

Available online at www.sciencedirect.com

Tetrahedron: *Asymmetry*

Tetrahedron: Asymmetry 18 (2007) 2326-2331

Efficient synthesis of 8-oxa-bicyclo[3.2.1]octane derivatives from D-arabinose

Yi Liu, Tian-Xiang Han, Zhen-Jun Yang, Liang-Ren Zhang and Li-He Zhang*

The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100083, PR China

Received 11 July 2007; accepted 23 August 2007

Abstract—Our studies of the TIBAL-promoted Claisen rearrangement reaction and ring-closing metathesis (RCM) resulted in the development of an efficient synthetic route to polyfunctional seven-membered carbasugar synthons from D-arabinose. Moreover, the construction of 8-oxa-bicyclo[3.2.1] octane derivatives 10 and 13 was achieved by BCl_3 or iodide-promoted intramolecular electrophilic addition reactions, which were regio- and stereoselective. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Seven-membered carbocyclic compounds are widely present as a structural motif in many biologically important molecules and natural products.¹ Similarly, 8-oxa-bicyclo[3.2.1]octane derivatives have been widely used as key precursors for the synthesis of natural and unnatural products, such as sesquiterpenes (1,5-epoxysalvia-4(14)-ene),² diterpenes (Cladiellin),³ alkaloids (Aspergillin PZ,² pyrrolizidine alkaloids⁴), tropane analogues,⁵ and Phamoidride B,⁶ which show interesting biological activities. Recently, more attention has been paid to the synthesis of conformationally restricted sugar analogues, because they are likely to be resistant to the action of glycosidases and glycosyl transferases.⁷

Two strategies are available for the construction of 8-oxabicyclo[3.2.1]octane derivatives. One is to create the cyclic systems in one step employing reactions such as [4+3] cycloaddition,^{3,8} oxidopyrylium [5+2] cycloaddition,^{4,6} and Prins-Pinacol reaction.² Another is to create the cyclic systems by stepwise processes, including SmI₂-mediated nucleophilic acyl addition⁹ and intramolecular oxymercuration.⁵ At present, various methods have been used for the conversion of sugars to seven-membered carbocyclic

0957-4166/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2007.08.033

compounds,¹⁰ but the enantioselective synthesis and specific spatial distribution of the hydroxyl groups on the ring are often problematic. In this report, the TIBAL-promoted Claisen rearrangement of allyl vinyl ethers and ring-closing metathesis (RCM) were used to construct the polyhydroxycyclic heptenes. The hydroxycyclic heptene precursor prepared could be converted to 8-oxa-bicyclo[3.2.1]octane compounds in the presence of BCl₃ or iodine (Fig. 1). These reactions showed good regioselectivity and stereoselectivity. This methodology will provide a practical method to prepare 8-oxa-bicyclo[3.2.1]octane compounds as a new type of chiral building blocks.

2. Results and discussion

Compound 1, as the starting material, was easily obtained from p-arabinose.¹¹ After Wittig olefination, the unsaturated alcohol 2 was obtained in good yield.¹² Alcohol 2 was oxidized with PCC to afford the known ketone 3.¹³ Ketone 3 was then reacted with an excess of vinylmagnesium bromide in THF at -78 °C to give the enol 4 exclusively.¹⁴ In the presence of iodine and a base, compound 5 was obtained in 94% yield from compound 4, and the configuration of C-5 in the formed sugar ring was retained.¹⁵ Following the elimination of HI by DBU, the key intermediate 6 was obtained in 67% overall yield from pentose 1. The polyhydroxyl seven-membered carbasugars 7a and 7b were then prepared by the TIBAL-promoted Claisen rearrangement from intermediate 6 (Scheme 1).

^{*} Corresponding author. Tel.: +86 10 82801700; fax: +86 10 82802724; e-mail: zdszlh@bjmu.edu.cn

Figure 1. Synthesis of 8-oxa-bicyclo[3.2.1]octane derivatives.

Scheme 1. Reagents and conditions: (a) Ph₃PCH₃Br, *n*-BuLi, THF, reflux, 3 h, 87.6%; (b) PCC, 4 Å MS, DCM, 87.2%; (c) CH₂CHMgBr, THF, -78 °C, 3 h, 96.2%; (d) 5% I₂ in ether, satd aq NaHCO₃, THF, 5 h, 94.2%; (e) DBU, THF, 80 °C, overnight, 97.0%; (f) 1 M TIBAL, toluene, 60 °C, 3 h, 91%.

