Oligonucleotide Analogues with Integrated Bases and Backbones Part 25 ## Structural Effects on the Gelation of Self-Complementary A*[s]U Dinucleosides by Nicolas Bogliotti and Andrea Vasella* Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich (e-mail: vasella@org.chem.ethz.ch) The ability of $A^*[s]U$ dinucleosides to gel organic solvents and water is modulated by changing the nature of the substituents at O-C(2') and O-C(3'), as evidenced by comparing the gelation of the dinucleosides 7-9 and the properties of the gels. A mere extension of the hydrophobic moiety, by replacing the isopropylidene groups of 2 by cyclohexylidene groups, as in 7, has a small effect, while changing the conformation of the ribose ring and reducing the size of the hydrophobic moiety, as in 8, has a strong effect on the scope of gelation, the minimum gelation concentration, as low as 0.07% for pentanol and decanol, and the properties of the gel. The fully deprotected dinucleoside 9 gels water at a minimal gelation concentration of 0.6%. A TEM of the corresponding xerogel shows the formation of fibers with a diameter of ca. 30 to 90 nm. **Introduction.** – The $A^*[s]U^1$) silyl ether **1** in CHCl₃ solution forms an equilibrium of the monoplex and linear associates [1], whereas the $A^*[s]U^{(*)}$ alcohols **2** and **5** form gels with organic solvents involving their self-association to build a network by H-bonding, as evidenced by the absence of gelation by the deaminated ${}^HA^*[s]U$ dinucleoside **3** [2]. Also the corresponding *N*-Me analogue ${}^{Me}A^*[s]U$ **4** of **2** and the deoxygenated $A^*[s]^HU^*$ analogue **6** of **5** do not form gels, further evidencing that gelation requires the formation of linear associates that are cross-linked by H-bonding involving the nucleobase and/or $HOCH_2-C(6/I)$ [3]. The synthesis and the evaluation of the gelation properties of these dinucleosides identified some of the structural elements involved in the formation of gels. Other structural aspects of these dinucleosides that may affect gelation involve the dimethyl-dioxolane rings, *viz.*, the size of this hydrophobic moiety and the conformational restriction resulting from its annulation. To investigate their effect, we planned to synthesize the cyclohexylidene- ¹⁾ Conventions for abbreviated notation: The substitution at C(6) of pyrimidines and C(8) of purines is denoted by an asterisk (*); for example, A* and U* for hydroxymethylated adenosine and uridine derivatives, respectively. U(*) represents both unsubstituted and hydroxymethylated uridine derivatives. The replacement of the amino group at C(6) of adenosine by a N⁶-methylamino group and the replacement of the HOCH₂ group of uridine by an H-atom are denoted by 'Me' in superscript (Me') and 'H' in superscript (H), respectively; for example, MeA and HU represent N⁶-methyladenosine and C(6)-methyluridine derivatives, respectively. The moiety x linking C(8)-CH₂ of unit II and C(5') of unit I is indicated in square brackets, i.e., [s] for a S-atom. protected A*[s]U dinucleoside 7, the 2',3'-di-O-methyl ether 8, and the unprotected dinucleoside 9, and to evaluate their ability to form gels with different solvents. **Results and Discussion.** – We envisaged to prepare the dinucleosides **7** and **8** by coupling the 2',3'-O-cyclohexylidene monomers **13** and **20**, and the 2',3'-di-O-methyl monomers **18** and **25**, respectively, according to a previously established procedure [1] (*cf. Scheme 3*). The deprotected pentol **9** should be obtained in one step from the known isopropylidene-protected A*[s]U dinucleoside **28** [1]. Synthesis of the Adenosine Intermediates. A one-pot 5'-O-silylation and N(6)-benzoylation of the known cyclohexylidene-adenosine 10 [4] provided the fully protected adenosine 11 (80%; Scheme 1). It was hydroxymethylated at C(8) by deprotonation with LDA [5], formylation with DMF, hydrolysis, and reduction of the resulting aldehyde [6], to yield 81% of the alcohol 12. Treatment of this alcohol with MsCl provided the chloromethyl derivative 13 (72%); the initially formed methanesulfonate was not isolated. To synthesize the chloromethylated 2',3'-di-O-methyladenosine 18, we methylated the OH groups of the ditrityl-protected adenosine 14 [7] with MeI and NaH in THF, and detritylated the crude product by heating in aqueous AcOH to yield 67% of the known 2',3'-O-dimethyladenosine (15) which had been obtained by unselective methylation of adenosines [8–10]. Similarly as for the preparation of the cyclohexylidenated chloromethyl-adenosine 13, the 2',3'-O-dimethyl derivative 15 was silylated and benzoylated to 16 (83%) that was hydroxymethylated to 17 (74%). Mesylation of 17, followed by addition of LiCl, afforded 95% of the chloride 18. #### Scheme 1 TDS = Thexyl(dimethyl)silyl (= dimethyl(1,1,2-trimethylpropyl)silyl) *a*) TDSCl, pyridine, then BzCl; 80% of **11**; 83% of **16**. *b*) 1. LDA (= lithium diisopropylamide), THF, -78°, then DMF; 2. NaBH₄, AcOH, EtOH; 81% of **12**; 95% of **17**. *c*) MsCl, EtN(i-Pr)₂, CH₂Cl₂; 72%. *d*) 1. NaH, THF, then MeI; 2. AcOH/H₂O 4:1, 100°; 67%. *e*) MsCl, EtN(i-Pr)₂, CH₂Cl₂, then LiCl; 95%. Synthesis of the Uridine Intermediates. Tosylation of 2',3'-O-cyclohexylideneuridine (19) [11], followed by substitution with AcSK, afforded the thioacetate 20 (77%; Scheme 2). The analogous 2',3'-O-dimethyl derivative 25 was prepared via 2',3'-O-dimethyluridine (24) [12] that was obtained from the 4-O-methyluridine (21) [12] by continuous addition over 2 d of excess CH_2N_2 , followed by hydrolysis of the methoxyimino group at C(4) [12]. A safer and more convenient access to 24 was realized by silylation of the OH group at C(5') of 21 with thexyl(dimethyl)silyl chloride (TDSCl) to the silyl ether 22 that was directly O-methylated with MeI and Ag_2O to 23. This 2',3'-O-dimethyl derivative was treated with Amberlite resin (H+ form) in aqueous MeOH to yield 40% (from 21) of crystalline 2',3'-di-O-methyluridine (24). Tosylation, followed by substitution with AcSK, afforded 47% of the thioacetate 25. Synthesis of the Dinucleosides. The cyclohexylidenated A*[s]U thioether **26** was obtained in 91% yield by nucleophilic substitution of the chloromethylated adenosine **13** by the thiolate that was formed *in situ* by treating the thioacetate **20** with MeONa in degassed dry MeOH [1] (*Scheme 3*). Desilylation of the dinucleoside **26** with (HF)₃· Et₃N yielded 88% of the alcohol **7**. The methylated A*[s]U dinucleoside **27** was #### Scheme 2 TDS = Thexyl(dimethyl)silyl a) 1. TsCl, pyridine; 2. AcSK, DMF, 75° ; 77% of 20; 47% of 25. b) TDSCl, 1H-imidazole, DMF. c) MeI, Ag₂O, acetone. d) Amberlite IR-120 (H⁺ form), MeOH/H₂O 1:5; 40% from 21. prepared similarly to **26**, by treating a mixture of the chloromethylated **18** and the thioacetate **25** with MeONa to yield 86% of **27**. This dinucleoside was desilylated to the alcohol **8** (98%). Acid-catalyzed hydrolysis of the isopropylidenated thioether **28** [1] gave the fully deprotected dinucleoside **9** (98%). Of these dinucleosides, only **26** and **27** are soluble in CHCl₃, and allowed determining the mode of association in the standard way [1]. The dinucleosides **7**–**9** are not sufficiently soluble in CHCl₃. Of these, **7** and **8** form organogels, while **8** and **9** form a hydrogel, as will be discussed after describing the conformation of the mono- and dinucleosides, and the association of **26** and **27**. Conformation of the Adenosine Mononucleosides. Replacing the isopropylidene by a cyclohexylidene group did not significantly affect the conformation of the adenosine monomers in CDCl₃ solution. As previously observed for the corresponding isopropylidene-adenosine derivative [1], the fully protected **11** adopts an *anti*conformation, as revealed by the chemical shift of 5.31 ppm for H–C(2') (*Table 5* in the *Exper. Part*). The J(1',2')/J(3',4') ratio of 1.1 reflects a slight preference for the (*S*)-conformation. A gg/tg/gt rotamer distribution of 50:25:25 is evidenced by J(4',5'a) and J(4',5'b) values of 4.2 and 4.4 Hz, respectively²). The C(8)-chloromethylated ²⁾ See [1] for the calculation of the rotamer distribution. ### Scheme 3 TDS = Thexyl(dimethyl)silyl a) MeONa, MeOH; 91% of **26**; 86% of **27**. b) $Et_3N \cdot 3$ HF, THF; 88% of **7**; 98% of **8**. c) F_3CCOOH (TFA)/H₂O 4:1; 98%. adenosine **13** adopts a *syn*-conformation ($\delta(H-C(2'))=5.83$ ppm). H-C(2') of the C(8)-hydroxymethylated **12** resonates slightly upfield ($\delta=5.71$ ppm). An assumed $\delta(H-C(2'))$ of 5.20 ppm for the *anti*-conformer of **12** (*cf.* [1]) suggests a *ca.* 4:1 *syn/anti*-equilibrium and the stabilization of the *anti*-conformer by an intramolecular H-bond between $HOCH_2-C(8)$ (br. s at 5.59 ppm) and O-C(5') (see [1-3]). Both **12** and **13** show a preference for the (N)-conformation (J(1',2')/J(3',4')=0.7) and a similar gg/gt/tg rotamer distribution (17:36:47 and 17:38:45, resp.), as deduced from J(4',5'a) and J(4',5'b) values ranging from 5.8 to 6.1 Hz. The exchange of the isopropylidene and cyclohexylidene protecting group by two Me groups allows a stronger puckering of the furanose ring and leads to an upfield shift of the H-C(2') and H-C(3') signals, but is expected to only moderately affect the *syn/anti*-equilibrium. The δ values of 5.22 and 5.26 ppm for H-C(2') of the 8-substituted 17 and 18, respectively, evidence a similar *syn*-conformation (*Table 5* in the *Exper. Part*). A strong upfield shift for H-C(2') of the 8-unsubstituted 16 ($\Delta\delta\approx0.85$ ppm relative to 17 and 18) evidences a complete *anti*-conformation. These data suggest that chemical shifts of 5.20-5.30 and 4.40 ppm are characteristic for *syn*- and *anti*-configured 2',3'-di-O-methyladenosines in $CDCl_3$, respectively³). The orientation of the nucleobase has a strong influence upon the furanose
