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0.0498 (1>20(1)), wR2=0.1073 (2>2u(I)) (GOF=[X[w(F: - c)‘]/(n-p)]”’. 
where n and p denote the number of data and parameters; R, = (C I I F, I - I F, I 
j / Z I F o / ,  W R , = [ X [ ~ ( F , - F ~ ) ~ J / ~ ~ W ( F : ) ~ J ] ’ ~ ~  with w = l / [ ~ ~ ( F : ) + ( a . P ) ~ + b . P ]  
and P= [max(PaO) +2(c)/3]). 
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Reactions of aliphatic diazo compounds with alkenes 
catalyzed by transition metal complexes are among the most 
important methods for obtaining cyclopropanes.1’1 The gen- 
erally accepted mechanism involves the formation of a 
reactive carbene complex intermediate, resulting from elec- 
trophilic attack at the carbon atom of the diazo group and 
subsequent elimination of N,. Transfer of the carbene frag- 
ment to the alkene regenerates the catalytically active species 
and the catalytic cycle starts again. Although a carbene 
complex intermediate has not yet been observed directly, 
convincing experimental results support this model: 
1. The high asymmetric induction observed when chiral metal 

complexes are used requires strong steric interactions 
between alkene, metal complex, and carbene during the 
face-selective reaction step.cz1 

2. Reactivity/selectivity correlations between reactions cata- 
lyzed by [Rh,(OAc),] and stoichiometric reactions with 
[(CO),W=C(H)Ph] indicate a similar mechanism for the 
two types of 

3. The synthesis of stable carbene complexes from diazoal- 
k a n e ~ [ ~ ~ ]  as well as that of cyclopropanes from carbene 
complexes support the mechanism outlined above.[*a,61 
Furthermore, a chiral ruthenium complex that catalyzes 
the [2+l] cycloaddition of ethyl diazoacetate and styrene 
in high enantiomeric excess was obtained recently; the 
corresponding carbene complex, which also catalyzes the 
reaction, is isolable in the absence of styrene.”] 

The ability of chromium(o) complexes to catalyze [2+1] 
cycloadditions was hitherto studied in less detail.[*] During our 
research aimed at the synthesis of stable chromium carbene 
complexes from diazoalkanes and chromium complexes of the 
type [ (CO),CrL] (L = THF, cis-cyclooctene), we became 
interested in the utiliziation of these compounds for catalytic 
cyclopropanations of alkenes with diazoalkanes. 

Reactions of ethyl diazoacetate 1 with electron-rich alkenes 
( 5  equivalents) in the presence of pentacarbonyl($cis-cyclo- 
octene)chromium(O) (2) ( 5  mol %; Scheme 1) afford the 
donor - acceptor substituted cyclopropanes 3-5 in good 

+ /F 5 /=<” 
F@ m s  

R 3 R 2  

3-6 

*CH-€O2Et 1 

Scheme 1 Synthesis of the cyclopropanes 3-6 1 2 (5mol%), 5 ° C  417, 
CH,CI,, -N2, -C8H,,; 2. 20°C. 8 h, CH,CI,; 28-79% 
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yields (Table l).[’O] Compound 6, which is formed by the 
reaction with styrene, could only be obtained in poor yield, 
whereas alkyl- and acceptor-substituted alkenes gave no 
[2+1] cycloaddition products under these conditions.[”] At- 
tempts to trap or provide evidence for a carbene complex 

Table 1. Chromium-catalyzed cyclopropanations of electron-rich alkenes with 
ethvl diazoacetate 1 la,bl. 