The structure of product **5** was determined by ¹H and ¹³C NMR spectra. The coupling constant between H-2 and H-3 $(J_{2,3} = 5.0 \text{ Hz})$ agreed with the dihedral angle for a *cis* relationship. Additional support for the ' β ' configurational assignment of **5** came from the ¹³C NMR chemical shift of C-1. The ¹³C NMR of compound **5** showed that C-1 was at 3.02 ppm. This was consistent with the reports from Ohrui et al. that the ¹³C-chemical shifts of anomeric centers in the 2,3-*cis* isomers of furanoses were 3–4 ppm upfield of those of the corresponding 2,3-*trans* isomers,¹⁶ and the chemical shift for C-1 of α isomer appeared at 7.14 ppm.¹⁷

The likely mechanism for the formation of compound **5** was shown in Figure 2, in which an iodonium ion formed at C-1 and C-2 was involved. Subsequent attack by the 5-hydroxyl group from the least-hindered side led to the formation of **5** with a favored conformation.¹⁸

The Claisen rearrangement was under thermodynamical control, and the ratio of 7a and 7b was related to the reaction temperature (from 60 to 110 °C). The results indicated that the overall yields of 7a and 7b were decreased with an increase of the temperature. The highest yield of 7b was

Figure 2. Mechanism of the formation of compound 5.

generated at 60 °C (Table 1). NMR spectra showed that **7a** and **7b** were a pair of C-1 epimers. Moreover,

 Table 1. Optimization of reaction conditions for Claisen rearrangement

Temperature (°C)	Yield (%)	
	7a	7b
60	27	64
80	40	52
90	25	44
100	19	31
Reflux	36	ND^{a}

^a ND: not detected.

cycloheptene 7b can easily be converted to 7a by a Mitsunobu reaction to form the *O*-Bz derivative 8, in which the configuration was inverted at C1. After hydrolysis, 7a was furnished (Scheme 2). According to the mechanism of Claisen rearrangement reaction, the formation of a seven-membered ring should be completed via an *endo* or *exo* transition state (Fig. 3). Obviously, an attack from the *endo*-side is favored due to less steric hindrance and thus compound 7b is produced preferentially. The configurations of C-2 and C-3 hydroxyls of cycloheptene 7a/7b were the same as that of precursor 6. However, the orientation of the C-1 hydroxyl group of 7a and 7b had been identified by ¹H NMR. The coupling constant of H-1

Scheme 2. Reagents and conditions: (a) BzOH, Ph₃P, DEAD, THF, rt, 3 h, 96.4%; (b) K₂CO₃, CH₃OH, rt, 22 h, 84.5%.

and H-2 ($J_{1,2}$ value) of cycloheptene **7a** was 3.0 Hz, similar to the value of the reported analogue,¹⁹ indicating a *cis* relationship between H-1 and H-2. Therefore, the hydroxyl group was oriented in a β configuration. The configuration of C-1 hydroxyl group of compound **7b** was also confirmed by the formation of compound **10**.

The debenzylation of cycloheptene 7b was performed with 1 M BCl₃ in CH₂Cl₂. However, the expected carbasugar 9 was not obtained in this reaction, and 8-oxa-bicyclo[3.2.1]octane 10 was formed instead.²⁰ The 2D NOESY NMR spectra of 10 showed strong NOE interactions between H-3 and β-oriented H-6 and between H-3 and β-oriented H-7, clearly indicating that H-3 and β -oriented H-6 and H-7 were located at the same orientation and the oxygen bridge was located on the opposite side. The formation of 8-oxa-bicyclo[3.2.1]octane 10 was likely achieved by the attack of 1-hydroxyl group of 7b at the C4, C5 double bond to form the oxygen bridge and the terminal olefin, and after hydrolysis 10 was afforded (Scheme 3). According to the structure of compound 10 and the stereochemistry during the reaction, the C1 hydroxyl of compound 7b was α -oriented.

To synthesize more 8-oxa-bicyclo[3.2.1]octane derivatives, polyfunctional cycloheptene 12a/12b were obtained from intermediate $3.^{21}$ Compound 3 was reacted with

Figure 3. The formation of compound 7a and 7b.

Scheme 3. Reagents and conditions: (a) BCl₃, DCM, -78 °C, -rt, 2 h, 71.2%.

Scheme 4. Reagents and conditions: (a) Butenylmagnesium bromide, THF, -10 °C \rightarrow rt, overnight, 75.6%; (b) Grubb's catalyst, CH₂Cl₂, rt, 48 h, 86.3%.

butenylmagnesium bromide in THF at -10 °C to yield compounds 11a and 11b (5:1) in 75.6%, and the cyclization of 11a and 11b was completed by the Grubb's catalyst to afford cycloheptene 12a/12b (5:1) in quantitative yield (Scheme 4). Compound 12a was isolated easily by column chromatography and treated with NIS in CH₂Cl₂ to give 8-oxa-bicyclo[3.2.1]octane 13 as a single regioisomer in good yield (Scheme 5).