ring conformation and the orientation of the side chain at C(4'). Thus, the *anti*-configured 16 prefers a (N)-conformation and *gg*-orientation of the side chain (*gg/gt/tg* 78:8:14), whereas the *syn*-configured 17 and 18 adopt an (S)-conformation and show a reduced preference for the *gg*-orientation (*gg/gt/tg* 43:15:42). In CDCl₃, the alcohol **15** shows a persistent intramolecular H-bond from HO-C(5') to N(3), resulting in a *syn*-conformation, as revealed by the exclusive population of the *gg*-rotamer (J(4',5'a)=1.5 and J(4',5'b)=1.6 Hz), the strong preference for the (*S*)-conformation (J(1',2')/J(3',4')>5.3), the downfield shift of HO-C(5') (6.81 ppm), and typical J(5',OH) values of 1.9 and 12.0 Hz (see [1–3][14][15]). As the consequence of the intramolecular H-bond, one observes a characteristic upfield shift of the H-C(2') signal $((\Delta \delta = 0.5 \text{ ppm}, \text{ relative to } \textbf{17} \text{ and } \textbf{18})$. Conformation of the Uridine Mononucleosides. The cyclohexylidenated thioacetate **20** in CDCl₃ adopts the same conformation as the isopropylidenated analogue [1], as revealed by similar 1 H-NMR chemical shifts ($\Delta\delta \leq 0.07$ ppm) and coupling constants ($\Delta J \leq 0.02$ Hz; Table 7 in the Exper. Part). It forms a ca. 3:1 syn/anti-equilibrium, prefers a (N)-conformation, and avoids the gg-orientation of the AcSCH₂ moiety (gg/gt/tg 16:42:42). The expectation that the silyl ether **23** prefers an *anti*-conformation, similarly to the corresponding isopropylidene acetal [1], is confirmed by the exclusive gg-orientation of the (silyloxy)methyl group of **23** (J(4',5'a)+J(4',5'b)=3.1 Hz (see [16]; *Table 7* in the *Exper. Part*). The *anti*-conformation is confirmed by the shift value for H-C(2') of 3.90 ppm. The small J(1',2')<1.0 and the large J(3',4')=9.2 Hz of **23** evidence a 4E -conformation (an extreme (N)-type). The downfield shift for H-C(2') of the thioacetate **25** (4.00 ppm) evidences a *syn/anti*-equilibrium, but the proportion of the *syn*-conformer must be distinctly smaller than the 75% found for the isopropylidene and cyclohexylidene acetals (see above), as indicated by a weaker downfield shift for H-C(2') of the thioacetate **25** ($\Delta \delta = 0.12$ relative to the silyl ether **23** as compared to $\Delta \delta = 0.28$ ppm for the corresponding pair of isopropylidene acetals) and also by a weaker upfield shift for H-C(1') ($\Delta \delta = 0.16$ vs. 0.40 ppm). The smaller proportion of the *syn*-conformer of **25** than of **20** is corroborated by a higher gg proportion (gg/gt/tg 32:45:23 vs. 16:42:42). Both **25** and **20** show a similar preference for the (N)-conformation. ³⁾ H-C(2') of 2',3'-di-O-methyl-5'-O-trityladenosines resonates in CDCl₃ solution at 4.60-4.63 ppm [13]. The downfield shift for H-C(2') of the alcohol **24** in D_2O (4.20 ppm) is due to the change of the solvent rather than to a syn/anti-equilibrium. The (N)-conformation and a large proportion of the gg-conformer (gg/gt/tg 66:25:9) agree well with an anti-oriented uracil moiety. Conformation of the A*[s]U Dinucleosides. The analysis is restricted to the silyl ethers **26** and **27** that are soluble in CDCl₃. The NMR data of the dinucleosides **7–9** were recorded of solutions in DMSO, *i.e.*, of solvated monoplexes. H-C(2'/I) of **26** and **27** in CDCl₃ resonates at 4.99 and 3.90 ppm, respectively (*Table 9* in the *Exper. Part*), suggesting a *ca.* 3:2 *syn/anti*-equilibrium for **26** and an *anti*-conformation for **27**. In agreement with this result, a lower proportion of the *gg*-rotamer is found for **26** (*gg/gt/tg* 26:44:30) than for **27** (*gg/gt/tg* 53:33:14). Both **26** and **27** show a similar preference for the (N)-conformation of unit I. According to these observations, **26** (but not **27**) could form cyclic duplexes. Association of the A*[s]U Dinucleosides in $CHCl_3$. The self-association of the silylated dinucleosides **26** and **27** in $CDCl_3$ was investigated by analyzing the concentration dependence of the chemical shift for H-N(3/I) resulting in shift/concentration curves (SCCs) and by temperature-dependent circular dichroism. The dinucleosides **7–9** form gels in several solvents (see below). Their solubility in $CHCl_3$ was too low to analyse their self-association. The SCCs of **26** and **27** show a flattening above ca. 40 mm without reaching a plateau and a rather low value for $\delta(H-N(3))$ at the lowest practical concentration. They resemble strongly the SCC of corresponding isopropylidene-protected analogue **1** [1] and reflect an equilibrium between monoplexes and linear associates (*Fig. 1*). Somewhat surprising is the rather steep ascent of the SCCs at lower concentrations, suggesting the facile formation of longer linear associates. The SCCs of **26** and **27** were analysed numerically by the method proposed by *Gutowsky* and *Saika* [17] including a value of 7.70 ppm for a 0.0001 mm solution [1]. The extrapolated chemical shift for the Fig. 1. Shift/concentration curves (SCCs) of the silyl ethers **26** and **27** in CDCl₃ solution (including a value of 7.70 ppm for a 0.0001 mm soln.). Table 1. Association Constants K_{ass} from the Concentration Dependence of $\delta(HN(3/I))$ in $CDCl_3$ at 295 K for the A*[s]U Dinucleotides **26** and **27** (including a value of 7.70 ppm for a 0.0001 mm soln.), Extrapolated Chemical Shifts of the Monoplexes and Duplexes, and ΔG_{295} Values | Dimer | $K_{\rm ass} \left[{ m M}^{-1} ight]$ | $\delta_{ ext{monoplex}}{}^{ ext{a}})$ [ppm] | $\delta_{ ext{duplex}}{}^{ ext{b}})$ [ppm] | ΔG_{295} [kcal/mol] | |-------|---|--|--|-----------------------------| | 26 | 282 | 7.73 | 12.26 | -3.3 | | 27 | 145 | 7.82 | 12.31 | -2.9 | ^a) Extrapolated for 0 mm. ^b) Extrapolated for infinite concentration. duplexes of **26** (12.26 ppm; *Table 1*) and **27** (12.31 ppm) hints at a *ca.* 1:1 mixture of *Watson – Crick-* and *Hoogsteen*-type base-paired associates (*cf.* [14]). The association constant for the cyclohexenylidenated **26** ($K_{\rm ass} = 282~{\rm M}^{-1}$; *Table 1*) is slightly higher than that for its isopropylidene-protected analogue ($K_{\rm ass} = 225~{\rm M}^{-1}$ [1]), while the methylated **27** associates more weakly ($K_{\rm ass} = 145~{\rm M}^{-1}$), evidencing the influence of the substituent at C(2') and C(3') on duplex formation, presumably mostly by affecting the conformation of the ribose ring of unit I (see below). The $K_{\rm ass}$ values agree well with an equilibrium between monoplex and linear associates. The temperature-dependent CD spectra of 1 mm CHCl₃ solutions of **26** and **27** show a stronger variation of the ellipticity (*Fig.* 2) than the spectra of the corresponding isopropylidene acetal **1** (see [1]), evidencing more extensive π -stacking of the nucleobases. Remarkably, the change of the ellipticity of **26** is asymmetric, concerning only the part of the maximum at higher wavelength, while the ellipticity of the complete maximum of **27** is diminished, and the change also affects the minimum at lower wavelength. This may be rationalized by assuming that only the conformation of one of the units of **26** is strongly affected by the temperature change, presumably the (C(6)-unsubstituted) uridine moiety. The molar ellipticity ($[\theta]$) of **26** and **27**, between ca. $-2 \cdot 10^4$ and $+3 \cdot 10^4$ deg · cm²/dmol, compares well with the one of **1** (ca. $-1 \cdot 10^4$ to $+2 \cdot 10^4$ deg · cm²/dmol [1]⁴)). Characterization of the Gels. 1. Solvents. We determined the ability of the dinucleosides 7-9 to form gels with a selection of 33 solvents, based on classification of Chastrette et al. [18], at a concentration of 1% (w/v), as reported in [2][3]. The monoalcohols 7 and 8 were insoluble in apolar and in most electron-pair donor solvents, and soluble in highly dipolar solvents and in 2,2,2-trifluoroethanol ($Table\ 2$). Turbid or partial gels⁵) were obtained from aprotic dipolar and H-bonding solvents. Surprisingly, the tetramethyl ether 8 gelates also H₂O ('ambidextrous gelator') and proved largely superior to the other gelators tested (2 and 5; see [1]) when considering the scope of gelated solvents. The pentol 9 formed a gel in H₂O. As expected, it is insoluble in all solvents tested, with the exception of the highly dipolar DMF, DMSO, sulfolane, and 2,2,2-trifluoroethanol. Gel-Sol Transition Temperature and Minimum Gelation Concentration. As previously observed for the $A*[s]U^{(*)}$ gelators 2 and 5 [2], the gel-sol (melting) ⁴⁾ For the sake of comparison, the ellipticity values (θ, [mdeg]) reported in [1] were converted to [θ] [deg · cm²/dmol]. ⁵⁾ See [2] for a definition and evaluation of partial gels. Fig. 2. Temperature-dependent CD spectra (in 10° steps from 0 to 50°) of 1 mm solutions in CHCl₃ of the silyl ethers **26** and **27** temperature $(T_{\rm m})$ and minimum gelation concentration (MGC) depend on both the gelator and the solvent. The $T_{\rm m}$ values for the 1% (w/v) gels of 7 and 9 are sharp, and range between 56 and 76°, except for gels with MeCN and AcOEt that melt between 57–67° and 64–74°, respectively ($Table\ 3$). In linear alcohols (MeOH to decan-1-ol), $T_{\rm m}$ of the gels of 7 increases from 48 to 76° with increasing chain length (decreasing solvent polarity), evidencing the formation of a network of gelator molecules linked by H-bonds [2][3]. Most of the gels formed by the tetra-O-methyl derivative 8 show a broad $T_{\rm m}$ (47 to 80°), and do not clearly reveal the relation between solvent polarity (chain length of linear alcohols) and gel–sol transition temperature. The different behaviour exhibited by 8, as compared to 7 and 9, further illustrates the effect of the structure of the gelator on the properties of the gel.