~ 

Product R‘ R2 R’ Yield[%] cis/trans[c] 
~ _ _ _ _ _ ~  ~~ ~ 

3 OC,H5 H H 79 1:l.S 
4 OCH, CH3 H 77 1:Z.l 

6 ChHi H H 28 1:z.o 
5 H -O-CH,-CH,- 72 1 :4.0[d] 

[a] Reaction at 5 ’C for 4 h in dichloromethane. [b] Elemental analyses and/or 
high-resolution mass spectra were obtained for 3-6; the identification and 
assignment of the isomers were performed by comparison with data from the 
literature [12]. [c] Assigned by ‘H NMR spectroscopy and GC-MS. [d] endolexo. 

intermediate during these reactions have not been successful. 
Reactions of equimolar amounts of 9-(9 H)-diazofluorene 

(7) with enol ethers in the presence of 2 (2 mol%) also afford 
the corresponding spirocyclopropanes 8[131 - 11 in good to very 
good yields (Scheme2, Table 2).[141 Again, no [2+1] cyclo- 

R1 
/ 

Direct evidence for 13 during the reaction of 7 with ethyl 
vinyl ether in the presence of 2 ( 5  mol%) by I3C NMR 
spectroscopy is provided by “freezing” the reaction by cooling 
to -30°C. In the range between 6=200 and 380, the 13C 
NMR spectrum (Figure 1) exhibits the signals of 13 (6= 
217.58, 238.92, 361.32), 2 (6 = 216.04, 224.31), and of hexa- 
carbonylchromium(o). In addition, further signals are ob- 
served which could not be assigned. 

- 6  

Figure 1. Section of the ”C NMR spectrum (125.6 MHz. CDCI,, 243 K) 
recorded during the reaction of 7 with ethyl vinyl ether catalyzed by 2. 

Scheme 3 presents a catalytic cycle that is consistent with 
the experimental results; however, the detailed mechanism of 
the carbene transfer from the carbene complex to the alkene 
remains unclear. 

8-11 

7 
Scheme 2. Synthesis of the cyclopropanes 8-11. 1: 2 (2mol%), 2 0 T ,  16 h, 
CH2C12. -Nz. -C,H,,; 25-93%. 

Table 2. Chromium-catalyzed reactions of 9-(9H)-diazofluorene 7 with elec- 
tron-rich alkenes [a] 

Product R‘ R2 R’ Yield[%] Workup Eluent[b] 

8 OCzHI H H 93 A PE/CH2C12 2:3 
9 OCH, CH, H 87 A PE/CH,CI, 1 : 1 
10 H -0-CH,-CH2- 73 A PE/CH2C12 1 : 2 
11 C,H, H H 25 B PE/Et,O 5:  1 

[a] Reaction at 20 ‘C for 8 h in dichloromethane. [b] PE = petroleum ether (40/ 
60). 

addition was observed with alkyl-substituted alkenes.[lll A 
control experiment with ethyl acrylate in the absence of 2 
indicates that 12 is formed by an uncatalyzed [2+1] cyclo- 
addition.[’*] All catalyzed reactions occur with darkening of 
the reaction mixture; thin-layer chromatography (TLC) 
shows the typical violet spot for pentacarbonyl[9-(9H)- 
fluorenylidene]chromium(O) (13), which, in the absence of 
alkenes, is isolable from stoichiometric reactions of 2 with 7.L91 

12 13 

Scheme 3. Catalytic cycle of the 
additions. 

chromium complex catalyzed [2 + 11 cyclo- 

The chromium-catalyzed reactions of 1 and 7 with alkenes 
proceed with pronounced chemoselectivity with regard to the 
electronic properties of the olefin substituents. The prefer- 
ence of electron-rich C - C double bonds can be rationalized 
in terms of the electrophilic character of the postulated or 
detected intermediates [ (CO),Cd(H)CO,Et] and 13, re- 
spectively. 

We have demonstrated that chromium(0) complexes can 
efficiently catalyze cyclopropanations. The presence of a 
weakly coordinated ligand such as cis-cyclooctene, which 
dissociates under mild conditions, generating the catalytically 
active species “Cr(CO),”, is crucial. Furthermore, the obser- 
vation of 13 by 13C NMR spectroscopy represents the first 
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direct evidence for a carbene complex intermediate during a 
[2+l] cycloaddition catalyzed by a transition metal complex. 
Further studies on the mechanism and the stereochemical 
course of the reactions are in progress. 

