Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Four new cytotoxic oligosaccharidic derivatives of 12-oleanene from *Lysimachia heterogenea* Klatt

Xin-an Huang^{a,*}, Yong-ju Liang^b, Xiao-ling Cai^c, Xiao-quan Feng^a, Chuan-hai Zhang^d, Li-wu Fu^b, Wen-di Deng^a

^a Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou 510405, China

^b State Key Laboratory for Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China

^c School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China

^d Department of Chemistry and Biology, West Anhui University, Lu-an 237012, China

ARTICLE INFO

Article history: Received 29 June 2009 Revised 13 September 2009 Accepted 13 October 2009

Keywords: Lysimachia heterogenea Klatt Cytotoxicity Oligosaccharidic derivatives of 12-oleanene-3,16,23,28-tetrol

ABSTRACT

Cytotoxicity-guided phytochemical analysis on the extract of *Lysimachia heterogenea* Klatt led to the isolation of 3β , 16β -12-oleanene-3,16,23,28-tetrol (1) and its four new oligosaccharidic derivatives heterogenosides A, B, C, and D (**2–5**). Their structural elucidation was mainly based on NMR and mass spectral data. The time course experimental results indicated that unlike the likely lysis activity of heterogenosides B–D, heterogenoside A showed a significantly time-dependent cytotoxicity.

© 2009 Elsevier Ltd. All rights reserved.

The genus Lysimachia, traditionally classified in the family Primulaceae, was newly assigned into the Myrsinaceae on basis of molecular phylogenetic analysis.¹ The genus comprises more than 193 species, over 90% of which are endemic to China.² Over thirty new triterpenoid sapponins had been isolated from this genus in the last five years.³ Lysimachia heterogenea Klatt, an endemic species, is a perennial herb, which was used as a folk medicine in subduing swelling and detoxicating in China.⁴ As a part of the continuous investigation on the chemical components in this genus,⁵ the human lung cancer (A549) cell line was used in cytotoxicity-guided phytochemical analysis, by which the effective fraction LH-1 of L. heterogene was found. The further investigation on the antitumor components of the fraction LH-1 led to the isolation of 36,166-12-oleanene-3,16,23,28-tetrol (1) and its four new oligosaccharidic derivatives heterogenosides A-D (2-5). In this Letter, the structure and the antitumor activity of these four new compounds was reported.

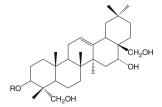
The dried *L. heterogenea* (1.70 kg) were powered, then extracted with 95% EtOH for 24 h at room temperature for three times to give the crude extract 180.0 g. The crude extract was sequentially partitioned with petroleum ether, EtOAc, and *n*-BuOH, respectively. Among them the *n*-BuOH fraction (100.2 g) exhibited cytotoxicity with IC_{50} value of 4.3 µg/mL, then it was chromatographed on a

* Corresponding author. E-mail address: xahuang@163.net (X. Huang). D101 resin column using 20% and 90% EtOH solvents as eluant, respectively. The latter eluate (90.6 g), with IC_{50} value of 4.0 µg/mL, was further chromatographed on a silica gel column to obtain fractions LH-1 and LH-2 using 20% and 70% MeOH/CHCl₃ solvents as eluant, respectively. Fractions LH-1 and LH-2 presented the cytotoxicity with the IC_{50} values of 2.5 and 45.0 µg/mL, respectively. Therefore, Fraction LH-1 was served as the effective antitumor fraction of *L. heterogenea*, and it was further purified by silica gel chromatography to yield 12-oleanene-3,16,23,28-tetrol (MeOH-CHCl₃, 5:95, v/v, 8 mg, 1), heterogenoside A (MeOH-CHCl₃, 10:90, v/v, 15 mg, 2), heterogenoside B (MeOH-CHCl₃, 15:85, v/v, 20 mg, 3), heterogenoside C (MeOH-CHCl₃, 22:78, v/v, 13 g, 5).