The MGC for the gels of **7** ranges between 0.2% (w/v) (decan-1-ol) and 0.8% (butan-2-one and t-BuOH), while **9** gelates H₂O at a concentration of 0.6% (Table 4). The lowest MGC for **8** is obtained with pentan-1-ol and decan-1-ol (0.07%), and the highest one with THF (0.9%). As expected for compounds associating by H-bonds, the MGC observed for **7** and **8** in linear alcohols decreases with decreasing solvent polarity, from 0.5% (EtOH) to 0.2% (decan-1-ol) and from 0.5% (in MeOH) to 0.07% (pentan-1-ol and decan-1-ol), respectively. The efficiency of **7** and **9** is similar to that of other nucleobase-derived gelators, ranging from ca. 0.3 to 0.8% [2][19][20]. The remarkable efficiency of **8** in pentan-1-ol and decan-1-ol (MGC 0.07%) allows a comparison with 'supergelators' such as benzylidene acetals of pyranosides [21], or trehalose esters [22] that form gels in cyclohexane and AcOEt, respectively, at a concentration of 0.04%. Circular Dichroism. The supramolecular structure of the gels of 7-9 in different solvents was also studied by temperature-dependent circular dichroism (CD). At 0° , the CD spectrum of the 1% (w/v) gel of 7 and MeCN shows a minimum and a maximum at ca. 285 and 305 nm, respectively (Fig. 3). As the temperature increases to 50° , the minimum shifts to ca. 280 nm, and its intensity increases significantly, while the maximum shifts to ca. 300 nm and becomes slightly more intense. At 60° , the CD spectrum still shows intense signals (minimum and maximum at ca. 280 and 300 nm, Table 2. Solubility of the Dinucleosides 7-9 in Selected Solvents and Properties of the Gels^a) | Class | Solvent | 7 | 8 | 9 | |---|--|---|---|---| | Aliphatic, apolar ^b) | Pentane ^b) Hexane ^c) Cyclohexane ^c) CCl ₄ ^c) | I ^d) I I | I ^d)
I
I
I | -
I
- | | Aromatic, apolar | Benzene
Toluene | I
I | I
I | _
I | | Aromatic, relatively polar | Acetophenone | S | TG | I | | Electron-pair donor | Et ₂ O
(i-Pr) ₂ O
t-BuOMe ^b)
1,4-Dioxane | I ^d) I S | I ^d)
I
I
PG | -
-
I | | Aprotic, dipolar | CH ₂ Cl ₂ Acetone ClCH ₂ CH ₂ Cl Butan-2-one MeCN AcOEt | PG
PG
TG
TG
TG | PG ^d) TG PG TG PG | I
I
-
-
I | | Aprotic, highly dipolar | DMF
DMSO | S
S | S^d) S^d) | S^d)
S^d) | | Aprotic, highly dipolar, and highly polarisable H-Bonding | Sulfolane 2,2,2-Trifluoroethanol MeOH EtOH PrOH BuOH Pentan-1-ol Decan-1-ol ^b) i-PrOH t-BuOH | S
S
TG
TG
TG
TG
TG | S S ^d) TG TG TG TG TG TG TG | S ^d) S I ^e) I I I - | | H-Bonding, strongly associated | H_2O | I | TG | TG | | Miscellaneous | CHCl ₃
1,2-Dimethoxyethane ^c)
THF ^c) | S S ^d) S ^d) | TG
TG
TG | I
I
- | a) [gelator] = 1% (w/v), I: insoluble, S: soluble, PG: partial gel, TG: turbid gel. b) Missing in *Chastrette*'s original classification [18]. c) Reclassified solvent. d) At 25°. e) Soluble at 70°. resp.) although most gel–sol transitions occur at about this temperature ($T_{\rm m}$ 57–67°), suggesting that a significant proportion of the gelator is still highly organized. The CD spectra of the gels of **7** in AcOEt, EtOH, and decan-1-ol show similar trends, with a maximum around 290 nm and a broad tail-shaped negative band centered at ca. 310 nm. The intensity of both bands decreases with increasing temperature, while a negative band appears around 280 nm. Melting of the gel is associated with a significant loss of band intensity. Table 3. Gel-Sol Transition Temperature ($T_m [^{\circ}]$) of 1% (w/v) Gels of the Dinucleosides **7-9** | Class | Solvent | 7 | 8 | 9 | |--------------------------------|--------------------------------------|---------|---------|----| | Aromatic, relatively polar | Acetophenone | - | 63 | _ | | Aprotic, dipolar | Acetone | _ | 60 - 65 | _ | | • | ClCH ₂ CH ₂ Cl | 56 | _ | _ | | | Butan-2-one | 64 | 61 - 63 | _ | | | MeCN | 57 - 67 | _ | _ | | | AcOEt | 64 - 74 | _ | _ | | H-Bonding | MeOH | _ | 47 - 53 | _ | | _ | EtOH | 48 | 63 - 65 | _ | | | PrOH | 52 | 63 | _ | | | BuOH | 56 | 62 - 63 | _ | | | Pentan-1-ol | 57 | 65 - 67 | _ | | | Decan-1-ol | 76 | 64 - 80 | _ | | | i-PrOH | 55 | 55 - 60 | _ | | | t-BuOH | 50 | 49 | _ | | H-bonding, strongly associated | H_2O | - | 60 - 70 | 42 | | Miscellaneous | CHCl ₃ | _ | 55 – 59 | _ | | | 1,2-Dimethoxyethane | _ | 60 - 62 | _ | | | THF | _ | 50 - 55 | - | Table 4. Minimum Gelation Concentration (MGC [% (w/v)]) of the Gels of the Dinucleosides 7–9 | Class | Solvent | 7 | 8 | 9 | |--------------------------------|--------------------------------------|-----|------|-----| | Aromatic, relatively polar | Acetophenone | - | 0.2 | _ | | Aprotic, dipolar | Acetone | _ | 0.4 | _ | | • | ClCH ₂ CH ₂ Cl | 0.4 | 0.5 | _ | | | Butan-2-one | 0.8 | 0.3 | _ | | | MeCN | 0.6 | _ | _ | | | AcOEt | 0.5 | - | _ | | H-Bonding | MeOH | _ | 0.5 | _ | | | EtOH | 0.5 | 0.4 | _ | | | PrOH | 0.4 | 0.3 | _ | | | BuOH | 0.4 | 0.2 | _ | | | Pentan-1-ol | 0.3 | 0.07 | _ | | | Decan-1-ol | 0.2 | 0.07 | _ | | | i-PrOH | 0.3 | 0.2 | _ | | | t-BuOH | 0.8 | 0.4 | _ | | H-Bonding, strongly associated | H_2O | - | 0.5 | 0.6 | | Miscellaneous | CHCl ₃ | _ | 0.4 | _ | | | 1,2-Dimethoxyethane | _ | 0.5 | _ | | | THF | - | 0.9 | - | The CD spectra recorded for the gel of 7 compare well with those of the analogous isopropylidene $A^*[s]U$ gelator 2 in the same solvents [2], suggesting a similar conformation and mode of association in the gel state. Fig. 3. Temperature-dependent CD spectra (in 10° steps from 0 to 60°) of the cyclohexylidenated alcohol 7 for 1% (w/v) gels in MeCN, AcOEt, EtOH, and decan-1-ol The 1% (w/v) gels of **8** in CHCl₃ and in decan-1-ol did not lead to satisfactory CD spectra, presumably because of their high turbidity. The problem was avoided by decreasing the amount of gelator. At 0°, the CD curve of the 0.5% (w/v) gel of **8** in CHCl₃ exhibits a minimum and a maximum around 280 and 300 nm, respectively (Fig. 4). Their intensity decreases by increasing the temperature up to 50°. The signals disappeared at 60° with melting of the gel. The CD spectra of the 0.1% (w/v) gel of **8** in decan-1-ol (at 20°) and of the 1% (w/v) gel of **9** in H₂O (at 10°) show a strong maximum at ca. 265 and 285 nm, respectively, and a negative tail-shaped band centered at 310 nm. The intensity of these bands decreased by increasing the temperature to 40 and 60° for **9** and **8**, respectively, where the gel melted. As previously observed and discussed in detail [2], most of the CD spectra of the gels derived from A*[s]U dinucleosides show strong bands with long tails above 300 nm. This feature is ascribed to the formation of a compact network of gelators and a concomitant desolvation of the nucleobases upon gelation. Scanning Electron Microscopy. The morphology of the 1% (w/v) hydrogel of **9** was studied by scanning electron microscopy (SEM) of the dried gel, revealing a tertiary and secondary structure formed by a self-assembled network of fibers with a diameter of ca. 30 to 90 nm and several μ m in length, typical for hydrogels [23] (Fig. 5, a). Fig. 4. Temperature-dependent CD spectra (in 10° steps from 0 to 50°) of the tetramethyl ether **8** for a 0.5% (w/v) gel in CHCl₃ and a 