Experimental Section 

General procedures: All reactions were performed under argon. Solvents were 
dried and degassed according to standard procedures. Yields refer to products 
isolated after column chromatography. Compounds 1 [16], 2 [17], and 7 (181 were 
synthesized according to literature methods. 
3-6: A solution of 1 (1.14 g, 10 mmol) in CHzCIZ (20 mL) was added dropwise 
over 4 h to a stirred solution of 2 (0.15 g,OS mmol, 5 mol%) in the corresponding 
alkene (50 mmol), precooled to 5 "C. The reaction mixture changed color from 
yellow to green-brown under evolution of N,. After the mixture had been stirred 
for a further 8 h at 20°C and the solvent and excess alkene had been removed 
under reduced pressure, the residue was purified by column chromatography 
(petroleum ether (40160)/Etz0 2:l). 

8-11 A solution of 7 (0.57 g, 3 mmol) in CH2CJ2 (30 mL) was added dropwise 
over 8 h to a stirred solution of the corresponding alkene (3 mmol) and 2 (0.02 g, 
0.06 mmol, 2 mol%) in CH,CI, (10 mL). The reaction mixture changed color 
from yellow to brown-violet under the evolution of NZ. After the mixture had 
been stirred for a further 8 h at 20°C and the solvent had been removed under 
reduced pressure, workup was performed according to one of the following 
procedures (see Table 2). 

A: Workup by column chromatography. 

B: The residue was washed several times with portions of petroleum ether(40160) 
(10 mL) and filtered until only bis[9-(9H)-fluorenyIidene]azine could be 
detected in the solution (TLC-control, petroleum ether (40/60)/CH2CI2 1 :1, 
Rf=0.35). The combined filtrates were concentrated, and purified by column 
chromatographic workup. 

9: 'H NMR (500 MHz, CDCI,): 6 = 7.89 (d, 1 H), 7.88 (d, 1 H), 7.52 (d, 1 H), 7.41 (t, 
1H), 7.39 (t. lH) ,  7.34 (t. lH) ,  7.32 (t, lH) ,  7.18 (d, lH),  3.04 (s, 3H), 2.27 (dd, 

0.49 Hz, 3H; CH,); '.'C NMR (125.6 MHz, CDCI?): 6 =  144.9, 144.7, 141.1, 139.9 
(4 quart. C), 126.5 (CH), 126.0 (CH), 125.82 (CH), 125.78 (CH), 122.7 (CH), 121.5 
(CH), 119.9 (CH), 119.5 (CH), 70.3 (s, 1 C; C-2). 54.8 (9.1 C; OCH,), 41.5 (s, 1 C; 
C-l), 30.4 (t, ' J =  160.8 Hz. 1 C; C-3), 16.8 (9, 1 C, CH,); IR (KBr): qcm-') = 3059 
(m), 2962 (rn), 1473 (s), 1442 (s), 1240 (vs), 1065 (vs), 813 (s), 736 (vs); MS (EI, 
70 ev): m / z  (%): 236 (95) [M+], 221 (100) [ M -  -CH,], 205 (35) [Mi - OCH,], 
178 (50) [C14Hlo+], 165 (44) [Cl,Hy+], 152 (25) [CIzH8+]; elemental analysis calcd 
for CI7Hl60 (236.31): C 86.41, H 6.82; found: C 86.11, H 6.82. 
lO:'HNMR(5M)MH~,CDCI~):6=7.87(d,1H),7.75(d,1H),7.40(t,lH),7.32 
(t. ZH), 7.25 (d, 1 H), 7.24 (t, 1 H), 6.80 (d, 1 H), 4.65 (d, '3 = 5.76 Hz, 1 H; H-l), 

'Js6.15 HZ, 4J = 0.55 Hz, 1 H; H-3), 1.91 (d, '3 ~ 6 . 1 5  Hz, 1 H; H-3), 1.82 (d, 4J = 