Heterogenoside A (**2**) was obtained as white powder (MeOH). The HRESIMS implied that **2** had the molecular $C_{41}H_{68}O_{13}$. The IR spectrum showed the presence of hydroxyl groups due to absorption bands at 3390, 1077, and 1043 cm⁻¹. The ¹H NMR spectrum displayed six quaternary methyl signals at δ 0.94, 0.99, 1.00, 1.02, 1.10, and 1.78, as well as an olefinic proton signal at δ 5.40 (Table 1). The HMBC correlations from H-24 to C-3, C-4, C-5, and C-23; H-25 to C-10; H-26 to C-7, C-8, C-9, and C-14; H-27 to C-14; H-29 to C-19, C-20, C-21, and C-30; H-30 to C-19, C-20, C-21, and C-29 established the aglycon to be 3 β ,16 β -12-oleanene-3,16,23,28-tetrol. The sugar residues of **2** were determined to be arabinose and glucose after hydrolysis by co-TLC with authentic sugars. The coupling constant analysis

Table 1

The main ¹H NMR data for compounds **2–5** (500 MHz in pyridine- d_5)


No.	2	3	4	5	
1	1.09 ^a	1.12 ^a	1.04 ^a	1.11 ^a	
	1.64 (m)	1.64 (m)	1.59 ^a	1.58 ^a	
2	2.02 (m)	2.02 (m)	1.95ª	1.95ª	
	2.23 ^a	2.22 ^a	2.09 (m)	2.09 (m)	
3	4.24 ^a	4.25 ^a	4.11 (m)	4.10 (m)	
5	1.68 ^a	1.69 ^a	1.60 ^a	1.60 ^a	
6	1.38 ^a	1.38 ^a	1.35 ^a	1.35ª	
	1.69 ^a	1.70 ^a	1.69 ^a	1.69 ^a	
7	1.32 ^a	1.35 ^a	1.30 ^a	1.31ª	
	1.78 ^a	1.78 ^a	1.72 ^a	1.74 ^a	
9	1.89 (br s)	1.91 (br s)	1.86 (m)	1.88 (br s)	
11	1.95 (m)	1.95 (m)	1.90 (m)	1.92 ^a	
12	5.39 (br s)	5.39 (br s)	5.39 (br s)	5.38 (br s)	
15	1.58 (m)	1.59 (m)	1.58 ^a	1.58 ^a	
	2.19 ^a	2.20 ^a	2.19 (m)	2.18 (m)	
16	4.60 ^a	4.61 ^a	4.59 ^a	4.59 ^a	
18	2.49 (dd, 15.0, 1.5 Hz)	2.49 (dd, 15.0, 1.5 Hz)	2.49 (dd, 15.0, 1.5 Hz)	2.48 (dd, 15.0, 1.5 Hz)	
19	1.32 ^a	1.32 ^a	1.31 ^a	1.30 ^a	
	2.72 (t, 15.0 Hz)	2.72 (t, 15 .0 Hz)	2.71 (t, 15 .0 Hz)	2.70 (t, 15 .0 Hz)	
21	1.43 (m)	1.43 (m)	1.42 (m)	1.42 (m)	
	2.38 (td, 12.5, 4.5 Hz)	2.38 (td, 12.5, 4.5 Hz)	2.38 (td, 12.5, 4.5 Hz)	2.38 (td, 12.5, 4.5 Hz)	
22	1.38 ^a	1.38 ^a	1.35 ^a	1.35ª	
	2.28 ª	2.28 ª	2.25 (td, 12.5, 4.5 Hz)	2.25 (td, 12.5, 4.5 Hz)	
23	3.68ª	3.71ª	3.71 ^a	3.70 (d, 11.5 Hz)	
20	4.27 ^a	4.35 ^a	4.18 (d, 11.0 Hz)	4.28 ^a	
24	0.94 (s)	1.00 (s)	1.02 (s)	1.08 (s)	
25	1.00 (s)	1.00 (s)	0.98 (s)	0.98 (s)	
26	0.99 (s)	1.00 (s)	0.96 (s)	0.96 (s)	
27	1.77 (s)	1.77 (s)	1.74 (s)	1.75 (s)	
28	3.62 (d, 11 Hz)	3.61 (d, 11.5 Hz)	3.61 (d, 11.5 Hz)	3.61 (d, 11.5 Hz)	
20	3.74 (d, 11 Hz)	3.73 (d, 11.5 Hz)	3.73 (d, 11.5 Hz)	3.73 (d, 11.5 Hz)	
29	1.02 (s)	1.03 (s)	1.02 (s)	1.03 (s)	
30		1.12 (s)	1.12 (s)	. ,	
	1.11 (s)	1.12 (3)	1.12 (3)	1.11 (s)	
Arabinose					
1	4.92 (d, 7.5 Hz)	4.86 (d, 7.5 Hz)	5.12 (d, 8.0 Hz)	5.00 (d, 5.5 Hz)	
2	4.30 ^a	4.07 (br s)	4.54 (m)	4.57 ^a	
3	4.40 ^a	4.32 ^a	4.34 (m)	4.18 (m)	
4	4.22 ^a	4.21 ^a	4.42 ^a	4.21 ^a	
5	3.67 (dd, 10.0, 0.5 Hz)	3.63 (dd, 10.0, 0.5 Hz)	3.72 ^a	3.72 ^a	
	4.40 ^a	4.61 ^a	4.57 ^a	4.57 ^a	
Glucose (at C-	2 of arabinose)				
1	5.24 (d, 8.0 Hz)	5.01 (d, 7.5 Hz)	5.14 (d, 7.5 Hz)	5.49 (d, 7.0 Hz)	
2	4.16 (t, 7.5 Hz)	3.97 ^a	4.05 ^a	4.05 ^a	
3	4.24 ^a	4.25 ^a	4.05 4.22 (m)	4.03 4.22 (m)	
4	4.25 ^a	4.27 ^a	4.22 (III) 4.22 ^a	4.22° (11)	
5	3.91 (br s)	3.82 (br s)	3.87 ^a	3.78 ^a	
6	4.29 ^a	4.34 ^a	4.35ª	4.35 ^a	
0	4.23 4.51 (dd,11.0, 1.0 Hz)	4.47 (d,11.0 Hz)	4.47(d,11.0 Hz)	4.41 ^a	
		(4,110112)			
Glucose (at C-4	4 of arabinose)				
1			5.14 (d, 7.5 Hz)	5.00 (d, 7.5 Hz)	
2			4.05 ^a	3.94 (m)	
3			4.22 (m)	4.19 ^a	
4			4.21 ^a	4.22 ^a	
5			3.87 ^a	3.87 ^a	
6			4.35 ^a	4.35 ^a	
			4.47 (d,11.0 Hz)	4.4 1 ^a	
Xylose					
1		4.90 (d, 6.5 Hz)		4.96 (d, 6.0 Hz)	
2		3.98 ^a		4.11 (m)	
3		3.97 ^a		4.00 ^a	
4		3.98 ^a		4.00 4.17 ^a	
5		3.48 (m)		4.17 3.72 ^a	
5		4.28 ^a		4.58 ^a	
		1.20		1.50	