0.1% (w/v) gel in decan-1-ol, and of the pentol **9** for a 1% (w/v) gel in H₂O Fig. 5. Scanning-electron microscopy pictures of the dried a) 1% (w/v) gel and b) 0.4% (w/v) solution of the pentan-1-ol $\bf 9$ in H_2O Although the primary structure is not directly accessible by this technique, one can reasonably assume that the assembly at the molecular level occurs by reticulation of linear associates by H-bonding involving the nucleobases, as previously evidenced for A*[s]U dimers [3]. Interestingly, the 0.4% (w/v) solution of **9** in H₂O (Fig. 5, b), showed fibrous aggregates with a diameter of several μ m, which presumably result from the precipitation of a self-assembled fibrillar network from solution rather than from its entrapment [23]. We thank Dr. Séverine Hebbe for exploratory studies of 9, Dr. Michael Stalder, Laboratory of Inorganic Chemistry, ETH Zürich, for recording the SEM pictures, and Dr. Bruno Bernet for his contribution to the conformational analysis and for checking the experimental part. ### **Experimental Part** General. See [2]. N⁶-Benzoyl-2′,3′-O-cyclohexylidene-5′-O-[dimethyl(1,1,2-trimethylpropyl)silyl]adenosine (**11**). A soln. of **10** [4] (8.00 g, 23.0 mmol) in dry pyridine at 0° was treated with thexyl(dimethyl)silyl chloride (TDSCl; 6.3 ml, 32.2 mmol), stirred at 25° for 48 h, cooled to 0°, treated with BzCl (13.3 ml, 114.6 mmol), and stirred at 25° for 72 h. The mixture was cooled to 0°, treated with H₂O (26 ml) and 25% NH₃· H₂O soln. (53 ml), and stirred for 30 min at 0°. After evaporation, a soln. of the residue in toluene was evaporated. A soln. of the residue in AcOEt was washed twice with 0.01м aq. HCl and twice with sat. aq. NH₄Cl soln., dried (Na₂SO₄), and evaporated. FC (cyclohexane/AcOEt 4:1 \rightarrow 2:1 \rightarrow 1:1) gave **11** (10.91 g, 80%). White solid. R_f (cyclohexane/AcOEt 1:1) 0.55. M.p. 95° (sintering from 65°). $[a]_{...}^{25} = -51.0$ (c = 1.05, CHCl₃). UV (CHCl₃): 281 (22000). IR (ATR): 3240w (br.), 3200w (br.), 2936m, 2854w, 1696m, 1607m, 1580m, 1510m, 1485m, 1452s, 1407w, 1367w, 1330m, 1287m, 1248s, 1215m, 1162m, 1090s, 1028m, 1000w, 968w, 939w, 927w, 909w, 875w, 827s. ¹H-NMR (300 MHz, CDCl₃): see *Table* 5; additionally, 9.12 (br. s, NH); 8.02 – 7.98 (m, 2 arom. H); 7.62 – 7.46 (m, 3 arom. H); 1.87 – 1.82 (m, 2 H); 1.71 – 1.50 (m, 6 H); 1.55 (sept., J = 6.8, Me₂CH);
1.44 – 1.38 (m, 2 H); 0.82 (d, J = 6.8, Me₂CH); 0.78 (s, Me₂CSi); 0.04 (s, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 6; additionally, 164.50 (s, C=O); 133.72 (s); 132.72 (d); 128.84 (2d); 127.83 (2d); 115.07 (s, (CH₂)₂C); 37.22, 34.93 (2t); 34.17 (d, Me₂CH); 25.45 (s Table 5. Selected ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the Adenosines 11 – 13 and 15 – 18 in CDCl₃ | | 11 | 12 | 13 | 15 ^a) | 16 | 17 | 18 | |---------------|------|------|------|-------------------|------|------|------| | H-C(2) | 8.80 | 8.69 | 8.79 | 8.33 | 8.77 | 8.77 | 8.77 | | H-C(8) | 8.21 | _ | _ | 7.82 | 8.38 | _ | _ | | $CH_a - C(8)$ | _ | 4.93 | 4.93 | _ | _ | 4.98 | 4.91 | | $CH_b - C(8)$ | _ | 4.93 | 4.87 | _ | _ | 4.94 | 4.87 | | H-C(1') | 6.20 | 6.26 | 6.30 | 5.87 | 6.22 | 6.07 | 6.17 | | H-C(2') | 5.31 | 5.71 | 5.83 | 4.73 | 4.38 | 5.22 | 5.26 | | H-C(3') | 4.95 | 5.04 | 5.10 | 4.16 | 4.04 | 4.20 | 4.27 | | H-C(4') | 4.41 | 4.22 | 4.29 | 4.39 | 4.22 | 4.16 | 4.17 | | $H_a - C(5')$ | 3.84 | 3.67 | 3.74 | 4.02 | 4.02 | 3.91 | 3.92 | | $H_b - C(5')$ | 3.75 | 3.58 | 3.63 | 3.70 | 3.81 | 3.74 | 3.74 | | $J(H_a,H_b)$ | _ | b) | 12.6 | _ | _ | 15.7 | 12.6 | | J(1',2') | 2.8 | 2.4 | 2.5 | 8.0 | 3.7 | 5.8 | 5.4 | | J(2',3') | 6.2 | 6.4 | 6.3 | 4.9 | 4.6 | 5.1 | 5.1 | | J(3',4') | 2.6 | 3.5 | 3.4 | < 1.5 | 5.8 | 4.0 | 4.4 | | J(4',5'a) | 4.2 | 6.1 | 5.9 | 1.5 | 3.4 | 5.7 | 5.6 | | J(4',5'b) | 4.4 | 5.8 | 5.9 | 1.6 | 2.8 | 4.1 | 4.1 | | J(5'a,5'b) | 11.2 | 10.8 | 10.8 | 13.0 | 11.6 | 11.2 | 11.2 | a) J(5'a,OH) = 1.9, J(5'b,OH) = 12.0 Hz. b) Not assigned. C(4') C(5') 87.42 63.38 87.55 62.80 18 C(2)152.77 152.53 153.05 152.28 152.76 152.54 153.03 C(4)149.47 149.08 149.61 148.33 149.57 149.25 149.76 123.38 121.97 122.37 C(5)121.34 121.97 121.18 123.67 C(6)151.24 152.28 152.17 156.17 151.43 153.00 152.69 C(8)141.79 154.72 150.04 140.82 141.66155.16150.65 $CH_2 - C(8)$ 57.71 36.72 57.85 36.73 C(1')91.56 90.05 90.44 89.82 87.03 87.45 87.75 C(2')84.26 82.77 82.56 81.92 82.08 79.51 79.51 C(3')81.18 81.18 81.24 79.54 77.35 78.29 78.21 Table 6. Selected ¹³C-NMR Chemical Shifts [ppm] of the Adenosines 11 – 13 and 15 – 18 in CDCl₃ Me_2CSi); 25.15, 24.22, 23.87 (3t); 20.47, 20.42 (2q, Me_2CSi); 18.64 (q, Me_2CH); -3.16, -3.28 (2q, Me_2Si). HR-MALDI-MS: 594.3100 ([M+H]⁺, $C_{31}H_{44}N_5O_5Si$ ⁺; calc. 594.3112). 85.51 63.78 82.64 61.97 83.04 62.33 82.90 62.15 87.68 62.87 N^6 -Benzoyl-2',3'-O-cyclohexylidene-5'-O-[dimethyl(1,1,2-trimethylpropyl)silyl]-8-(hydroxymethyl)adenosine (12). A soln. of (i-Pr)₂NH (9.9 ml, 75.7 mmol) in dry THF (38 ml) at 0° was treated dropwise with 1.6M BuLi in hexane (47.3 ml, 75.7 mmol), stirred for 40 min at 0° , cooled to -78° , treated dropwise with a soln. of 11 (8.989 g, 15.14 mmol) in dry THF (38 ml), stirred for 2 h at -78° , treated dropwise with DMF (29 ml, 375 mmol), stirred for 3 h, treated with AcOH (29 ml), and allowed to warm to 25°. The mixture was diluted with EtOH (38 ml), cooled to 0°, treated portionwise with NaBH₄ (1.72 g, 45.4 mmol), stirred for 30 min at 0°, diluted with sat. aq. NH₄Cl soln. (100 ml) and H₂O, and extracted three times with AcOEt. The combined org. layers were washed three times with sat. aq. NH₄Cl soln., dried (Na_2SO_4), and evaporated. FC (cyclohexane/AcOEt $2:1 \rightarrow 1:1 \rightarrow AcOEt$) gave **12** (7.691 g, 81%). Slightly yellow solid. R_f (cyclohexane/AcOEt 1:1) 0.45. M.p. 115° (sintering from 85°). $[\alpha]_D^{25} = -23.0$ $(c = 0.95, CHCl_3)$. UV (CHCl₃): 283 (21720). IR (ATR): 3407w (br.), 3266w (br.), 2936m, 2864w, 1698m, 1611m, 1584m, 1531w, 1502w, 1484m, 1461m, 1448m, 1430m, 1356m, 1330m, 1249s, 1163m, 1092s, 1047s, 1000m, 969m, 939m, 927m, 909m, 897m, 875m, 828s. 1H-NMR (300 MHz, CDCl₃): see Table 5; additionally, 9.43 (br. s, NH); 8.02-7.98 (m, 2 arom. H); 7.57-7.42 (m, 3 arom. H); 5.59 (br. s, OH); 1.83 - 1.80 (m, 2 H); 1.71 - 1.49 (m, 6 H); $1.56 (sept., J = 6.8, Me_2CH)$; 1.46 - 1.38 (m, 2 H); $0.81 (d, J = 6.8, Me_2CH)$; 0.81 (d, J =6.8, Me₂CH); 0.77, 0.76 (2s, Me₂CSi); -0.04 (s, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see Table 6; additionally, 165.03 (s, C=O); 133.72 (s); 132.80 (d); 128.83 (2d); 128.00 (2d); 115.20 (s, (CH₂)₂C); 37.07, 34.91 (2t); 34.16 (d, Me₂CH); 25.34 (s, Me₂CSi); 25.11, 24.12, 23.76 (3t); 20.37, 20.34 (2q, Me₂CSi); 18.55, 18.53 (2q, Me_2 CH); -3.40 (q, Me_2 Si). HR-MALDI-MS: 624.3206 ([M + H]⁺, $C_{32}H_{46}N_5O_6$ Si⁺; calc. 624.3217). N⁶-Benzoyl-8-(chloromethyl)-2',3'-O-cyclohexylidene-5'-O-[dimethyl(1,1,2-trimethylpropyl)silyl]-adenosine (13). A soln. of 12 (5.410 g, 8.67 mmol) in dry CH₂Cl₂ (43 ml) at 0° was treated with EtN(i-Pr)₂ (2.27 ml, 13.01 mmol) and MsCl (738 µl, 9.54 mmol), stirred at 25° for 20 h, and evaporated. FC (cyclohexane/AcOEt $4:1 \rightarrow 1:1$) gave 13 (4.013 g, 72%). White solid. $R_{\rm f}$ (cyclohexane/AcOEt 1:4) 0.18. M.p. 90° (sintering from 67°). [α] $_{\rm b}^{\rm D5} = -18.0$ (c = 0.9, CHCl₃). UV (CHCl₃): 285 (22370). IR (ATR): 3249w (br.), 2936m, 2864w, 1697m, 1607m, 1580m, 1525m, 1498m, 1483m, 1463m, 1448m, 1429m, 1357m, 1344m, 1328m, 1248s, 1163m, 1142m, 1091s, 1028m, 1000m, 968s, 939m, 926m, 911m, 875m, 827s. ¹H-NMR (300 MHz, CDCl₃): see *Table* 5; additionally, 9.00 (br. s, NH); 8.01 – 7.98 (m, 2 arom. H); 7.63 – 7.49 (m, 3 arom. H); 1.86 – 1.82 (m, 2 H); 1.73 – 1.52 (m, 6 H); 1.56 (sept., J = 6.8, Me₂CH); 1.45 – 1.41 (m, 2 H); 0.83 (d, J = 6.8, Me₂CH); 0.79, 0.78 (2s, Me₂CSi); -0.01, -0.03 (2s, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 6; additionally, 164.36 (s, C=O); 133.60 (s); 132.86 (d); 128.92 (2d); 127.81 (2d); 115.12 (s, (CH₂)₂C); 37.25, 35.05 (2t); 34.28 (d, Me₂CH); 25.45 (s, Me₂CSi); 25.22, 24.23, 23.84 (3t); 20.51, 20.48 (2q, Me₂CSi); 18.70, 18.68 (2q, Me₂CH); -3.21 (q, Me₂Si). HR-MALDI-MS: 642.2885 ([M + H]⁺, C₃₂H₄₅ClN₅O₅Si⁺; calc. 642.2878). 2',3'-Di-O-methyladenosine (15) [8–10]. A suspension of 60% NaH in oil (1.159 g, 28.98 mmol) in THF (20 ml) was cooled to 0° , treated with a soln. of 14 [7] (6.226 g, 8.28 mmol) in THF (20 ml), and stirred at 25° for 2.5 h. The mixture was cooled to 0° , treated with MeI (1.55 ml, 24.8 mmol), stirred at 25° for 3 h, treated with sat. aq. NH₄Cl soln., diluted with H₂O, and extracted three times with AcOEt. The combined org. layers were dried (Na₂SO₄) and evaporated. The residue was treated with AcOH/H₂O 4 :1 (50 ml), stirred for 30 min at 100°, and evaporated. FC (AcOEt/MeOH 9:1) and recrystallization in EtOH gave 15 (1.627 g, 67%). White solid. $R_{\rm f}$ (AcOEt/MeOH 9:1) 0.13. M.p. 181° ([8]: 177°). $[a]_{\rm D}^{25}$ = -120.5 (c=0.55, CHCl₃; [8]: -49). UV (CHCl₃): 261 (14680). IR (ATR): 3362m, 3264m, 3230m, 3108m, 2988m, 2921m, 2832m, 2747m, 2692m, 1683m, 1611m, 1567m, 1514m, 1475m, 1422m, 1387m, 1343m, 1325m, 1289m, 1216m, 1186m, 1173m, 1114m, 1095m, 1076m, 1048m, 1021m, 977m, 952m, 911m, 879m, 815m. H-NMR (300 MHz, CDCl₃): see *Table* 5; additionally, 6.81 (dd, J=12.0, 1.9, HO-C(5')); 5.74 (br. m), NH₂); 3.54, 3.33 (2m, 286.1353 ([m), HH, CDCl₃): see *Table* 6; additionally, 58.60, 58.04 (m), MeO). HR-MALDI-MS: 296.1353 ([m), Hm), C12H₁₈N₅O₄; calc. 296.1359). Anal. calc. for C12H₁₇N₅O₄ (295.30): C 48.81, H 5.80, N 23.72; found: C 48.84, H 5.81, N 23.42. N^6 -Benzoyl-5'-O-[dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-di-O-methyladenosine (16). A soln. of 15 (2.879 g, 9.75 mmol) in pyridine (45 ml) at 0° was treated with TDSCl (2.49 ml, 12.68 mmol), stirred at 25° for 7.5 h, and treated with two additional portions of TDSCl (2 \times 1.3 ml, 13.2 mmol) over 24 h. The soln. was cooled to 0°, treated with BzCl (5.7 ml, 48.8 mmol), and stirred at 25° for 13 h. The mixture was cooled to 0°, treated with H₂O (20 ml) and 25% NH₃·H₂O soln. (40 ml), stirred for 30 min at 0°, and evaporated. A soln. of the residue in AcOEt was washed with aq. 0.01m HCl and sat. aq. NaHCO3 soln. The org. layer was dried (Na₂SO₄) and evaporated. FC (CH₂Cl₂/MeOH 95:5) gave **16** (4.399 g, 83%). White solid. R_f (CH₂Cl₂/MeOH 95:5) 0.38. M.p. 60° (sintering from 45°). $[a]_D^{15} = -13.6$ (c = 0.9, CHCl₃). UV (CHCl₃): 280 (21670). IR (ATR): 3252w, 3125w, 3059w, 2955m, 2865w, 2830w, 1698m, 1608s, 1580s, 1509m, 1482m, 1451s, 1405w, 1390w, 1377w, 1326m, 1290m, 1248s, 1220s, 1189m, 1124s, 1094s, 1074s, 1048m, 1030m, 998m, 983m, 876m, 824m. ¹H-NMR (300 MHz, CDCl₃): see *Table 5*; additionally, 9.20 (br. s, NH); 8.00-7.98 (m, 2 arom. H); 7.59-7.46 (m, 3 arom. H); 3.57, 3.44 (2s, 2 MeO); 1.64 (sept., J=6.8, Me_2CH); 0.88 (d, J = 6.8, Me_2CH); 0.88 (s, Me_2CSi); 0.16, 0.15 (2s, Me_2Si). ¹³C-NMR (75 MHz, CDCl₃): see Table 6; additionally, 164.77 (s, C=O); 133.89 (s); 132.76 (d); 128.89 (2d); 127.94 (2d); 58.70, 58.19 (2q, 2 MeO); 34.15 (d, Me₂CH); 25.53 (s, Me₂CSi); 20.48, 20.40 (2q, Me₂CSi); 18.64, 18.56 (2q, Me₂CH); -3.24, -3.46 (2q, Me₂Si). HR-MALDI-MS: 542.2800 ([M + H]⁺, $C_{27}H_{40}N_5O_5Si^+$; calc. 542.2799). N⁶-Benzoyl-5'-O-[dimethyl(1,1,2-trimethylpropyl)silyl]-8-(hydroxymethyl)-2',3'-di-O-methyladenosine (17). A soln. of (i-Pr)₂NH (4.85 ml, 37.0 mmol) in THF (25 ml) at 0° was treated dropwise with 1.6m BuLi in hexane (23.1 ml, 37.0 mmol), stirred for 40 min at 0° , cooled to -78° , treated dropwise with a soln. of 16 (4.006 g, 7.40 mmol) in THF (25 ml), stirred for 2 h at -78° , treated dropwise with DMF (14.3 ml, 185 mmol), stirred for 3 h, treated with AcOH (6.4 ml, 111 mmol), and allowed to warm to 25°. The mixture was diluted with EtOH (30 ml), cooled to 0°, treated portionwise with NaBH₄ (840 mg, 22.2 mmol), stirred for 30 min at 0°, treated with sat. aq. NH₄Cl soln. and H₂O, and extracted three times with AcOEt. The combined org. layers were washed three times with sat. aq. NH₄Cl soln., dried (Na₂SO₄), and evaporated. FC (CH₂Cl₂/MeOH 95:5) gave 17 (3.134 g, 74%). A sample for analysis was recrystallized in MeCN. White solid. $R_{\rm f}$ (CH₂Cl₂/MeOH 95:5) 0.23. M.p. 147°.
$[\alpha]_{\rm D}^{\rm 75} = -34.9$ (c = 0.8, CHCl₃). UV (CHCl₃): 283 (21380). IR (ATR): 3410w (sh.), 3233w, 3204w, 2955m, 2933m, 2868w, 2831w, 1698s, 1614s, 1583m, 1527m, 1505m, 1488m, 1461m, 1438m, 1344m (sh.), 1330m, 1301w, 1249s, 1209w, 1121s, 1071s, 998m, 986m, 966w, 937w, 899w, 875w, 828s. ¹H-NMR (300 MHz, CDCl₃): see *Table 5*; additionally, 9.12 (br. s, NH); 8.04 - 8.02 (m, 2 arom. H); 7.62 - 7.50 (m, 3 arom. H); 4.24 (t, J = 6.3, OH); $3.52, 3.43 (2s, 2 \text{ MeO}); 1.59 (sept., J = 6.9, Me_2CH); 0.85 (d, J = 6.9, Me_2CH); 0.81 (s, Me_2CSi); 0.08, 0.06$ (2s, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table 6*; additionally, 164.88 (s, C=O); 133.88 (s); 132.84 (d); 128.96 (2d); 128.02 (2d); 58.58, 58.14 (2q, 2 MeO); 34.23 (d, Me₂CH); 25.37 (s, Me₂CSi); 20.38, 20.34 $(2q, Me_2CSi)$; 18.61 (q, Me_2CH) ; -3.37, -3.42 $(2q, Me_2Si)$. HR-MALDI-MS: 572.2904 $([M + H]^+, Me_2CSi)$ $C_{28}H_{42}N_5O_6Si^+;$ calc. 572.2897). Anal. calc. for $C_{28}H_{41}N_5O_6Si$ (571.75): C 58.82, H 7.23, N 12.25; found: C 58.91, H 7.04, N 12.12. N⁶-Benzoyl-8-(chloromethyl)-5'-O-[dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-di-O-methyladenosine (18). A soln. of 17 (1.892 g, 3.31 mmol) in CH_2Cl_2 (16 ml) at 0° was treated with $EtN(i-Pr)_2$ (866 μ l, 4.97 mmol) and MsCl (256 μ l, 3.31 mmol), stirred at 25° for 24 h, treated with LiCl (140 mg, 3.31 mmol), and stirred for 7 h. The mixture was diluted with H_2O and extracted three times with CH_2CI_2 . The combined org. layers were dried (Na₂SO₄) and evaporated. FC (cyclohexane/AcOEt 1:1) gave **18** (1.847 g, 95%). White solid. R_f (cyclohexane/AcOEt 1:1) 0.45. M.p. 65° (sintering from 45°). $[a]_D^{25} = -30.9$ (c = 0.7, $CHCI_3$). UV ($CHCI_3$): 286 (22630). IR (ATR): 3411w, 3253w, 2955m, 2929m, 2868w, 2831w, 1697m, 1608s, 1581m, 1525w, 1484m, 1461m, 1422m, 1352m, 1326m, 1247s, 1210w, 1190w, 1172w, 1125w, 1072w, 999w, 945w, 875w, 827s. ¹H-NMR (300 MHz, $CDCI_3$): see *Table* 5; additionally, 9.03 (br. s, NH); 8.00 – 7.98 (m, 2 arom. H); 7.60 – 7.48 (m, 3 arom. H); 3.53, 3.45 (2s, 2 MeO); 1.56 (sept, J = 6.9, Me₂CH); 0.83 (d, J = 6.9, Me₂CH); 0.79 (s, Me₂CSi); 0.08, 0.03 (2s, Me₂Si). ¹³C-NMR (75 MHz, $CDCI_3$): see *Table* 6; additionally, 164.56 (s, C = O); 133.78 (s); 132.87 (d); 128.96 (2d); 127.91 (2d); 58.59, 58.15 (2q, 2 MeO); 34.18 (d, Me₂CH); 25.33 (s, Me₂CSi); 20.34, 20.30 (2q, Me₂CSi); 18.56 (q, Me₂CH); -3.40, -3.44 (2q, Me₂Si). HR-MALDI-MS: 590.2561 ([M + H]⁺, $C_{28}H_4$ (CIN_5O_5Si ⁺; calc. 590.2565). 