¹H NMR and HMQC confirmed that the oxygen bridge of compound **13** was formed between C-1 and C-5 and the iodine was bonded to C-2. Due to the effect of the iodine heavy atom, the ¹³C-chemical shift of C-2 was shifted up-field. 2D NOESY NMR spectra showed a strong NOE interaction between H-4 and β -oriented H-6, demonstrating that H-4 and β -oriented H-6 were located on the same face and the oxygen bridge was located on the opposite side. Moreover, ¹H NMR showed that there was a signal peak for H-2 and H-3, revealing a *cis* relationship between H-2 and H-3. The formation of an oxygen bridge was via a manner of *trans*-attack of the 5-hydroxyl to an iodonium ion. The reaction was stereoselective and no β -oxygen bridge isomer was found (Scheme 5).

3. Conclusion

In summary, we have developed an efficient and highly regioselective and stereoselective method for the synthesis of polyfunctional cyclic heptene synthons and 8-oxa-bicyclo[3.2.1]octane derivatives from D-arabinose. This synthetic method could be applied for the synthesis of a growing number of biologically active substances containing seven-membered rings and an 8-oxa-bicyclo[3.2.1]octane skeleton.

4. Experimental

4.1. General experimental detail

All chemicals were purchased as reagent grade and used without further purification, unless otherwise noted. Solvents were dried by refluxing for at least 24 h. Dichloromethane (CH₂Cl₂) was distilled over calcium hydride (CaH₂). Tetrahydrofuran (THF) and toluene was distilled from sodium, indicated by diphenylketone. All reactions were carried out under anhydrous conditions with freshly distilled solvents, unless otherwise noted. Reactions were monitored by thin-layer chromatography (TLC), and were detected by an ethanol solution of phosphomolybdic acid. Column chromatography was performed on silica gel (200– 300 mesh). NMR spectra were recorded with Varian INO-VA-500 and Varian VXR-300. Chemical shifts were relative to TMS (δ 0.0) as an internal standard. Mass spectra were obtained on PE SCLEX QSTAR mass spectrometer. Elemental analyses were performed on Varian ELIII analyzer. Optical rotations were measured at 20 ± 2 °C at the sodium D line (589 nm) and were in units of deg mL $(dm g)^{-1}$.

4.2. 2,5-Anhydro-3,4,6-tri-*O*-benzyl-1-iodo-5-vinyl-L-mannohexitol 5

To alkene 4^{14} (2.63 g, 5.92 mmol) dissolved in THF (42 mL) was added saturated aqueous NaHCO₃ (50 mL, 60.0 mmol) under argon, followed by dropwise addition of 5% solution of iodine in ether (152 mL, 29.9 mmol). The reaction mixture was stirred for 6 h at rt, quenched by the addition of NaS₂O₃ at 0 °C, and extracted with EtOAc for three times. Organic extracts were combined, dried by NaSO₄, filtered, and the solvent was evaporated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc, 50:1) to give **5** as a prim-rose yellow oil (3.17 g, 94%). $[\alpha]_D^{20} = +18.1$ (*c* 0.09, CH₂Cl₂), ¹H NMR (500 MHz, CDCl₃): δ 7.34–7.24 (m, 15H, H-arom.), 5.98 (dd, $J_{6,7b} = 11.0$ Hz, $J_{6,7a} = 17.5$ Hz, 1H, H-6), 5.40 (dd, $J_{7a,7b} = 1.5$ Hz, $J_{6,7a} = 17.5$ Hz, 1H, H-7a), 5.13 (dd, $J_{7a,7b} = 1.5$ Hz, $J_{6,7b} = 11.0$ Hz, 1H, H-7b), 4.56, 4.53 (dd, J = 12.0 Hz, 2H, CH₂Ph), 4.56, 4.52 (dd, J = 12.0 Hz, 2H, CH₂Ph), 4.51, 4.44 (dd, J =(dd, J = 12.0 Hz, 2H, CH₂H), 4.51, 4.54, (dd, J = 12.0 Hz, 2H, CH₂Ph), 4.50 (m, $J_{1a,2} = 7.5$ Hz, $J_{1b,2} = 8.5$ Hz, $J_{2,3} = 5.0$ Hz, 1H, H-2), 4.18 (dd, $J_{2,3} = 5.0$ Hz, $J_{3,4} = 3.0$ Hz, 1H, H-3), 4.00 (d, $J_{3,4} = 3.0$ Hz, 1H, H-4), 3.61 (dd, J = 9.5 Hz, 1H, H-8), 3.39 (dd, $J_{1a,2} = 7.5$ Hz, $J_{1a,1b} = 9.5$ Hz, 1H, H-1a), 3.25 (dd, $J_{1b,2} = 8.5$ Hz, $J_{1a,1b} = 9.5$ Hz, 2H, H-1b). ¹³C NMR (75 MHz, CDCl₃): δ 139.2 (C-6), 138.4, 137.8, 137.7 (3 × C_{ipso}), 128.4–127.4 (aromatic C), 114.4 (C-7), 86.5 (C-5), 86.2 (C-2), 83.2 (C-4), 80.4 (C-3), 73.5 (C-8), 72.9, 72.4, 72.2 $(3 \times CH_2Ph)$,