^a The signals were overlapped.

of the anomeric protons at δ 4.92 (d, J = 7.5 Hz) and 5.24 (d, J = 7.5 Hz) supported the α -L-configuration of arabinose and β -D-configuration of glucose. The HMBC correlations from H'-1 to C-3 and H"-1 to C'-2 were used to determine the oligosaccharide as 3-O- β -D-glucopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl moiety. On the basis of above findings, the structure of **2** was

concluded to be 3-O-[β -D-glucopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl]-3 β ,16 β -12-oleanene-3,16,23,28-tetrol (Fig. 1).

Heterogenoside B (**3**) was isolated as white powder (MeOH). The HRESIMS revealed its molecular formula to be $C_{46}H_{76}O_{17}$. The ¹³C NMR data of **3** were similar to that of **2**, except **3** contained an additional pentose unit (Table 2). The hydrolysis analysis and

- 1 R = H-
- 2 R = β -D-Glu"-(1 \rightarrow 2)- α -L-Ara'-
- 3 R = β -D-Xyl'''-(1 \rightarrow 2)- β -D-Glu''-(1 \rightarrow 2)- α -L-Ara'-
- 4 R = β -D-Glu'''-(1 \rightarrow 4)-[β -D-Glu''-(1 \rightarrow 2)]- α -L-Ara'-
- 5 $R = \beta D Xyl^{""} (1 \rightarrow 2) \beta D Glu^{"} (1 \rightarrow 4) [\beta D Glu^{"} (1 \rightarrow 2)] \alpha L Ara'$

Figure 1. The structures of compounds 1-5.

the coupling constant of the anomeric proton at δ 4.90 (d, *J* = 6.5 Hz) confirmed the pentose as β -D-xylose (Table 1). The HMBC correlations from H'-1 to C-3, H''-1 to C'-2, H'''-1 to C''-2, H''-1 to C''-2, H'''-1 to C''-2, H''-1 to C''-2, H'''-1 to C''-2, H''-2, H''