4.48-4.39 (m. 2H; H-3), 2.62 (ddd, ?I= 1.76, 5.68, 7.37 Hz, 1 H ;  H-9, 2.48-2.31 
(m, 2H; H-4); 13C NMR (125.6 MHz, CDCI,): 6 = 145.9, 141.6, 141.4, 138.3 
(4quart. C) ,  126.8 (CH). 126.2 (CH), 125.9 (CH), 125.8 (CH), 123.0 (CH), 120.2 
(CH), 119.5 (CH), 118.4 (CH), 77.0 (t, 1 C; C-3). 71.6 (d, ' J =  199.43 Hz, 1 C; C-l), 
43.8 (s, 1 C; C-6), 33.6 (d, ' J =  173.3 Hz, 1 C; C-5). 25.6 (t. 1 C; C-4); IR (KBr): 
qcm-I) = 3032 (m), 2968 (m), 1438 (vs), 1340 (vs), 1039 (s), 927 (s), 744 (vs); MS 
(EI, 70 ev): m/z (%): 234 (78) [M'], 205 (85) [M+- C2Hs]. 178 (100) [Cl,Hil,+], 
165 (25) [C,,Hy+]; elemental analysis calcd for CI,H140 (234.30): C 87.15, H 6.02; 
found: C 86.73, H 6.05. 

11: 'H NMR (400 MHz, CDCI,): 6 = 7.85 (d, 1 H), 7.80 (d, lH),  7.41 (t. 1 H), 7.36 
(t. lH),7.30-7.19(m,7H),6.92 (t, 1H),6.15 (d, 1H),3.38 (t,?1=8.41 Hz, 1H;  H- 
2). 2.22 (d, 3J=8.41 Hz, 2H; H-3); "C NMR (100.6 MHz, CDCIJ: 6=148.2, 
144.2, 140.4, 139.6, 137.1 (5quart. C), 130.1 (ZCH), 128.1 (2CH). 126.8 (CH), 
126.7 (CH), 126.0 (CH), 125.8 (CH), 125.7 (CH), 121.5 (CH), 119.7 (CH), 119.6 
(CH),118.5(CH),35.5(s,lC;C-l),34.9(d,'J=160.6Hz, lC;C-2),22.3(t, 'J= 
162.3 Hz, 1 C; C-3); IR (KBr): qcm-I) = 3055 (m), 3034 (m), 1496 (m). 1444 (s) ,  
777 (vs), 748 (vs), 696 (vs); MS (El, 70eV): m/z (%): 268 (100) [M+], 252 (40) 
[M+-CH,], 165 (25) [C13H9+]. 91 (17) [C,H,+]; MS-HR calcd for CZ1Hl6: 
268.1252; found: 268.1249. 
Two control experiments in the absence of 2 and in the presence of [Cr(CO),] 
(10 mol%), respectively, have been performed for each catalytic reaction under 
the reaction conditions described above. A (2 + I] cycloaddition was observed in 
the absence of the chromium complexes 1151 only in the reaction of ethyl acrylate 
with 7. 

Received: August 13,1997 [Z108071E] 
German version: Angew. Chem. 1997,109,2948-2950 

Keywords: carbene complexes - chromium . cyclopropana- 
tions - homogeneous catalysis 

[l] Reviews: a) M. P. Doyle, in Comprehensive Organometallic Chemistry 2, 
V01. 12 (Eds.: E. W. Abei, E G. A. Stone, G. Wilkinson), Pergamon, New 
York, 1995, p. 387; b) S. D. Burke, P. A. Grieco, Org. React. (NY) 1979,26, 
361; c) M. P. Doyle, Chem. Rev. 1986,86,919; d) A. Padwa, K. E. Krumpe, 
Tetrahedron 1992, 48, 5385. 

[2] Reviews: a) H:U. Reissig, Methoden Org. Chem. (Houben-Weyl) 4th ed. 
1952-, Vol. E21c, p. 3179; b) A. Pfaltz, Acc. Chem. Res. 1993, 26, 339; c) 
M. P. Doyle in Cafalyfic Asymmetric Synthesis (Ed.: I. Ojima), VCH, New 
York, 1993.63; d) T. Aratani, Pure Appl. Chem. 1985,57, 1839. 