Scheme 5. Reagents and conditions: (a) NIS, CH₂Cl₂, 0 °C→rt, overnight, 87%.

3.0 (C-1). MS (ESI-TOF, positive, m/z): 571 $[M+H]^+$, 588 $[M+NH_4]^+$, 593 $[M+Na]^+$. Anal. Calcd for $C_{29}H_{31}IO_4$: C, 61.06; H, 5.48. Found: C, 61.09; H, 5.59.

4.3. (2*S*,3*S*,4*S*)-3,4-Dibenzyloxy-2-benzyloxymethyl-5-methylene-2-vinyl-tetrahydro furan 6

To iodide 5 (2.00 g, 3.51 mmol) dissolved in THF (51 mL) was dropwise added DBU (4.2 mL, 28.08 mmol) under argon, and the mixture was then stirred for 20 h at 80 °C, cooled to room temperature, and concentrated. The residue was purified on a silica gel column (0.1% Et₃N in cyclohexane/EtOAc, 120:1) to afford 6 as a colorless oil (1.50 g, 97%). ¹H NMR (500 MHz, C₆D₆): δ 7.26–7.05 (m, 15H, H-arom.), 5.93 (dd, $J_{7,8b} = 11.0$ Hz, $J_{7,8a} = 17.5$ Hz, 1H, H-7), 5.51 (dd, $J_{8a,8b} = 1.5$ Hz, $J_{7,8a} = 17.5$ Hz, 1H, H-8a), 5.03 (dd, $J_{8a,8b} = 1.0$ Hz, $J_{7,8b} = 11.0$ Hz, 1H, H-8b), 4.92 (dt, $J_{6a,6b} = 1.5$ Hz, $J_{4,6a} = 5.5$ Hz, 1H, H-6a), 4.74 $(t, J_{6a,6b} = 1.5 \text{ Hz}, 1\text{H}, \text{H-6b}), 4.56, 4.47 \text{ (dd}, J = 11.5 \text{ Hz},$ 2H, $\dot{C}H_2Ph$), 4.44, 4.39 (dd, J = 12.0 Hz, 2H, CH_2Ph), 4.39, 4.32 (dd, J = 12.0 Hz, 2H, CH₂Ph), 4.32 (t, J = 1.5 Hz, 1H, H-3), 4.11 (d, $J_{4,6a} = 5.5$ Hz, 1H, H-4), 3.69 (dd, J = 10.0 Hz, 2H, H-9). ¹³C NMR (125 MHz, C₆D₆): δ 160.8 (C-5), 138.9, 138.8, 138.5 (3 × C_{ipso}), 138.2 (C-7), 128.5–127.6 (aromatic C), 114.9 (C-8), 87.3 (C-6), 86.5 (C-2), 83.7 (C-3), 82.8 (C-4), 73.8 (C-9), 73.0, 72.3, 71.6 (3 × CH₂Ph). MS (ESI-TOF, positive, m/z): 443 [M+H]⁺, 460 [M+NH₄]⁺, 465 [M+Na]⁺, 481 [M+K]⁺. Anal. Calcd for C₂₉H₃₀O₄: C, 78.71; H, 6.83. Found: C, 78.47; H, 6.64.