Heterogenoside C (**4**) appeared as white powder (MeOH). The HRESIMS determined its molecular formula to be $C_{47}H_{78}O_{18}$. Compared with the ¹³C NMR and HRESIMS spectrum of **2**, **4** differed in the additional hexose unit (Table 2). The analysis of the hydrolysis products and the coupling constant of the anomeric proton at δ 5.14 (d, J = 7.5 Hz) inferred the hexose sugar was β -D-glucose (Table 1). The HMBC correlations from H-3 to C'-1, H'-1 to C-3, C'-2 and C'-5, H'-2 to C'-1, C'-3 and C''-1, H''-1 to C'-2, H'''-1 to C'-4 deduced that C-3 was linked with β -D-glucopyranosyl-

Table	2

¹³ C NMR data for compounds 1 -	5 (125 MHz in pyridine-d ₅)
---	---

 $(1 \rightarrow 4)$ -[β -D-glucopyranosyl-($1 \rightarrow 2$)]- α -L-arabinopyranosyl moiety. Thus, **4** was elucidated as 3-O-{ β -D-glucopyranosyl-($1 \rightarrow 4$)-[β -D-glucopyranosyl-($1 \rightarrow 2$)]- α -L-arabinopyranosyl}-3 β ,16 β -12-olean-ene-3,16,23,28-tetrol (Fig. 1).

Heterogenoside D (5) presented as white powder (MeOH). The HRESIMS gave its molecular formula to be C₅₂H₈₆O₂₂. The ¹³C NMR data of the aglycon of 5 was identical to that of 2, 3, and 4 (Table 2). Compared with the HRESIMS data of 4, 5 comprised an additional pentose unit which was ascertained to be β -D-xylose by comparing the hydrolysis products with the authentic sugar and analyzing the coupling constant of the anomeric proton at δ 4.96 (d, J = 6.0 Hz) (Table 1). The glycosidic linkages between monosaccharide residues were defined as $3-O-\beta-D-xylopyranosyl-(1\rightarrow 2)-\beta-$ D-glucopyranosyl- $(1 \rightarrow 4)$ - $[\beta$ -D-glucopyranosyl- $(1 \rightarrow 2)$]- α -L-arabinopyranosyl due to the long-range correlations from H'-1 to C-3 and C'-5. H"-1 to C'-2. H"-1 to C'-4. H"-2 to C'"-1 and C'"-3. H""-1 to C"-2. H""-5 to C""-1. C""-3 and C""-4. Therefore. 5 was structurally explained to be 3-O-{ β -D-xylopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl- $(1 \rightarrow 4)$ -[β -D-glucopyranosyl- $(1 \rightarrow 2)$]- α -L-arabinopyranosyl}-3 β , 16β-12-oleanene-3,16,23,28-tetrol (Fig. 1).

In addition to the above four new compounds, the known compound of 3β , 16β -12-oleanene-3,16,23,28-tetrol was identified by comparing its spectral data (Table 2) with the literature.⁶

The half-inhibitory concentration (IC₅₀) values of heterogenosides A–D were measured after 2, 4, 9, 18, 36, and 72 h of incubation with the A549 cells, respectively. The activity of heterogenosides B–D slightly increased during continuous incubation, their IC₅₀ values were calculated to be 26.4, 23.6, and 20.2 μ M at the end of 2 h of incubation, and 19.1, 16.3, and 14.5 μ M at the end of 72 h of incubation, respectively. Unlike heterogenosides B–D, heterogenoside A showed weaker activity with IC₅₀ value of more than 100.0 μ M even after 9 h of incubation, and 24.5 μ M at the end of 72 h of incubation. The time course experiment indicated that the activity of heterogenoside A was significantly time-dependent, while the activity of heterogenosides B–D was likely due to lysis.

