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Abstract

Two esterases participating in the asymmetric hydrolysis of a-alkylated enol acetates to a-chiral ketones
were isolated from the cultured cells of Marchantia polymorpha. These two esterases had opposite enantio-
selectivities and both of them reversed the stereoselectivity of protonation into the enol intermediate in the
hydrolysis when the chain length and the bulkiness of a-substituents were increased. © 2000 Elsevier
Science Ltd. All rights reserved.

Optically active a-substituted ketone derivatives are widely employed as chiral synthons in
asymmetric reactions' and there is a continuing interest in the development of efficient procedures
to prepare them in enantiomerically pure form.? Recently, it has been found that yeast® and the
cultured cells of M. polymorpha* were capable of performing the asymmetric hydrolysis of a-
alkylated cyclohexanone enol esters to give a-substituted chiral ketones and that hydrolytic
enzymes derived from yeast need an enantioselectivity-promoting factor to differentiate the
enantiotopic face in the protonation of the enol intermediate.” We have now investigated the
enzymes which are able to catalyze the asymmetric hydrolysis of enol acetates in the plant cell
cultures of M. polymorpha.

Two hydrolytic enzymes named esterases I and II participating in the hydrolysis of enol esters
were isolated from the cultured cells of M. polymorpha.® Several cyclohexanone enol acetates
(1-7)78 were subjected to enzymatic hydrolysis with these esterases to clarify the effect of various
substituents at the B-position to the acetoxyl group on the enantiomeric ratio and the catalytic
activity of enzymes.” The absolute configuration and enantiomeric excess of the resulting ketone
were determined by the circular dichroism (CD) spectra of the products'®'# and the peak area of
the corresponding enantiomers in GLC analyses on CP cyclodextrin B 236M-19.'5 Hydrolysis of
enol acetates, 1-3, by esterase I gave the corresponding optically active ketones (8-10) whose CD
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curves were positive (Table 1). The acetate 1 was the best substrate for esterase I, allowing us to
achieve the highest enantiomeric excess (>99% e.e.) and yield (99%). In the case of 2, the ethyl
group at the a-position to the acetoxyl group markedly reduced the enantiomeric excess of the
product (14% e.e.). Substrate 3 with isopropyl group as the a-substituent was hydrolyzed in 10%
yield, and protonation at the a-position gave a poor enantioselectivity (17% e.e.). The chiral
preference of esterase I was retained among these substrates: the protonation of the enol inter-
mediates from 1-3 occurred preferentially from the same enantiotopic face of the C—C double
bond. However, when f-butyl, n-propyl, n-pentyl and benzyl groups were introduced into the
B-position to the acetoxyl group of the substrates (4-7), the CD curves of the corresponding
products, 18-21, were negative. This result indicates that the stereoselectivity of esterase I in the
protonation of these enol intermediates is reversed by long chain (C>3) and bulky substituents at
the B-position to the acetoxyl group. It is noteworthy that esterase I converted 7 into optically
active 21 in high enantiomeric excess (99%), although the hydrolysis of 7 with hydrolytic enzymes
from yeast gave racemic ketone.

OAc (0] O
R R IR
1:R=Me  5:R=pn-Pr 8: R=Me 12: R=n-Pr 15: R=Me  19: R=n-Pr
2: R=Et 6: R=n-Pnt 9:R=Et  13: R=n-Pnt 16: R=Et  20: R=n-Pnt
3:R=i-Pr  7:R=Bnz 10: R=i-Pr  14: R=Bnz 17: R=i-Pr  21:R=Bnz
4: R=r-Bu 11: R=t-Bu 18: R=t-Bu
Table 1

Enantioselectivity in the hydrolysis of enol acetates by esterase I

Substrate Product Conv./% e.e. Config.?

1 8 >99 >99 N
2 9 >99 14 S
3 10 10 17 R
4 18 21 5 S
5 19 >99 >99 R
6 20 20 26 R
7 21 15 >99 S

Preferred configuration at the a-position to the
carbonyl group of the products.

On the other hand, the conversion yield and enantiomeric purity in the hydrolysis with esterase
IT are very low in comparison to the case of esterase I (Table 2). In the hydrolysis of 1-3, the
protonation of the enol intermediate following the hydrolysis of these substrates occurred
stereoselectively from the same enantiotopic face of the C—C double bond. In the cases of the enol
acetates 4-7, the protonation of the enol intermediate occurred preferentially from the reverse
side of the C-C double bond with respect to the hydrolysis of 1-3. Interestingly, the stereo-
selectivity of esterase II was opposite to that of esterase I.
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Table 2
Enantioselectivity in the hydrolysis of enol acetates by esterase 11

Substrate Product Conv./% e.e. Config?

1 15 4 4 R
2 16 3 2 R
3 17 3 3 S
4 11 20 2 R
5 12 5 4 S
6 13 16 7 S
7 14 11 14 R

Preferred configuration at the a-position to the
carbonyl group of the products.

Thus, two hydrolytic enzymes were isolated from the cultured cells of M. polymorpha and were
confirmed to be capable of discriminating the enantiotopic face of the C—C double bond of the
enol intermediate in the hydrolysis. The enantioselectivities in the protonation of the enol inter-
mediate were opposite between these enzymes. The enantioselectivity of both enzymes reversed in
the hydrolysis of the substrates with long side chain, bulky #-butyl or benzyl group at the
B-position to the acetoxyl group, compared with the substrates having short side chains. Such
inversion of the enantioselectivity may be explained by the occurrence of a turnover of the sub-
strate in the active site of the enzymes due to the steric hindrance offered by the a-substituents.
Recently, Matsumoto et al. reported that the hydrolytic enzymes from yeast and commercially
available lipases from microorganisms could exhibit enantioselectivity in the hydrolysis of enol
acetate only in the presence of an enantioselectivity-promoting factor.’> Hydrolytic enzymes from
plant cell cultures of M. polymorpha appear to be different from those from microorganisms.
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