4.4. (1*R* and 1*S*,2*R*,3*R*)-4-Benzyloxymethyl-2,3-dibenzyloxycyclohepta-4-ene-1-ol 7a and 7b

To a solution of compound 6 (850 mg, 1.92 mmol) in toluene (65 mL) was added dropwise 1 M TIBAL (19 mL, 19.0 mmol) in toluene at rt under argon. The mixture was stirred at 60 °C for 3 h, cooled down to 0 °C, and quenched with 20% aqueous NaOH solution. The mixture was extracted with toluene. The organic layers were combined, dried, and concentrated. The residue was purified on a silica gel column (petroleum ether/acetone, 20:1). Two products 7a as a colorless oil (230 mg, 27%) and 7b as a colorless oil (546 mg, 64%) were obtained. Compound **7a**: $[\alpha]_D^{20} = -63.1$ (*c* 0.08, MeOH), ¹H NMR (500 MHz, $CDCl_3$): δ 7.35–7.21 (m, 15H, H-arom.), 6.12 (dd, J =5.0 Hz, J = 9.0 Hz, 1H, H-5), 4.63, 4.46 (dd, J = 11.5 Hz, 2H, CH₂Ph), 4.59, 4.44 (dd, J = 12.0 Hz, 2H, CH₂Ph), 4.51, 4.43 (dd, J = 12.0 Hz, 2H, CH₂Ph), 4.32 (d, $J_{2,3} = 6.5$ Hz, 1H, H-3), 4.14 (dd, $J_{1,2} = 3.0$ Hz, $J_{1,7} =$ 7.0 Hz, 1H, H-1), 3.93 (dd, $J_{1,2} = 3.0$ Hz, $J_{2,3} = 6.5$ Hz 1H, H-2), 3.89 (dd, J = 12.0 Hz, 2H, H-8), 2.32–2.26 (m, 1H, H-6a), 2.19 (br, 1H, OH), 2.14-2.07 (m, 1H, H-6b), 1.78–1.65 (m, 2H, H-7). ¹³C NMR (125 MHz, CDCl₃): δ 138.7, 138.3 $(3 \times C_{ipso})$, 136.4 (C-4), 133.5 (C-5), 128.4– 127.4 (aromatic C), 79.4 (C-2), 75.2 (C-8), 74.3 (C-3), 73.2 (CH₂Ph), 72.0 (C-1), 71.8, 71.1 ($2 \times CH_2Ph$), 30.8 (C-7), 22.2 (C-6). MS (ESI-TOF, positive, m/z): 445 $[M+H]^+$, 462 $[M+NH_4]^+$, 467 $[M+Na]^+$, 483 $[M+K]^+$. Anal. Calcd for C₂₉H₃₂O₄: C, 78.35; H, 7.26. Found: C, 78.11; H, 6.92.

Compound **7b**: $[\alpha]_{D}^{20} = -28.4$ (*c* 0.12, MeOH), ¹H NMR (500 MHz, CDCl₃): δ 7.36–7.23 (m, 15H, H-arom.), 6.34 (t, *J* = 7.0 Hz, 1H, H-5), 4.66, 4.53 (dd, *J* = 12.0 Hz, 2H, CH₂Ph), 4.63, 4.51 (dd, *J* = 12.0 Hz, 2H, CH₂Ph), 4.63, 4.51 (dd, *J* = 12.0 Hz, 2H, CH₂Ph), 4.52, 4.47 (dd, *J* = 12.0 Hz, 2H, CH₂Ph), 4.27 (d, *J*_{2,3} = 6.0 Hz, 1H, H-3), 3.96 (s, 3H, H-1 and H-8), 3.71 (t, *J*_{2,3} = 6.0 Hz, 1H, H-2), 3.67 (d, *J* = 6.5 Hz, 1H, OH), 2.59–2.53 (m, 1H, H-6a), 2.03–1.94 (m, 2H, H-6b and H-7a), 1.78–1.71 (m, 1H, H-7b). ¹³C NMR (125 MHz, CDCl₃): δ 138.3, 138.3, 138.0 (3 × C_{*ipso*}), 136.8 (C-4), 133.2 (C-5), 128.4–127.5 (aromatic C), 79.3 (C-2), 79.0 (C-3), 74.2 (C-1), 73.6 (C-8), 73.1, 72.2, 72.0 (3 × CH₂Ph), 29.9 (C-7), 20.9 (C-6). MS (ESI-TOF, positive, *m/z*): 445 [M+H]⁺, 462 [M+NH₄]⁺, 467 [M+Na]⁺, 483 [M+K]⁺. Anal. Calcd for C₂₉H₃₂O₄: C, 78.35; H, 7.26. Found: C, 78.15; H, 6.99.

