM-SEGPHOS

(R)-DTBM-SEGPHOS

(R)-DTBM-SEGPHOS

-

(R)-DTBM-SEGPHOS

T

rt

rt

rt

rt

rt

rt

rt

rt

rt

0

0

0

-20

0

0

base

Et3N

Et3N

Et3N

Et3N

Et3N

Et3N

Et3N

Et3N

Et3N

Et3N

iPr2NEt

Cy2NMe

Et3N

Et3N

-

/

1/1

1.5/1

-

-

1/1.8

1/3

1/3

>20/1

>20/1

>20/1

>20/1

>20/1

>20/1

-

-

total yield

39

20

<5

<5

69

29

36

66

75

87

83

61

76

0

0

ee (%)

23/28

-10/18

-

-

53/21

-/4

-37/-46

11/66

98

>99

98

99

98

-

-

1 2a, 2 equiv

N

O
N

Ph

Ph




Ph

NHBoc

N

O
N

Ph

Ph
Ph

NBoc

H

b

e

c

a1: 0.1 mmol, 2a: 0.2 mmol. bDetermined by 1H NMR analysis of reaction crude mixture using CH3NO2 as an
internal standard. cDetermined by chiral-stationary-phase HPLC analysis. dIsolated yield. ePerformed without
copper(I)-complex.
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-
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We began our investigation by using -F-,-unsaturated 
compound 1 and N-Boc-aldimine 2a as model substrates for 
optimization of reaction conditions (Table 1). (R)-BINAP, (R)-TOL-
BINAP, (R)-SEGPHOS, (R)-QUINAP, (R)-DIFLUORPHOS, (R,R)-
QUINOXP* and (R,R)-Ph-BPE proved to be not suitable ligands in 
this reaction (entries 1-7). (R,Rp)-TANIAPHOS was found to be a 
good ligand in terms of excellent regioselectivity although both 
diastereo- and enantioselectivity were not high (entry 8). As 
previously reported,21 bulky (R)-DTBM-SEGPHOS outperformed to 
give the vinylogous product 3a in 75% yield with >20/1 
regioselectivity, >20/1 diastereoselectivity and 98% ee (entry 9). 
Decreasing the temperature to 0 oC resulted in an increased yield 
(entry 10). Study of organic bases identified triethylamine as the best 
in terms of the reaction performance and its low price (entries 10-12). 
Further decreased reaction temperature led to extenuated reactivity 
(entry 13). Both copper(I) complex and organic base were 
indispensable for this reaction as no reaction occurred in the absence 
of either of them (entries 14-15).

With optimized reaction conditions in hand, the catalytic 
asymmetric vinylogous Mannich-type reaction of 1 and various N-
Boc-aldimines 2 was examined (Table 2). Aromatic imines reacted 
with 1 smoothly to deliver the vinylogous products in uniformly good 
results. Both electron-donating and withdrawing groups on the 
aromatic imines were well tolerated. The position of the substituents 
on the phenyl ring seemed to have little effect on both yield and 
enantioselectivity. However, sterically congested ortho-substituted 
aromatic imine led to inferior diastereoselectivity (3i-3l). A variety of 
functional groups, including methoxyl, methyl, fluoride, chloride, 
bromide, ester, triflate (OTf) and pinacolatoboron (BPin), were well 
tolerated. Particularly, the products with Cl, Br, OTf and BPin on the 
phenyl ring are noteworthy, as these functional groups allow for late-
stage transition metal-catalyzed cross-coupling reaction.

The phenyl ring in aldimines 2 could be replaced by 1-naphthyl, 2-
naphthyl, 3-furanyl, and 3-thienyl with the desired products obtained 
in high yield, regio-, diastereo- and enantioselectivity (3q-3t). 
Remarkably, aliphatic imines containing acidic -protons and thus 
sensitive to basic conditions were also competent substrates in this 

reaction (3u-3y). However, -addition inevitably occurred and -
adducts were observed as side products. A terminal olefin presented 
in the product offers the opportunity for further functional group 
manipulation to afford more complex molecules. The relative 
configuration of product 3 was determined to be syn by virtue of X-
ray crystallographic analysis of 3b (for details, see SI), which is in 
conformity with 6a.
Table 2. Substrate Scope of N-Boc-Aldimines 2 in the 
Vinylogous Mannich-Type Reaction with 1a

+

Cu(CH3CN)4PF6 (5 mol %)
(R)-DTBM-SEGPHOS (5 mol %)

Et3N (5 mol %)

THF (0.1 M), 0 oC, 12 h
1 2, 2 equiv for aromatic

4 equiv for aliphatic

Y

O




R

NHBoc

Y

O

R

NBoc

H

/ = >20/1


Y = 3,5-Ph2-pyrazole

a1: 0.2 mmol, 2: 0.4 mmol. Isolated yield reported. Regioselectivity and diastereoselectivity
determined by 1H NMR analysis of reaction crude mixture. Enantioselectivity determined by
chiral-stationary-phase HPLC analysis. bGram-scale reaction. c1: 0.2 mmol, 2: 0.8 mmol.
d: = 6/1. e: = 8/1. f: = 3/1. g: = 5/1.