5'-S-Acetyl-2',3'-O-cyclohexylidene-5'-thiouridine (20). A soln. of 19 [11] (869 mg, 2.68 mmol) in dry pyridine (13 ml) at 0° was treated with TsCl (842 mg, 4.42 mmol), allowed to warm to 25°, stirred for 20 h, and evaporated. A soln. of the residue in dry DMF (4 ml) was treated with AcSK (775 mg, 6.79 mmol) and heated to 75° for 2 h. After evaporating DMF, a soln. of the residue in AcOEt was washed three times with sat. aq. NH₄Cl soln. The combined org. layers were dried (Na₂SO₄) and evaporated. FC (cyclohexane/AcOEt 4:1 → 1:1 → AcOEt) gave 20 (792 mg, 77%). Slightly yellow solid. R_f (cyclohexane/AcOEt 1:1) 0.40. M.p. 95° (sintering from 75°). [α] $_D^{25}$ = +10.3 (c = 0.7, CHCl₃). UV (CHCl₃): 259 (10190). IR (ATR): 3188w (br.), 3099w, 3062w, 2935w, 2860w, 1682s, 1631m, 1450m, 1423w, 1376m, 1356w, 1262m, 1229w, 1162m, 1087s, 1048m, 1008m, 964w, 939m, 927m, 909m, 869w, 846m, 808m. ¹H-NMR (300 MHz, CDCl₃): see *Table* 7; additionally, 9.67 (br. s, NH); 2.37 (s, AcS); 1.77 – 1.72 (m, 2 H); 1.69 – 1.50 (m, 6 H); 1.45 – 1.32 (m, 2 H). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 8; additionally, 194.74 (s, SC=O); 115.45 (s, (CH₂)₂C); 37.00, 34.80 (2t); 30.71 (q, MeC=O); 25.00, 24.03, 23.67 (3t). HR-MALDI-MS: 405.1080 ([M + Na] $^+$, C₁₇H₂₂N₂NaO₆S $^+$; calc. 405.1096). Table 7. Selected ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the Uridines **20** and **22–25** in CDCl₃ | | 20 | 22 | 23 | 24 ^a) | 25 | |---------------|------|-------------|-------|--------------------------|------| | H-C(5) | 5.76 | 5.92 | 5.81 | 5.87 | 5.78 | | H-C(6) | 7.25 | 8.18 | 8.34 | 7.90 | 7.48 | | H-C(1') | 5.59 | 5.82 | 5.94 | 5.97 | 5.78 | | H-C(2') | 5.02 | 4.14 - 4.24 | 3.88 | 4.20 | 4.00 | | H-C(3') | 4.73 | 4.14 - 4.24 | 3.74 | 4.02 | 3.54 | | H-C(4') | 4.21 | 4.29 | 4.13 | 4.16 | 4.18 | | $H_a-C(5')$ | 3.29 | 3.94 | 4.09 | 3.92 | 3.31 | | $H_b - C(5')$ | 3.29 | 3.78 | 3.78 | 3.78 | 3.27 | | J(5,6) | 8.1 | 7.4 | 7.4 | 8.1 | 8.1 | | J(5,NH) | 2.0 | _ | _ | b) | b) | | J(1',2') | 2.0 | 2.8 | < 1.0 | 3.5 | 3.0 | | J(2',3') | 6.5 | c) | 4.7 | 5.2 | 5.1 | | J(3',4') | 4.0 | 2.4 | 9.2 | 6.3 | 6.5 | | J(4',5'a) | 6.5 | 2.2 | 1.7 | 2.9 | 5.1 | | J(4',5'b) | 6.5 | 2.1 | 1.4 | 4.0 | 6.5 | | J(5'a,5'b) | b) | 11.8 | 11.8 | 12.9 | 14.2 | ^a) In D₂O. ^b) Not assigned. 1-[5-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-β-D-<math>ribofuranosyl]-4-methoxypyrimidin-2(1H)-one (22). A soln. of 21 [12] (3.522 g, 13.64 mmol) and 1H-imidazole (1.207 g, 17.73 mmol) in DMF (38 ml) at 0° was treated with TDSCl (2.68 ml, 13.64 mmol), stirred at 25° for 18 h, treated with 1H-imidazole 81.27 31.05 22 25 24a) C(2)150.10 157.40 155.61 151.07 150.15 C(4)163.66 172.15 171.83 165.84 163.60 C(5)95.66 94.99 102.68 102.81 101.97 C(6)142.92 142.58 142.89 141.34 140.28 C(1')95.36 92.82 88.83 87.67 89.72 77.11 81.41^b) 80.53 C(2')84.13 80.92 C(3')83.05 71.40 75.33 76.81 80.23 86.89 62.62 81.78^b) 60.53 82.11 60.33 Table 8. Selected ¹³C-NMR Chemical Shifts [ppm] of the Uridines 20 and 22-25 in CDCl₃ 86.57 31.46 C(4') C(5') (281 mg, 4.13 mmol), cooled to 0° , treated with TDSCl (536 µl, 2.73 mmol), and stirred at 25° for 30 h. After evaporation, a soln. of the residue in AcOEt was washed three times with sat. aq. NH₄Cl soln. and once with sat. aq. NaHCO₃ soln. The org. layer was dried (Na₂SO₄) and evaporated to give crude **22** (5.069 g, *ca.* 93%), suitable for the next step without further purification. Colourless paste. R_f (AcOEt/MeOH 9:1) 0.67. ¹H-NMR (300 MHz, CDCl₃): see *Table* 7; additionally, 4.75 (br. *s*, exchange with D₂O, OH); 3.95 (*s*, MeO); 3.74 (br. *s*, exchange with D₂O, OH); 1.58 (*sept.*, J = 6.8, Me₂CH); 0.84 (d, J = 6.8, Me₂CH); 0.81 (s, Me₂CSi); 0.11 (s, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 8; additionally, 54.79 (q, MeO); 34.10 (d, Me₂CH); 25.49 (s, Me₂CSi); 20.47, 20.35 (q, Me₂CSi); 18.66, 18.62 (q, Me₂CH); -3.19, -3.29 (q, Me₂Si). HR-MALDI-MS: 423.1919 ([M + Na]⁺, C₁₈H₃₂N₂NaO₆Si⁺; calc. 423.1927). 1-[5-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2,3-di-O-methyl- β -D-ribofuranosyl]-4-methoxypyrimidin-2(IH)-one (**23**). A soln. of crude **22** (5.019 g, 12.53 mmol) in acetone (63 ml) was treated with Ag₂O (8.710 g, 3759 mmol) and MeI (3.12 ml, 50.12 mmol). and stirred at 25° for 72 h. Filtration through *Celite* din-2(TH)-one (23). A soln. of crude 22 (5.019 g, 12.53 mmol) in acetone (63 ml) was treated with Ag₂O (8.710 g, 37.59 mmol) and MeI (3.12 ml, 50.12 mmol), and stirred at 25° for 72 h. Filtration through *Celite* and evaporation gave crude 23 (5.368 g, quant.), suitable for the next step without further purification. Colourless paste. $R_{\rm f}$ (AcOEt) 0.63. ¹H-NMR (300 MHz, CDCl₃): see *Table* 7; additionally, 3.93 (s, MeO−C(4)); 3.70, 3.34 (2s, 2 MeO); 1.63 (sept., J=6.8, Me₂CH); 0.87 (d, J=6.8, Me_2 CH); 0.86 (s, Me₂CSi); 0.14 (s, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 8; additionally, 58.67, 58.14 (2q, 2 MeO); 54.48 (q, MeO−C(4)); 34.11 (d, Me₂CH); 25.63 (s, Me₂CSi); 20.48, 20.43 (2q, Me_2 CSi); 18.65 (q, Me_2 CH); −3.12, −3.35 (2q, Me₂Si). HR-MALDI-MS: 429.2419 ([M+H]+, C₂₀H₃₇N₂O₆Si+; calc. 429.2421). 2',3'-Di-O-methyluridine (**24**) [12]. A soln. of crude **23** (5.312 g, 12.39 mmol) in MeOH/H₂O 1:5 (68 ml) was treated with *Amberlite* IR-120 (H⁺ form, 20 ml), stirred at 25° for 19 h, and filtered. Evaporation, FC (AcOEt/MeOH 9:1), and recrystallization in EtOH gave **24** (1.477 g, 40% from **21**). White solid. R_f (AcOEt/MeOH 9:1) 0.43. M.p. 170–172° ([12]: 176–177°). [α] $_2^{55}$ = +66.4 (c = 1.3, MeOH) ([12]: [α] $_2^{55}$ = +74.7 (c = 1.3, MeOH)). 1 H-NMR (300 MHz, D₂O): see *Table* 7; additionally, 3.51, 3.44 (2s, 2 MeO). 1 3C-NMR (75 MHz, D₂O): see *Table* 8; additionally, 57.85, 57.51 (2q, 2 MeO). 5'-S-Acetyl-2',3'-di-O-methyl-5'-thiouridine (25). A soln. of 24 (1.351 g, 4.96 mmol) in pyridine (25 ml) at 0° was treated with TsCl (1.418 g, 7.44 mmol), stirred at 25° for 4 h, treated with two additional portions of TsCl (2 × 709 mg, 3.72 mmol), added over 3 h, and stirred at 25° for 16 h. The mixture was diluted with CH₂Cl₂, washed with 0.1M H₂SO₄, sat. aq. NaHCO₃ soln., and brine. The combined org. layers were dried (Na₂SO₄) and evaporated. A soln. of the residue in DMF (12.4 ml) was treated with AcSK (1.416 g, 12.4 mmol), heated to 75° for 2 h, and evaporated. A soln. of the residue in AcOEt was washed three times with sat. aq. NH₄Cl soln. The combined org. layers were dried (Na₂SO₄) and evaporated. FC (cyclohexane/AcOEt 4:1 \rightarrow AcOEt \rightarrow AcOEt/MeOH 9:1) gave 25 (763 mg, 47%). Slightly red solid. R_f (cyclohexane/AcOEt 1:4) 0.24. M.p. 103°. $[a]_{15}^{25} = +82.6$ (c = 0.8, CHCl₃). UV (CHCl₃): 262 (10010). IR (ATR): 3145w, 3004w, 2917w, 2826w, 1770w, 1676s, 1627m, 1461w, 1383m, 1356w, 1319w, 1273m, 1258s, 1217m, 1192w, 1125s, 1106m, 1061s, 1010m, 963s, 870m, 819m. ¹H-NMR (300 MHz, CDCl₃): see *Table* 7; additionally, 9.76 (br. s, NH); 3.53, 3.41 (2s, 2 MeO); 2.38 (s, AcS). ^a) In D₂O. ^b) Assignments may be interchanged. ¹³C-NMR (75 MHz, CDCl₃): see *Table 8*; additionally, 194.63 (s, MeC=O); 58.72, 58.36 (2q, 2 MeO); 30.69 (q, MeC=O). HR-MALDI-MS: 353.0778 ($[M + Na]^+$, $C_{13}H_{18}N_2NaO_6S^+$; calc. 353.0783). 2',3'-O-Cyclohexylidene-5'-O-[dimethyl(1,1,2-trimethylpropyl)silyl]adenosine-8-methyl- $(8^l \rightarrow 5'-S)$ -2',3'-O-cyclohexylidene-5'-thiouridine (26). A soln. of 20 (607 mg, 1.59 mmol) and 13 (1.019 g, 1.59 mmol) in dry