[3] a) M. P. Doyle, J. H. Griffin, V. Bagheri, R. L. Dorow, Organometaliics 1984, 
3, 53; b) M. P. Doyle, R. L. Dorow, W. E. Buhro, J. H. Griffin, W. H. 
Tamblyn, M. L. Trudell, ibid. 1984,3,44. 

[4] a) W. A. Herrmann, Angew. Chem. 1978, 90, 855; Angew. Chem. Int. Ed. 
En@. 1978,17,800; b) W. A. Herrmann, J. L. Hubbard, I. Bernal, J. D. Korp, 
B. L. Haymore, G. L. Hillhouse, Inorg. Chem. 1984,23,2978. 

[5 ]  a) I? Schwab, M. B. France, J. W. Ziller, R. H. Grubbs, Angew. Chem. 1995, 
107,2179; Angew. Chem. Inf. Ed. Engl. 1995,34,2039; b) P. Schwab, J. W. 
Ziller, R. H. Grubbs, J.  Am. Chem. SOC. 1996,118,100. 

161 Review: M. Brookhart, W. B. Studabaker, Chem. Rev. 1987,87411. 
[7] a) H. Nishiyama, Y. Itoh, H. Matsumoto, Y. Sugawara, K. Itoh, Bull. Chem. 

SOC. Jpn. 199568,1247; b) S.-B. Park, N. Sakata, H. Nishiyama, Chem. Eur 
J. 1996,2, 303. 

[S] a) M. I? Doyle, R. L. Dorow, W. L. Tamblyn, J. Org. Chem. 1982,47,1538; b) 
M. I? Doyle, J. G. Davidson, ibid. 1980,43,1538. 

[9] K. H. Dotz, J. Pfeiffer, Chem. Commun. 1996, 895. 
[10] The formal carbene dimers diethyl maleate and -fumarate were isolated as 

by-products. 
1111 1-Hexene, cyclohexene, cyclooctene, furan, and ethyl acrylate were 

examined. 
[12] 3 , 4 :  M. P. Doyle, D. van Leusen, W. H. Tamblyn, Synthesis 1981,787; 5: I. 

Reichelt, H.-U. Reissig, Chem. Ber. 1983, 116, 3895; 6:  M. I? Doyle, K.-L. 
Loh, K. M. DeVries, M. S. Chinn, Tetrahedron Lett. 1987,28,833. 

[13] T. W. Hanks, P. W. Jennings, J. Am. Chem. SOC. 1987,109,5023. 
1141 The formal carbene dimer 9,9'-bisfluorenylidene and bis[9-(9H)-fluorenyl- 

idenelazine were isolated. 
[15] The uncatalyzed [2 + 11 cycloaddition of 7 is known, for example, for 

reaction with methyl acrylate: L. Homer, E. Lingnau, Liebigs Ann Chem. 
1955.591.21. 

[16] N. E. Searle, Org. Synth. Coll. Vol. 4 1963,424. 
1171 E W. Grevels, V. Skihbe, J. Chem. SOC. Chem. Commun. 1984, 681. 
[18] A. Schonberg, W. Awad, N. Latif, J. Chem. SOC. 1951,1368. 

Creation of Enantioselective Biocatalysts for 
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The development of chiral catalysts for the enantioselective 
synthesis of optically active compounds is of great acadernid1l 
and industrial interest.[*] Inspite of worldwide intensive 
research in the area of homogeneous transition metal 
catalysis, the number of really efficient enantioselective 
catalysts is limited. Owing to a lack of general principles, 
the development of a single highly effective chiral catalyst 
requires laborious preparation and testing of many ligands. 
Alternatively, biocatalysts can be used, but by nature the 
problem of limited substrate specificity per~ists.1~1 In some 
cases site-directed mutagenesis can be applied to improve 
enzyme activity and selectivity but not in a general way, 
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