4.5. (1*R*,2*R*,3*R*)-4-Benzyloxymethyl-2,3-dibenzyloxy-cyclohept-4-enyl benzoate 8

To a solution of Ph₃P (240 mg, 0.92 mmol) in dry THF (3 mL) previously cooled in ice bath was added dropwise 2.2 M DEAD in toluene (0.42 mL, 0.92 mmol) under argon. After 30 min, this solution was added dropwise to a solution of alcohol 7b (203 mg, 0.45 mmol) and benzoic acid (84 mg, 0.68 mmol) in dry THF (10 mL), which was also cooled in an ice bath under argon. The mixture was stirred for 30 min at 0 °C, then stirred at rt for 3 h. The volatiles were removed and the residue was purified on a silica gel column (petroleum ether/acetone, 55:1) to yield 8 as a colorless oil (225 mg, 96.4%). ¹H NMR (300 MHz, CDCl₃): δ 8.01 (m, 2H, H-arom.), 7.58–7.18 (m, 18H, Harom.), 6.13 (dd, $J_{5,6a} = 9.0$ Hz, $J_{5,6b} = 4.5$ Hz, 1H, H-5), 5.72 (dt, $J_{1,7a} = 1.8$ Hz, $J_{1,7b} = 2.1$ Hz, $J_{1,2} = 11.7$ Hz, 1H, H-1), 4.70, 4.59 (dd, J = 12.3 Hz, 2H, CH₂Ph), 4.57, 4.53 $(dd, J = 12.9 Hz, 2H, CH_2Ph), 4.51, 4.44 (dd, J =$ 12.0 Hz, 2H, CH₂Ph), 4.21 (d, $J_{2.3} = 15.0$ Hz, 1H, H-3), 4.19 (s, 1H, H-1, H-8a), 3.92 (dd, $J_{1,2} = 12.0$ Hz, $J_{2,3} =$ 15.0 Hz, 1H, H-2), 3.91 (s, 1H, H-8b), 2.52–2.43 (m, 1H, H-6a), 2.23-2.08 (m, 2H, H-6b and H-7a), 1.89 (m, 1H, H-7b). ¹³C NMR (75 MHz, CDCl₃): δ 165.6 (PhCO), 138.5, 138.4, 138.4 ($3 \times C_{ipso}$), 136.8 (BzC_{ipso}), 132.8 (C-5), 130.6 (C-4), 129.7–127.5 (aromatic C), 76.7 (C-1), 76.2 (C-2), 75.7 (C-8), 74.5 (C-3), 73.4, 71.8, 70.9 (3×CH₂Ph), 27.0 (C-7), 22.6 (C-6). MS (ESI-TOF, positive, m/z): 566 $[M+NH_4]^+$, 571 $[M+Na]^+$, 587 $[M+K]^+$. Anal. Calcd for C₃₆H₃₆O₅: C, 78.81; H, 6.61. Found: C, 78.52; H, 6.35.

4.6. Hydrolysis of compound 8

Compound 8 (271 mg, 0.49 mmol) was dissolved in MeOH (7 mL) and treated with K_2CO_3 (340 mg, 2.46 mmol). The solution was stirred at rt for 22 h. The reaction solution was subsequently filtered and concentrated. The residue was purified on a silica gel column (petroleum ether/acetone, 20:1) to give 7a as a colorless oil (185 mg, 84.5%).

4.7. (1*S*,2*S*,3*R*,5*R*)-4-Methylene-8-oxa-bicyclo[3.2.1]octane-2,3-diol 10

To compound **7b** (28 mg, 0.063 mmol) dissolved in CH_2Cl_2 (3 mL) was dropwise added 1 M BCl₃ (0.5 mL, 0.50 mmol) in CH_2Cl_2 at -78 °C under argon. The mixture was then

stirred and warmed to 0 °C over 2 h, quenched with MeOH, and concentrated. The residue was purified on a silica gel column (CH₂Cl₂/MeOH, 30:1) to afford **10** as a white solid (7 mg, 71%). $[\alpha]_D^{20} = -16.7$ (*c* 0.10, MeOH), ¹H NMR (500 MHz, DMSO-*d*₆): δ 5.14 (d, J = 4.5 Hz, 1H, C2–OH), 5.06 (d, J = 6.0 Hz, 1H, C3–OH), 4.89 (t, $J_{3,8a} = 2.5$ Hz, 1H, H-8a), 4.92 (t, $J_{3,8b} = 2.5$ Hz, 1H, H-8b), 4.52 (d, J = 7.0 Hz, 1H, H-5), 4.08 (dd, $J_{1,2} = 4.5$ Hz, $J_{1,7a} = 7.5$ Hz, 1H, H-1), 3.81–3.77 (m, $J_{2,3} = 8.5$ Hz, $J_{3,8} = 2.5$ Hz, 1H, H-3), 3.30–3.26 (m, $J_{1,2} = 4.5$ Hz, $J_{2,3} = 8.5$ Hz, 1H, H-6b), 1.70–1.63 (m, 1H, H-7a), 1.88–1.83 (m, 1H, H-6b), 1.70–1.63 (m, 1H, H-7b), 1.58–1.53 (m, 1H, H-6a). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 150.0 (C-4), 105.9 (C-8), 79.0 (C-5), 77.3 (C-1), 75.8 (C-2), 70.5 (C-3), 28.8 (C-6), 23.5 (C-7). MS (ESI-TOF, positive, *m*/*z*): ralcd for C₈H₁₂O₃H [M+H]⁺, 157.0859; found, 157.0852.