degassed MeOH (3.2 ml) at 0° was treated with a freshly prepared 1.99 m soln. of MeONa in MeOH (3.2 ml, 6.36 mmol), and stirred at 25° for 17 h. The mixture was cooled to 0°, diluted with sat. aq. NH₄Cl soln. and H₂O, and extracted four times with AcOEt. The combined org. layers were dried (Na₂SO₄) and evaporated. FC (CH₂Cl₂/MeOH 95:5) gave **26** (1.219 g, 91%). White solid. R_1 $(CH_2Cl_2/MeOH 95:5) 0.28. M.p. 170^{\circ} (sintering from 140^{\circ}). [\alpha]_D^{25} = -79.0 (c = 1.0, CHCl_3). UV$ (CHCl₃): 263 (23060). IR (ATR): 3484w (sh.), 3330w (br.), 3188w, 2935m, 2863w, 1692s, 1634m, 1603m, 1577w, 1461w, 1446m, 1368m, 1330w, 1251m, 1231w, 1162w, 1144w, 1087s, 1051m, 968w, 938m, 927m, 909m, 874w, 828s. ¹H-NMR (300 MHz, CDCl₃; assignments based on a DQF-COSY and a HSQC spectrum): see Table 9; additionally, 7.28 (d, J = 8.1, H - C(6/I)); 5.73 (d, J = 8.1, H - C(5/I)); 1.85 – 1.81 $(m, 2 \text{ H}); 1.74 - 1.35 \ (m, 18 \text{ H}); 1.59 \ (sept., J = 6.9, \text{Me}_2\text{CH}); 0.82 \ (d, J = 6.9, \text{Me}_2\text{CH}); 0.77, 0.76 \ (2s, 1.74 - 1.74); 0.74 1.74$ Me_2CSi); -0.03, -0.06 (2s, Me_2Si). ¹³C-NMR (75 MHz, $CDCl_3$; assignments based on a DQF-COSY and a HSQC spectrum): see Table 10; additionally, 115.25, 114.45 (2s, 2 (CH₂)₂C); 37.18, 37.07, 35.07, 34.83 (4t); 34.31 (d, Me₂CH); 25.38 (s, Me₂CSi); 25.30, 25.11, 24.27, 24.16, 23.90, 23.77 (6t); 20.51 (q, Me₂CSi); 18.70 (q, Me_2CH) ; -3.19 (q, Me_2Si) . HR-MALDI-MS: 842.3939 $([M + H]^+, C_{40}H_{60}N_7O_9SSi^+; calc.$ 842.3942). 2′,3′-O-Cyclohexylideneadenosine-8-methyl-(8¹ → 5′-S)-2′,3′-O-cyclohexylidene-5′-thiouridine (7). In a polyethylene flask, a soln. of **26** (533 mg, 0.63 mmol) in dry THF (4 ml) at 25° was treated with a soln. of Et₃N · 3 HF (1.04 ml, 19 mmol) and stirred at 25° for 49 h. The mixture was cooled to 0°, treated with 1M aq. NaOH soln. until the pH reached *ca.* 9, and extracted once with CH₂Cl₂/MeOH 9 : 1 and four times with CH₂Cl₂. The combined org. layers were dried (Na₂SO₄) and evaporated. FC (CH₂Cl₂/MeOH 9 : 1) gave **7** (392 mg, 88%). White solid. R_t (CH₂Cl₂/MeOH 9 : 1) 0.45. M.p. 165 − 175°. [α] $_2^{15}$ 5 − 74.5 (c = 0.74, CHCl₃/MeOH 7:1). UV (CHCl₃/MeOH 7:1): 264 (25010). IR (ATR): 3331w, 3194w, 2933m, 2859w, 1690s, 1635s, 1603m, 1579m, 1447m, 1369m, 1332m, 1262m, 1230m, 1162m, 1145w, 1089s, 1053s, 967m, 936s, 926s, 909m, 847m. ¹H-NMR (400 MHz, (D₆)DMSO; assignments based on a DQF-COSY and a HSQC spectrum): see *Table* 9; additionally, 7.69 (d, d = 8.1, H−C(6/I)); 5.63 (dd, d = 8.1, 2.1, H−C(5/I)); 5.26 (dd, d = 6.5, 5.1, HO−C(5′/II); 1.81 − 1.78 (m, 2 H); 1.62 − 1.29 (m, 18 H). ¹³C-NMR (100 MHz, (D₆)DMSO; assignments based on a DQF-COSY and a HSQC spectrum): see *Table* 10; additionally, 113.90, 113.76 (2s, 2 (CH₂)₂C); 36.68, 36.42, 34.43, 34.19 (4t); 24.48, 24.43, 23.67, 23.56, 23.25, 23.16 (6t). HR-MALDI-MS: 700.2760 ([M + H] $^+$, C₃₂H₄₂N₇O₉S $^+$; calc. 700.2765). 5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-di-O-methyladenosine-8-methyl-($8^1 \rightarrow 5'$ -S)-2',3'-di-O-methyl-5'-thiouridine (**27**). A soln. of **18** (1.152 g, 1.95 mmol) and **25** (645 mg, 1.95 mmol) in degassed MeOH (6 ml) at 0° was treated with a freshly prepared 1.95m soln. of MeONa in MeOH (4.0 ml, 7.8 mmol) and stirred at 25° for 18 h. The mixture was cooled to 0°, treated with sat. aq. NH₄Cl soln. and H₂O, and extracted four times with AcOEt. The combined org. layers were dried (Na₂SO₄) and evaporated. FC (CH₂Cl₂/MeOH 9:1) gave **27** (1.242 g, 86%). White solid. $R_{\rm f}$ (CH₂Cl₂/MeOH 9:1) 0.39. M.p. 110–118°. [α] $_{\rm f}^{\rm D5} = -11.6$ (c = 0.7, CHCl₃). UV (CHCl₃): 264 (27090). IR (ATR): 3328w, 3194w, 2933m, 2830w, 1690s, 1635s, 1603m, 1576w, 1442m, 1368m, 1329w, 1298w, 1257m, 1207w, 1128s, 1067s, 1018m, 990m, 875w, 828s. ¹H-NMR (400 MHz, CDCl₃; assignments based on a DQF-COSY and a HSQC spectrum): see *Table 9*; additionally, 7.56 (d, J = 8.1, H – C(δ /I)); 5.74 (d, J = 8.1, H – C(δ /I)); 3.52, 3.48, 3.42, 3.33 (4s, 4 MeO); 1.56 (sept., J = 6.9, Me₂CH); 0.83 (d, J = 6.9, Me₂CH); 0.78 (s, Me₂CSi); 0.04, 0.03 (2s, Me₂Si). ¹³C-NMR (100 MHz, CDCl₃; assignments based on a DQF-COSY and a HSQC spectrum): see *Table 10*; additionally, 58.58, 58.52, 58.07, 58.01 (4q, 4 MeO); 34.23 (d, Me₂CH); 25.27 (s, Me₂CSi); 20.36, 20.34 (2q, Me₂CSi); 18.60 (q, Me₂CH); -3.39, -3.40 (2q, Me₂Si). HR-MALDI-MS: 738.3298 ([M + H] $^+$, C₃₂H₃₂N₇O₉SSi $^+$; calc. 738.3316). 2',3'-Di-O-methyladenosine-8-methyl- $(8^i \rightarrow 5'\text{-S})$ -2',3'-di-O-methyl-5'-thiouridine (8). In a polyethylene flask, a soln. of 27 (683 mg, 0.93 mmol) in THF (6.2 ml) at 25° was treated with a soln. of (HF)₃· Et₃N (1.52 ml, 27.8 mmol) and stirred at 25° for 48 h. The mixture was diluted with THF, treated with 1M aq. NaOH soln. until the pH reached *ca*. 10, and extracted four times with CH₂Cl₂/MeOH 9:1. The combined org. layers were evaporated. FC (CH₂Cl₂/MeOH 95:5 \rightarrow 90:10) gave 8 (540 mg, 98%). White Table 9. Selected ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the A*[s]U Dinucleotides: **26** and **27** in CDCl₃, and **7–9** in $(D_6)DMSO$ Solution^a) | 60 mm 101 mm Uridine unit (I) H-N(3/I) 11.78 11.59 H-C(1'/I) 5.57 5.87 H-C(2'/I) 4.99 3.90 H-C(3'/I) 4.73 3.67 H-C(4'/I) 4.22-4.28 4.23-4.28 | 11.41
5.78
4.97
4.60
3 4.08
2.92
2.92
2.4 | 11.41
5.83
4.07 – 4.09
3.73
4.07 – 4.09
3.00
2.93 | 37 mm 11.34 5.78 4.12 3.90 3.97 – 4.02 2.96 | |--|--|---|--| | H-N(3/I) 11.78 11.59
H-C(1'/I) 5.57 5.87
H-C(2'/I) 4.99 3.90
H-C(3'/I) 4.73 3.67
H-C(4'/I) 4.22-4.28 4.23-4.28 | 5.78
4.97
4.60
3 4.08
2.92
2.92 | 5.83
4.07 – 4.09
3.73
4.07 – 4.09
3.00 | 5.78
4.12
3.90
3.97 – 4.02 | | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | 5.78
4.97
4.60
3 4.08
2.92
2.92 | 5.83
4.07 – 4.09
3.73
4.07 – 4.09
3.00 | 5.78
4.12
3.90
3.97 – 4.02 | | H-C(2/I) 4.99 3.90
H-C(3/I) 4.73 3.67
H-C(4/I) 4.22-4.28 4.23-4.28 | 4.97
4.60
3 4.08
2.92
2.92 | 4.07 – 4.09
3.73
4.07 – 4.09
3.00 | 4.12
3.90
3.97 – 4.02 | | H-C(3'/I) 4.73 3.67
H-C(4'/I) 4.22-4.28 4.23-4.28 | 4.60
4.08
2.92
2.92 | 3.73
4.07 – 4.09
3.00 | 3.90
3.97 – 4.02 | | H-C(4'/I) 4.22-4.28 4.23-4.28 | 3 4.08
2.92
2.92 | 4.07 – 4.09
3.00 | 3.97 - 4.02 | | ` ' | 2.92