F

F

3

c c,d

c,gc,f

Y

ONHBoc

FR

3a, 81%, >20/1 dr, >99% ee
3b, 82%, >20/1 dr, >99% ee
3c, 83%, >20/1 dr, 97% ee
3d, 88%, 8/1 dr, >99% ee
3e, 81%, >20/1 dr, 98% ee
3f, 90%, 15/1 dr, 98% ee
3g, 83%, 14/1 dr, >99% ee
3h, 76%, 15/1 dr, 95% ee

R = H,
R = OMe,
R = Me,
R = F,
R = CF3,
R = CO2Me,
R = OTf,
R = BPin,

Y

ONHBoc

F

R 3i, 86%, 10/1 dr, 97% ee
3j, 86%, 10/1 dr, >99% ee
3k, 86%, 12/1 dr, >99% ee
3l, 85%, 11/1 dr, 99% ee

R = OMe,
R = F,
R = Cl,
R = Br,

Y

ONHBoc

F

R
3m,87%, >20/1 dr, >99% ee
3n, 81%, >20/1 dr, >99% ee
3o, 78%, >20/1 dr, 96% ee
3p, 88%, >20/1 dr, 97% ee

R = OMe,
R = F,
R = Cl,
R = Br,

Y

ONHBoc

FO

Y

ONHBoc

FS

Y

ONHBoc

F

3s, 94%, >20/1 dr, >99% ee

3t, 82%, >20/1 dr, >99% ee

3q, 86%, >20/1 dr, 94% ee

Y

ONHBoc

F

Y

ONHBoc

F

3r, 81%, 15/1 dr, >99% ee

O

3u, 99%, >20/1 dr, 98% ee

Y

ONHBoc

F

3v, 75%, >20/1 dr, 95% ee

Y

ONHBoc

F
3y, 74%, 12/1 dr, 96% ee3x, 69%, 3/1 dr, 96% ee

Y

ONHBoc

F
c,e

Y

ONHBoc

F

3w, 79%, >20/1 dr, 97% ee

b

The present catalytic system was also suitable to -Cl and -Br-,-
unsaturated compounds (4 and 5) (Table 3). As for chlorinated 
compound 4, 3 mol % copper(I) complex and 3 mol % Et3N were 
enough to catalyze the Mannich-type reaction of both aromatic 
aldimines and heteroaromatic aldimine. Both the yield and the 
enantioselectivity were generally excellent. However, the 
diastereoselectivity was moderate in some cases (6d, 6f, 6g, 6i, 6j, 
6m, 6n and 6p). Aliphatic aldimines exhibited lower reactivity as 10 
mol % copper(I) complex and 10 mol % Cy2NMe were required to 
achieve satisfactory results. Moreover, instead of (R)-DTBM-
SEGPHOS, (R,Rp)-TANIAPHOS was employed due to its better 
performance at low temperature.21a As for brominated compound 5, 
the same reaction tendency was observed. Although the 
diastereoselectivity was moderate in some cases, both regioselectivity 
and enantioselectivity were excellent. Even though allyl bromides are 
more useful synthetic intermediates, there are fewer reports in 
literature on the enantioselective construction of brominated chiral 
carbon centers containing a vinyl group.

The gram-scale reaction of 3a, 6a and 7a proceeded smoothly to 
give constant results, highlighting the robustness of the present 
methodology. The two stereogenic carbon centers in 6a were 
determined to be R and R by means of X-ray diffraction analysis (for 
details, see SI). The configurations of other vinylogous products (3, 
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6b-6p and 7a-7g) were assigned by analogy. Since the ligand 
employed for the generation of 6q-6s and 7h was changed from (R)-
DTBM-SEGPHOS to (R,Rp)-TANIAPHOS, the stereochemistry in 
these products required additional assignment. The X-ray 
crystallographic analysis of 7h identified the absolute configurations 
of the two stereogenic carbon centers to be R and R (for details, see 
SI). Analogically, the absolute configurations of 6q-6s were assigned 
tentatively.
Table 3. Substrate Scope of N-Boc-Aldimines 2 in the Vinylogous 
Mannich-Type Reaction with 4 and 5a

+

Cu(CH3CN)4PF6 (x mol %)
(R)-DTBM-SEGPHOS (x mol %)

Et3N (x mol %)