4.8. (1*S*,2*S*,3*S*,4*R*,5*S*)-2,3-Dibenzyloxy-1-benzyloxymethyl-4-iodo-8-oxa-bicyclo[3.2.1]octane 13

To compound $12a^{21}$ (339 mg, 0.763 mmol) dissolved in CH₂Cl₂ (10 mL) was added NIS (189 mg, 0.839 mmol) in CH₂Cl₂ at 0 °C under argon. The mixture was stirred overnight and warmed to rt and concentrated. The residue was purified on a silica gel column (petroleum ether/EtOAc, 50:1) to give **13** as a white solid (378 mg, 87%). $[\alpha]_D^{20} =$ -38.8 (c 0.37, CH₂Cl₂), ¹H NMR (500 MHz, CDCl₃): δ 7.37–7.23 (m, 15H, H-arom.), 4.67 (t, $J_{4,5} = 1.0$ Hz, $J_{3,4} = 5.0$ Hz, 1H, H-4), 4.49, 4.39 (dd, J = 12.0 Hz, 2H, CH₂Ph), 4.45, 4.36 (dd, J = 12.0 Hz, 2H, CH₂Ph), 4.43 (m, 3H, CH₂Ph and H-5), 3.74 (d, J = 8.5 Hz, 1H, H-8a), 3.57 (d, $J_{2,3} = 1.5$ Hz, 1H, H-2), 3.49 (dt, $J_{2,3} = 1.5$ Hz, $J_{3,4} = 5.0$ Hz, 1H, H-3), 3.32 (d, J = 8.5 Hz, 1H, H-8b), 2.55-2.50 (m, 1H, H-6a), 2.29-2.24 (m, 1H, H-7a), 1.89-1.79 (m, 2H, H-6b and H-7b). ¹³C NMR (125 MHz, CDCl₃): δ 138.0, 137.7, 137.5 (3 × C_{ipso}), 128.5–127.6 (aromatic C), 82.9 (C-1), 80.1 (C-5), 77.5 (C-3), 77.0 (C-2), 73.5, 73.2, 72.8 (3×CH₂Ph), 72.3 (C-8), 33.5 (C-4), 29.4 (C-7), 25.4 (C-6). MS (ESI-TOF, positive, m/z): 571 [M+H]⁺, 588 $[M+NH_4]^+$, 593 $[M+Na]^+$. Anal. Calcd for C₂₉H₃₁IO₄: C, 61.06; H, 5.48. Found: C, 60.96; H, 5.56.

Acknowledgments

This study was supported by the National Natural Sciences Foundation of China (Grant No. 20332010) and the Ministry of Science and Technology of China (Grant No. 2005BA711A04).

References

 (a) Wender, P. A.; Rice, K. D.; Schnute, M. E. J. Am. Chem. Soc. 1997, 119, 7897–7898; (b) Malpass, J. R.; Wallis, A. L. Tetrahedron 1998, 54, 3631–3644; (c) Wender, P. A.; Husfeld, C. O.; Langkopf, E.; Love, J. A. J. Am. Chem. Soc. 1998, 120, 1940–1941; (d) Molander, G. A. Acc. Chem. Res. 1998, 31, 603–609; (e) Winkler, J. D.; Rouse, M. B.; Greaney, M. F.; Harrison, S. J.; Jeon, Y. T. J. Am. Chem. Soc. 2002, 124, 9726–9728; (f) Tanino, K.; Onuki, K.; Asano, K.; Miyashita, M.; Nakamura, T.; Takahashi, Y.; Kuwajima, I. J. Am. Chem. Soc. 2003, 125, 1498–1500; (g) Goldmann, A.; Milat, M. L.; Ducrot, P. H.; Lallemand, J. Y.; Maille, M.; Lepingle, A.; Charpin, I.; Tepfer, D. Phytochemistry 1990, 29, 2125–2127; (h) Murali Krishna, U.; Trivedi, G. K. Tetrahedron Lett. 2004, 45, 257–259.