2.92 | 3.00 | | | | 2.92 | | 2.96 | | $H_a - C(5'/I)$ 3.00 3.03 | | 2.93 | | | $H_b - C(5'/I)$ 2.95 2.96 | 2.4 | | 2.87 | | J(1',2'/I) 1.8 3.5 | ∠.¬ | 5.4 | 5.5 | | J(2',3'/I) 6.5 5.3 | 6.5 | 4.7 | 5.6 | | J(3',4'/I) 4.0 6.2 | 4.0 | 4.7 | 4.7 | | J(4',5'a/I) 6.5 5.2 | 6.7 | 6.0 | 5.2 | | J(4',5'b/I) 5.6 4.8 | 6.7 | 6.3 | 6.7 | | J(5'a,5'b/I) 13.3 14.4 | b) | 14.1 | 13.9 | | Adenosine unit (II) | | | | | $H_2N-C(6/II)$ 6.99 6.51 | 7.34 | 7.64 | 7.37 | | H-C(2/II) 8.32 8.31 | 8.12 | 8.18 | 8.08 | | $CH_a - C(8/II)$ 4.18 4.26 | 4.16 | 4.13 | 4.14 | | $CH_b - C(8/II)$ 4.10 4.11 | 4.08 | 4.13 | 4.03 | | H-C(1'/II) 6.32 6.05 | 6.19 | 6.01 | 5.92 | | H-C(2'/II) 5.93 5.45 | 5.61 | 4.90 | 4.81 | | H-C(3'/II) 5.09 4.23-4.28 | 3 5.02 | 4.16 | 4.17 | | H-C(4'/II) 4.22-4.28 4.14 | 4.17 | 4.12 - 4.14 | 3.97 - 4.02 | | $H_a - C(5'/II)$ 3.64 3.93 | 3.55 | 3.69 | 3.69 | | $H_b - C(5'/II)$ 3.52 3.68 | 3.47 | 3.56 | 3.55 | | $J(H_a, H_b/II)$ 14.6 14.4 | 14.4 | b) | 14.3 | | J(1',2'/II) 1.9 5.8 | 3.2 | 7.1 | 7.2 | | J(2',3'/II) 6.2 5.5 | 6.2 | 5.1 | 5.3 | | J(3',4'/II) 2.9 3.6 | 2.9 | 2.3 | 2.0 | | J(4',5'a/II) 6.9 6.8 | 4.8 | 3.8 | 3.1 | | J(4',5'b/II) 6.4 4.5 | 4.8 | 3.5 | 3.1 | | J(5'a,5'b/II) 10.5 11.0 | 11.7 | 12.2 | 12.4 | ^a) Assignments based on a DQF-COSY and a HSQC spectrum. ^b) Not assigned. solid. $R_{\rm f}$ (CH₂Cl₂/MeOH 9:1) 0.36. M.p. 137 – 148°. [α]_D²⁵ = - 56.2 (c = 0.9, DMSO). UV (MeOH): 264 (24220). IR (ATR): 3386w, 3327w, 3193m, 3063w, 2988w, 2927w, 2829w, 1704s, 1693s, 1655s, 1633s, 1575w, 1446m, 1372m, 1333m, 1306w, 1275s, 1261s, 1221w, 1200w, 1127m, 1092s, 1065s, 1019m, 985m, 918w, 883w, 859w, 828w. ¹H-NMR (400 MHz, (D₆)DMSO; assignments based on a DQF-COSY and a HSQC spectrum): see *Table* 9; additionally, 7.65 (d, J = 8.1, 2.1, H-C(5/I)); 3.42, 3.30, 3.27, 3.26 (4s, 4 MeO). ¹³C-NMR (100 MHz, (D₆)DMSO; assignments based on a DQF-COSY and a HSQC spectrum): see *Table* 10; additionally, 57.56, 57.40, 57.26, 57.11 (4q, 4 MeO). HR-MALDI-MS: 596.2133 ([M + H] $^+$, C₂₄H₃₄N₇O₉S $^+$; calc. 596.2139). Adenosine-8-methyl-($8^{l} \rightarrow 5^{r}$ -S)-5'-thiouridine (9). A suspension of 28 [1] (426 mg, 0.69 mmol) in H₂O (1.4 ml) at 0° was treated with TFA (5.6 ml), vigorously stirred at 25° for 45 min, and evaporated at 25°. A soln. of the residue in H₂O was treated with *Amberlite* IRA-68 (free base form) until the pH Table 10. Selected ¹³C-NMR Chemical Shifts [ppm] of the A*[s]U Dinucleotides: **26** and **27** in $CDCl_3$, and **7–9** in $(D_6)DMSO$ Solution^a) | | 26 | 27 | 7 | 8 | 9 | |--------------------|--------|----------------------|--------|--------|--------| | Uridine unit (I) | | | | | | | C(2/I) | 150.97 | 151.12 | 150.24 | 150.43 | 150.70 | | C(4/I) | 163.75 | 164.09 | 163.12 | 162.88 | 162.97 | | C(5/I) | 103.14 | 102.99 | 102.03 | 102.31 | 102.17 | | C(6/I) | 142.72 | 140.39 | 142.64 | 140.45 | 140.94 | | C(1'/I) | 95.63 | 89.22 | 91.74 | 86.63 | 88.25 | | C(2'/I) | 84.13 | 81.42 | 82.97 | 80.67 | 72.49 | | C(3'/I) | 83.35 | 79.76 | 82.29 | 79.29 | 72.12 | | C(4'/I) | 90.31 | 81.00 | 85.22 | 79.84 | 82.73 | | C(5'/I) | 34.78 | 33.67 | 33.41 | 33.36 | 35.51 | | Adenosine unit (II | | | | |
 | C(2/II) | 152.58 | 152.66 | 152.30 | 151.16 | 151.85 | | C(4/II) | 150.97 | 150.77 | 149.77 | 149.80 | 149.66 | | C(5/II) | 118.40 | 118.82 | 117.94 | 118.09 | 118.24 | | C(6/II) | 155.41 | 155.46 | 155.66 | 154.96 | 155.79 | | C(8/II) | 149.37 | 150.04 | 148.13 | 148.95 | 148.48 | | $CH_2-C(8/II)$ | 28.99 | 28.71 | 27.73 | 27.93 | 27.91 | | C(1'/II) | 88.14 | 87.53 | 89.43 | 86.72 | 88.70 | | C(2'/II) | 82.51 | 78.82 ^b) | 81.81 | 79.95 | 72.35 | | C(3'/II) | 82.00 | 78.77 ^b) | 80.95 | 78.17 | 70.88 | | C(4'/II) | 87.10 | 82.84 | 86.35 | 83.89 | 86.79 | | C(5'/II) | 63.09 | 62.33 | 61.51 | 61.86 | 62.15 | | | | | | | | a) Assignment based on a DQF-COSY and a HSQC spectrum. b) Assignment may be interchanged. reached 7. Filtration (washing with H_2O and MeOH), evaporation, and FC (AcOEt/MeOH/ H_2O 7:2:0.5 \rightarrow 7:2:1) gave 9 (364 mg, 98%). White solid. R_f (AcOEt/MeOH/ H_2O 7:2:1) 0.41. M.p. 185° (dec.). [$a]_D^{SS} = -40.3$ (c = 0.5, DMSO). UV (MeOH): 265 (19280). IR (ATR): 3327m, 3195m, 2931w, 1671s, 1645s, 1577m, 1449m, 1378m, 1334m, 1309w, 1261m, 1201m, 1123s, 1080s, 1044s, 987m, 913w, 886w. ¹H-NMR (400 MHz, (D₆)DMSO; assignments based on a DQF-COSY and a HSQC spectrum): see Table 9; additionally, 7.64 (d, J = 8.1, H-C(6/I)); 5.93 (dd, J = 9.4, 3.1, HO-C(5'/II)); 5.62 (d, J = 8.1, H-C(5/I)); 5.46 (d, J = 5.7, HO-C(2'/II)); 5.33 (d, J = 7.6, HO-C(2'/II)); 5.30 (d, J = 4.3, HO-C(3'/II)); 5.23 (d, J = 5.5, HO-C(3'/II)). ¹³C-NMR (100 MHz, (D₆)DMSO; assignments based on a DQF-COSY and a HSQC spectrum): see Table 10. HR-MALDI-MS: 540.1502 ([M + H] $^+$, C₂₀H₂₅N₇O₉S $^+$; calc. 540.1513). CD Spectra of the Gels. The CD measurements were performed according to [2], except for the gel of 8 in decan-1-ol: 2.0-nm band width, 1-s response, low sensitivity, 0.1 nm data pitch, and 200-nm/min scanning speed. ## REFERENCES - [1] A. Ritter, D. Egli, B. Bernet, A. Vasella, *Helv. Chim. Acta* 2008, 91, 673. - [2] N. Bogliotti, A. Ritter, S. Hebbe, A. Vasella, Helv. Chim. Acta 2008, 91, 2181. - [3] N. Bogliotti, A. Vasella, *Helv. Chim. Acta* **2009**, *92*, 1167. - [4] M. Thiel, K. Stach, W. Schaumann, K. Dietmann, US Pat. 3,412,082, 1968. - [5] H. Hayakawa, K. Haraguchi, H. Tanaka, T. Miyasaka, Chem. Pharm. Bull. 1987, 35, 72. - [6] W. Czechtizky, A. Vasella, Helv. Chim. Acta 2001, 84, 594. - [7] C. D. Anderson, L. Goodman, B. R. Baker, J. Am. Chem. Soc. 1959, 81, 3967. - [8] J. B. Gin, C. A. Dekker, Biochemistry 1968, 7, 1413. - [9] Z. Kazimierczuk, E. Darżynkiewicz, D. Shugar, Biochemistry 1976, 15, 2735. - [10] K. Yamauchi, M. Kinoshita, J. Chem. Soc., Perkin Trans. 1 1978, 762; K. Yamauchi, T. Nakagima, M. Kinoshita, J. Chem. Soc., Perkin Trans. 1 1980, 2787; K. Yamauchi, T. Nakagima, M. Kinoshita, J. Org. Chem. 1980, 45, 3865; K. Yamauchi, K. Hattori, M. Kinoshita, J. Chem. Soc., Perkin Trans. 1 1985, 1327. - [11] S. Chládek, J. Smrt, Collect. Czech. Chem. Commun. 1963, 28, 1301. - [12] M. J. Robins, S. R. Naik, Biochemistry 1971, 10, 3591. - [13] M. Prashad, K. Prasad, O. Repic, Nucleosides, Nucleotides Nucleic Acids 1994, 13, 945. - [14] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2006, 89, 2861. - [15] H. Gunji, A. Vasella, Helv. Chim. Acta 2000, 83, 1331. - [16] D. B. Davies, Prog. Nucl. Magn. Reson. Spectrosc. 1978, 12, 135. - [17] H. S. Gutowsky, A. Saika, J. Chem. Phys. 1953, 21, 1688. - [18] M. Chastrette, M. Rajzmann, M. Chanon, K. F. Purcell, J. Am. Chem. Soc. 1985, 107, 1. - [19] E. Snip, K. Koumoto, S. Shinkai, Tetrahedron 2002, 58, 8863. - [20] I. Yoshikawa, S. Yanagi, Y. Yamaji, K. Araki, Tetrahedron 2007, 63, 7474. - [21] R. Luboradzki, O. Gronwald, A. Ikeda, S. Shinkai, Chem. Lett. 2000, 1148. - [22] G. John, G. Zhu, J. Li, J. S. Dordick, Angew. Chem., Int. Ed. 2006, 45, 4772. - [23] L. A. Estroff, A. D. Hamilton, in 'Molecular Gels: Materials with Self-Assembled Fibrillar Networks', Eds. R. G. Weiss, P. Terech, Springer-Verlag, Dordrecht, 2006, pp. 721–742. Received February 8, 2010