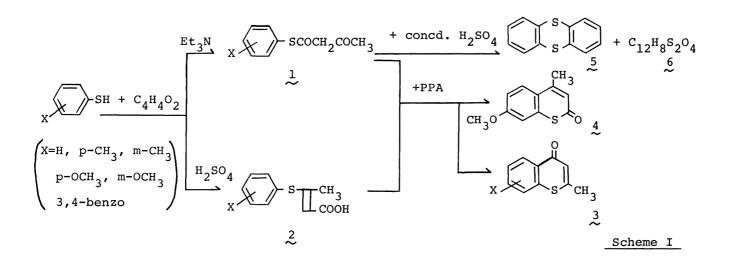
CHEMISTRY LETTERS, pp. 929-930, 1978. Published by the Chemical Society of Japan

SYNTHESES OF S-PHENYL 3-OXOBUTANETHIOATES AND 2H-1-BENZOTHIOPYRAN-2-ONE DERIVATIVES (THIOCOUMARINS)

Hiroyuki NAKAZUMI and Teijiro KITAO Department of Applied Chemistry, College of Engineering, University of Osaka Prefecture, Sakai, Osaka 591

S-Phenyl 3-oxobutanethioates, precursor for preparation of thiocoumarins, were prepared from benzenethiols and diketene in the presence of triethylamine. Cyclization of these compounds with PPA gave thiocoumarin and/or isomeric thiochromone derivatives.

2H-1-Benzothiopyran-2-ones (thiocoumarins) have been prepared by heating 2-mercaptocinnamic acids with condensing agents, but could not be obtained by the Pechmann reaction of benzenethiols.¹⁾ K. Konishi et al. reported the convenient method to prepare thiocoumarin derivatives by the cyclization of S-phenyl 3-oxobutanethioates with PPA,²⁾ while the products are mostly not thiocoumarins, but isomeric thiochromones.³⁾ Furthermore, recently we found that the S-phenyl 3-oxobutanethioate derivatives, described in our previous paper,³⁾ were really isomeric arylthioisocrotonic acids (2) and/or arylthiocrotonic acids.


We now could prepare the S-phenyl 3-oxobutanethioates (1) (precursor for preparation of thiocoumarins) from benzenethiols and diketene, and studied the cyclization of these compounds with condensing agents (PPA or H_2SO_4) to prepare thiocoumarin derivatives.

S-Phenyl 3-oxobutanethioates (1) were obtained by the reaction of benzenethiols with diketene in the presence of triethylamine for 20 h at room temperature. Compound 1 was colorless liquid, gradually decomposed to dehydroacetic acid at room temperature, and existed in the keto-enol tautomeric mixture with the following data of NMR spectra: 1, X=H;⁴⁾ $\delta(CCl_4)$, 1.82 and 2.09 (total 3H, each s), 3.57 and 5.39 (total ca. 1.5H, each s), 7.32 (5H,m), $X=p-CH_3$; $\delta(CCl_4)$, 1.90 and 2.18 (total 3H, each s), 2.38 (3H,s), 3.55 and 5.35 (total ca. 1.4H, each s) , 7.00-7.35 (4H,m), 12.35 (broad), $X=m-CH_3$; $\delta(CCl_4)$, 1.90 and 2.20 (total 3H, each s), 2.35 (3H, s), 3.58 and 5.35 (total ca. 1.3H, each s), 7.00-7.15 (4H,m), 12.50 (broad), $X=p-OCH_3$; $\delta(CCl_4)$, 1.90 and 2.18 (total 3H, each 3H, each s), 3.78(

3H,s), 3.55 and 5.32 (total ca. 1.3H, each s), 6.75-7.35 (4H,m), 12.45 (broad), X=m-OCH₃; δ (CCl₄), 1.90 and 2.20 (total 3H, each s), 3.78 (3H,s), 3.58 and 5.30 (total ca. 1.3H, each s), 6.70-7.20 (4H,m), 12.00 (broad), X=3,4-benzo; δ (CCl₄), 1.85 and 2.12 (total 3H, each s), 3.58 and 5.38 (total ca. 1.6H, each s), 7.20-7.80 (7H,m), no enol proton was observed.

Treating l(X=H) with concd. H_2SO_4 for 5 h at 15°C gave thianthrene 5 (4%, mp 151-2°C, lit, ⁵⁾ 153°C) and diphenylene disulfone 6 (56%, mp >320°C, Found: C, 51.67; H, 2.97%). It might be explained that these compounds were obtained by the oxidation of diphenyl disulfide with concd. H_2SO_4 , which was formed by decomposition of l (X=H). When l was treated with PPA for 1 h at 70°C, thiochromone derivative 3 was obtained in a low yield with other undetermined products (3, X=H, 103-104°C, 66%; X=6-CH₃, 121°C, 53%; X=7-CH₃, 98-100°C, 23%; X=6-OCH₃, 102-103°C, 10%; X=5,6-benzo, 126-128°C, 15%).

In the case of S-(m-methoxyphenyl) 3-oxobutanethioate \downarrow (X=m-OCH₃), thiocoumarin derivative 4 (mp 160-161°C, lit,³⁾ 158-160°C) was obtained in higher yield (54%) than that from isocrotonic acid 2 (X=m-OCH₃). These results were summarized in Scheme I.

We wish to thank Dr. M. Sato of Tohoku University for his helpful suggestions.

References

1) R. C. Elderfield," Heterocyclic Compounds," Vol. 2, John-Wiley & Sons, New York, (1951), p.542.

- 2) K. Konishi, H. Umemoto, M. Yamamoto, and T. Kitao, Nippon Kagaku Kaishi, 1973, 118.
- 3) H. Nakazumi and T. Kitao, Bull. Chem. Soc. Jpn., <u>50</u>, 939 (1977).
- 4) N. F. Yaggi and K. T. Douglas, J. Chem. Soc., Chem. Commun., <u>1977</u>, 609.
- 5) D. T. Gibson, H. Graham, and J. Reid, J. Chem. Soc., <u>123</u>, 878 (1923).