- Overman, L. E.; Velthuisen, E. J. Org. Lett. 2004, 6, 3853–3856.
- Molander, G. A.; Czako', B.; Jean, D. J. St. J. Org. Chem. 2006, 71, 1172–1180.
- Hodgson, D. M.; Avery, T. D.; Donohue, A. C. Org. Lett. 2002, 4, 1809–1811.
- Nguyen, G.; Perlmutter, P.; Rose, M. L.; Vounatsos, F. Org. Lett. 2004, 6, 893–895.
- 6. Ohmori, N. J. Chem. Soc., Perkin Trans. 1 2002, 755-767.
- Fawcett, J.; Grifith, G. A.; Percy, J. M.; Uneyama, E. Org. Lett. 2004, 6, 1277–1280.
- (a) Ångle, M. M.; Francisca, G.; Consuelo, B. Lett. Org. Chem. 2005, 2, 475–479; (b) Harwata, M.; Ghosh, S. K.; Hong, X.-C.; Wacharasindhu, S.; Kirchhoefer, P. J. Am. Chem. Soc. 2003, 125, 2058–2059; (c) Molander, G. A.; Jean, D. J. St.; Haas, J. J. Am. Chem. Soc. 2004, 126, 1642–1643.
- Jean, D. J. St.; Cheng, E. P.; Bercot, E. A. Tetrahedron Lett. 2006, 47, 6225–6227.
- (a) Marco-Contelles, J.; de Opazo, E. J. Org. Chem. 2002, 67, 3705–3717; (b) Marco-Contelles, J.; de Opazo, E. Tetrahedron Lett. 2000, 41, 2439–2441; (c) Hanna, I.; Ricard, L. Org. Lett. 2000, 2, 2651–2654; (d) Marco-Contelles, J.; de Opazo, E. Tetrahedron Lett. 2000, 41, 5341–5345; (e) Duclos, O.; Dure'ault, A.; Depezay, J. C. Tetrahedron Lett. 1992, 33, 1059–1062; (f) Marco-Contelles, J.; de Opazo, E. Tetrahedron Lett. 1999, 40, 4445–4448; (g) Dyong, I.; Bonn, R. Chem. Ber. 1973, 106, 944–955; (h) Krohn, K.; Boerner, G. J. Org. Chem. 1994, 59, 6063–6068; (i) Cocu, F. G.; Pochelon, B.; Giddey, A.; Posternak, T. Helv. Chim. Acta 1974, 57, 1974–1987; (j) Boyer, F.-D.; Lallemand, J.-Y. Tetrahedron 1994, 50, 10443– 10458; (k) Wershkun, B.; Thiem, T. Top. Curr. Chem. 2001, 215, 293–325.
- van der Klein, P. A. M.; de Nooy, A. E. J.; van der Marel, G. A.; van Boom, J. H. Synthesis 1991, 5, 347–349.
- 12. Freeman, F.; Robarge, K. D. Carbohydr. Res. 1986, 154, 270–274.
- 13. Chorghade, M. S.; Cseke, C. M.; Liu, P. S. *Tetrahedron: Asymmetry* **1994**, *5*, 2251–2254.
- Sellier, O.; de Weghe, P. V.; Eustache, J. Tetrahedron Lett. 1999, 40, 5859–5860.
- 15. Freeman, F.; Robarge, K. D. Carbohydr. Res. 1985, 137, 89–97.
- Ohrui, H.; Jones, G. H.; Moffatt, J. G.; Maddox, M. L.; Christensen, A. T.; Byram, S. K. J. Am. Chem. Soc. 1975, 97, 4602–4613.
- 17. Freeman, F.; Robarge, K. D. Carbohydr. Res. 1987, 171, 1-11.
- 18. Bartlett, P. A. Tetrahedron 1980, 36, 2-72.
- (a) Jia, C.; Zhang, Y. M.; Zhang, L. H. *Tetrahedron: Asymmetry* **2003**, *14*, 2195–2199; (b) Sisu, E.; Sollogoub, M.; Mallet, J.-M.; Sinaÿ, P. *Tetrahedron* **2002**, *58*, 10189–10196.
- Moreno-Dorado, F. J.; Lamers, Y. M. A. W.; Mironov, G.; Wijnberg, J. B. P. A.; de Groot, A. *Tetrahedron* 2003, 59, 7743–7750.
- Bleriot, Y.; Giroult, A.; Mallet, J. M.; Rodriguez, E.; Vogel, P.; Sinaÿ, P. *Tetrahedron: Asymmetry* 2002, 13, 2553–2565.