No.	1	2	3	4	5	No.	2	3	4	5
1	39.0	38.9	38.9	38.9	38.9	Arabinos	е			
2	27.7	26.1	26.0	25.9	25.8	1	106.3	106.5	103.5	104.1
3	73.6	82.2	82.2	82.3	82.5	2	79.7	81.2	81.2	80.3
4	42.8	43.5	43.5	43.5	43.6	3	73.7	73.9	72.7	73.4
5	48.8	47.7	47.8	48.0	48.1	4	74.6	74.5	77.2	78.4
6	18.6	18.2	18.2	18.2	18.2	5	66.3	66.5	63.7	64.3
7	33.0	32.9	32.9	32.9	32.9	Glucose (at C-2 of arabinose)				
8	40.1	40.1	40.1	40.1	40.1	1	106.7	105.3	105.6	105.1
9	47.2	47.2	47.2	47.2	47.2	2	75.8	86.2	75.7	76.1
10	37.1	36.9	36.9	36.8	36.9	3	78.7	77.6	78.3	78.3
11	23.9	23.9	23.9	23.9	23.9	4	71.3	71.0	71.3	71.5
12	121.2	122.3	122.3	122.3	122.3	5	78.4	78.3	78.1	78.3
13	148.2	145.2	145.2	145.2	145.2	6	62.6	62.3	62.5	62.7
14	42.0	42.0	42.0	42.0	42.0	Glucose (at C-4 of arabinose)				
15	34.8	34.8	34.8	34.8	34.8	1			105.7	103.7
16	74.2	74.2	74.2	74.2	74.2	2			76.1	85.3
17	40.9	41.0	40.9	40.9	40.9	3			78.6	77.6
18	42.5	42.6	42.5	42.5	42.5	4			71.4	71.1
19	48.3	48.4	48.2	48.3	48.3	5			78.1	77.8
20	31.2	31.2	31.2	31.2	31.2	6			62.6	62.3
21	37.1	37.1	37.1	37.1	37.1	Xylose				
22	30.4	30.5	30.4	30.4	30.4	1		108.0		107.6
23	68.3	64.6	64.7	64.9	65.0	2		76.3		76.2
24	13.1	13.6	13.6	13.4	13.4	3		78.0		78.1
25	16.2	16.4	16.4	16.4	16.3	4		70.4		70.7
26	17.1	17.1	17.1	17.1	17.1	5		67.2		67.4
27	27.3	27.3	27.3	27.3	27.3					
28	70.1	70.2	70.1	70.1	70.1					
29	33.4	33.4	33.4	33.4	33.4					
30	24.8	24.9	24.8	24.8	24.9					

Acknowledgments

We thank the National Natural Science Foundation of China (30500052) for financial support. The work was also supported by the National Key Discipline of Clinical Foundation of Chinese Medicine.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2009.10.056.

References and notes

1. (a) Anderberg, A. A.; Ståhl, B. Can. J. Bot. 1995, 73, 1699; (b) Källersjö, M.; Bergqvist, G.; Anderberg, A. A. *Am. J. Bot.* **2000**, 87, 1325; (c) Anderberg, A. A.;

Rydin, C.; Källersjö, M. Am. J. Bot. 2002, 89, 677; (d) Hao, G.; Yuan, Y. M.; Hu, C. K. Ge, X. J.; Zhao, N. X. Mol. Phylogenet. Evol. 2004, 31, 323.
(a) Chen, F. H.; Hu, C. M. In Flora Reipublicae Popularis Sinicae Primulaceae; Chen,

- F. H., Hu, C. M., Eds.; Science Press: Beijing, 1989; Vol. 59, pp 1-133; (b) Shao, J. W.; Zhang, X. P.; Guo, X. H. Acta Phytotaxon. Sin. 2006, 44, 589; (c) Shao, J. W.; Zhang, X. P.; Guo, X. H. Bull. Bot. Res. 2004, 24, 389.
- 3. (a) Huang, X. A.; Yang, R. Z. J. Trop. Subtrop. Bot. 2007, 15, 175; (b) Li, X. R.; Li, Z.
- M.; Du, S. S.; Wang, G. L.; Lin, R. C. J. Asian Nat. Prod. Res. **2009**, 11, 128. The editorial board of Medicinal Plants of Zhejiang Province. Medicinal Plants of 4 Zhejiang Province; Zhejiang Science and Technology Press: Hangzhou, 1980, p 985
- 5. (a) Huang, X. A.; Yang, R. Z.; Cai, X. L.; Ye, S.; Hu, Y. J. J. Mol. Struct. 2007, 830, 100; (b) Huang, X. A.; Ha, C. Y.; Yang, R. Z.; Jiang, H. Y.; Hu, Y. J.; Zhang, Y. H. Chem. Nat. Compd. 2007, 43, 170; (c) Huang, X. A.; Cai, J. Z.; Hu, Y. J.; Zhang, Y. H. Chin. J. Chin. Mat. Med. 2007, 32, 596.
- 6. (a) Mahato, S. B.; Sahu, N. P.; Roy, S. K.; Sen, S. Tetrahedron 1991, 47, 5215; (b) Fu, W. W.; Shimizu, N.; Dou, D. Q.; Takeda, T.; Fu, R.; Pei, Y. H.; Chen, Y. J. Chem. Pharm. Bull. 2006, 54, 557; (c) Ma, L.; Gu, Y. C.; Luo, J. G.; Wang, J. S.; Huang, X. F.; Kong, L. Y. J. Nat. Prod. 2009, 72, 640.