THF (0.067 M), -40 oC Y

O




R

NHBoc

Y

O

R

NBoc

H

/ = >20/1


Y = 3,5-Ph2-pyrazole

6r, 88%, >20/1 dr, 94% ee

a4-5: 0.2 mmol, 2: 0.4 mmol. Isolated yield reported. Regioselectivity and
diastereoselectivity determined by 1H NMR analysis of reaction crude mixture.
Enantioselectivity determined by chiral-stationary-phase HPLC analysis. bGram-scale
reaction. c4-5: 0.2 mmol. 2: 0.8 mmol. 3,5-Tol2-pyrazole-amides (4' and 5') instead of 3,5-
Ph2-pyrazole-amides (4 and 5) used. 10 mol % Cu(CH3CN)4PF6, 10 mol % (R,Rp)-
TANIAPHOS and 10 mol % Cy2NMe employed. 48 h. d3 mol % Cu(CH3CN)4PF6, 3 mol %
(R)-DTBM-SEGPHOS and 3 mol % Et3N employed.

X

X

cc

c

c

b

b,d

Y

ONHBoc

ClR

6a, 93%, 13/1 dr, >99% ee
6b, 82%, 13/1 dr, >99% ee
6c, 94%, 13/1 dr, >99% ee
6d, 95%, 7/1 dr, >99% ee
6e, 83%, 12/1 dr, 98% ee
6f, 95%, 8/1 dr, >99% ee

R = H,
R = OMe,
R = Me,
R = CF3,
R = CO2Me,
R = OTf,

Y

ONHBoc

Cl

R
6g, 92%, 8/1 dr, >99% ee
6h, 90%, 13/1 dr, >99% ee
6i, 92%, 8/1 dr, >99% ee

R = F,
R = Cl,
R = Br,

Y

ONHBoc

Cl

R
6j, 94%, 8/1 dr, >99% ee
6k, 91%, 11/1 dr, >99% ee
6l, 89%, 10/1 dr, >99% ee
6m,98%, 9/1 dr, >99% ee

R = OMe,
R = F,
R = Cl,
R = Br,

Y

ONHBoc

ClS

Y

ONHBoc

Cl

6p, 92%, 8/1 dr, 95% ee6n, 97%, 8/1 dr, >99% ee 6o, 97%, 15/1 dr, >99% ee

Y

ONHBoc

Cl

X = Cl, 4, x = 3, 12 h
Br, 5, x = 5, 48 h

Y

ONHBoc

BrR

7a, 89%, 13/1 dr, >99% ee
7b, 81%, 6/1 dr, >99% ee
7c, 94%, 12/1 dr, >99% ee
7d, 78%, 8/1 dr, >99% ee
7e, 95%, 11/1 dr, >99% ee

R = H,
R = OMe,
R = Me,
R = CF3O,
R = Br,

Y

ONHBoc

Br

MeO
Y

ONHBoc

Br
Y

ONHBoc

Br

7h, 93%, >20/1 dr, 91% ee7g, 87%, 13/1 dr, >99% ee7f, 90%, 8/1 dr, 99% ee

Y

ONHBoc

Cl

Y

ONHBoc

Cl

6s, 98%, >20/1 dr, 92% ee6q, 99%, >20/1 dr, 90% ee

Y

ONHBoc

Cl

X = Cl, 6
Br, 7

2, 2 equiv for aromatic
4 equiv for aliphatic

The transformations of vinylogous products were presented in 
Scheme 2. The alcoholysis of 3a, 6a and 7a afforded esters 8, 9 and 
10 in excellent yields. SN2 reaction of 10 with NaN3 led to 11 in 99% 
yield. The Staudinger reduction of azide group in 11 and the 
subsequent protection of newly generated amine with (Boc)2O led to 
chiral diamine derivative 12 in 78% yield for two steps. Moreover, 
SN2 reaction of 10 with PhSH generated thioether 13 in 86% yield. 
The full reduction of 3a was achieved to furnish 14 in 86% yield. The 
reported conditions for the SN2' substitution of allyl halides promoted 
by copper(I) salt were slightly modified.24 In the presence of CuCN, 
the reactions of 9 and 10 with AlMe3 were set up in DMF at 0 oC, 
which afforded 15 in excellent yields with >20/1 dr. The reaction of 9 
with ZnEt2 in DMF at -50 oC proceeded in excellent results while the 
reaction of 10 with ZnEt2 provided 16 in 72% yield with 10/1 dr. The 
newly generated stereogenic center in 15 was determined to be R by 
further transformation (For details, see SI) and the one in 16 was 
assigned to be R tentatively by analogy.

Scheme 2. Transformations of Vinylogous Products

OMePh

NHBoc

NHBoc

O

OMe

O

Ph

NHBoc

OMe

O

Ph

NHBoc

SPh

Me

12, 78% (two steps)13, 86%

14 16

OMe

O

Ph

NHBoc

Et

OMe

O

Ph

NHBoc

X
Y

O

Ph

NHBoc

X

OMe

O

Ph

NHBoc

N3
X = F, 3a (>20/1 dr)

Cl, 6a (>20/1 dr)
Br, 7a (>20/1 dr)

X = F, 8, 93%
Cl, 9, 96%
Br, 10, 97%

CH3OH, 60 oC

H2SO4 (10 mol %)

acetone, rt

NaN3,

11, 99%

(1) PPh3, THF/H2O, rt;
(2) (Boc)2O, KOH (aq.), rtPhSH, Et3N, THF, rt

OHPh

NHBoc

CuCN, AlMe3
DMF, 0 oC

CuCN, ZnEt2
DMF, -50 oC

NaBH4, THF/H2O
0 oC to rt

15
X = Cl, 99%, >20/1 dr
X = Br, 95%, >20/1 dr

X = Cl, 99%, >20/1 dr
X = Br, 72%, 10/1 dr

86%

F

X= Br

X= BrY = 3,5-Ph2-pyrazole

Structure elaboration of the optically enriched vinylogous product 
ent-7a opens a pathway for further transformations to chiral 2,3-
disubstituted piperidines with -hydroxyl or -amino functional 
groups (Scheme 3), which are common subunits in numerous natural 
products, as well as in pharmaceutically active compounds.25 For 
example, (+)-L-733,06026 and (+)-CP-99,99427 are potent and 
selective nerokinin-1 substance P receptor antagonists, both of which 
can be accessed from a common intermediate 20 according to 
reported procedures.28

 The silver-mediated intramolecular substitution 
of ent-7a proceeded smoothly to give intermediate 17 in 92% yield, 
which afforded 18 in 77% yield for two steps through the protection 
with (Boc)2O and the following opening of the oxazolidin-2-one 
moiety. TBS-protection of the secondary alcohol and fully reduction 
of the ,-unsaturated moiety gave 19 in 75% yield for three steps. 
Then, cyclization and removal of the TBS group led to the common 
intermediate 20 in 69% yield for three steps.
Scheme 3. Synthetic Application of Vinylogous Product ent-7a

N
H

Ph

OR'

(+)-CP-99,994
R = 2-OMe-C6H4CH2

(+)-L-733,060
R' = 3,5-(CF3)2-C6H3CH2

N
H

Ph

NHR
ref 28

OHPh

NHBoc

OTBS

19, 75% (three steps)

or
N
Boc

Ph

OH

20, 69% (three steps)

Y = 3,5-Ph2-pyrazole

Y

O

PhY

O

Ph

NHBoc

Br

OMe

O

Ph

NHBoc

OH
ent-7a (>20/1 dr) 17, 92% 18, 77% (two steps)

CH3CN, 50 oC

AgTFA
(1) (Boc)2O, Et3N

DMAP, DCM, rt;

(2) Cs2CO3, MeOH, rt

O
HN

O

(2) KOtBu, THF, 0 oC;
(3) 3 M HCl (aq.), THF, rt

(1) MsCl, Et3N, CH2Cl2, -78 oC;

(1) TBSOTf, 2,6-lutidine, DCM, 0 oC;
(2) Pd/C, H2, MeOH, rt;
(3) LiBH4, MeOH, THF, 0 oC

In summary, by introducing a halogen (F, Cl or Br) at the -position 
of ,-unsaturated N-acylpyrazole, we achieved a copper(I)-catalyzed 
direct catalytic asymmetric vinylogous Mannich-type reaction for the 
first time, which constructed a series of halogenated chiral stereogenic 
carbon centers in high enantioselectivity. The reaction showed 
advantages, such as mild reaction conditions, broad substrate scope, 
good tolerance of functional groups, and good to excellent regio- and 
stereoselectivity. The produced chiral allyl bromide was successfully 
employed as a chiral electrophile in common SN2 reaction and 
copper-catalyzed SN2' reaction. Moreover, the present methodology 
was applied to the synthesis of a common intermediate towards the 
synthesis of two chiral piperidine pharmaceuticals. Further efforts 
regarding the expansion of the present methodology and its 
application in the synthesis of bioactive natural products are in 
progress.
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+

Cu(CH3CN)4PF6 (3-10 mol %)
bisphosphine ligand (3-10 mol %)

Et3N or Cy2NMe (3-10 mol %)

THF, -40 or 0 oC, 12-48 h Y

O




R

NHBoc

Y

O

R

NBoc

H

69%-99%
/ = 3/1~>20/1

3/1~>20/1 dr
90%~>99% ee


Y = pyrazole X

X

F Cl BrX =

52 examples
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