SYNTHESIS AND MASS SPECTRA OF 4-*O*-ACETYL-1,5-ANHYDRO-2,3,6-TRI-*O*-ETHYL-D-GLUCITOL AND THE POSITIONAL ISOMERS OF 4-*O*-ACETYL-1,5-ANHYDRO-DI-*O*-ETHYL-*O*-METHYL-D-GLUCITOL AND 4-*O*-ACETYL-1,5-ANHYDRO-*O*-ETHYL-DI-*O*-METHYL-D-GLUCITOL*

SAMUEL G. ZELLER, ANELLO J. D'AMBRA, MICHAEL J. RICE, AND GARY R. GRAY[†] The Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455 (U.S.A.) (Received September 2nd, 1987; accepted for publication in revised form, March 16th, 1988)

ABSTRACT

Reductive cleavage of fully methylated, partially O-ethylated cellulose or fully ethylated, partially O-methylated cellulose and subsequent acetylation had previously been shown to produce 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-, -6-O-ethyl-2,3-di-O-methyl-, -3-O-ethyl-2,6-di-O-methyl-, -2-O-ethyl-3,6-di-O-methyl-, -2,3-di-O-ethyl-6-O-methyl-, -2,6-di-O-ethyl-3-O-methyl-, -3,6-di-O-ethyl-2-O-methyl-, and -2,3,6-tri-O-ethyl-D-glucitol. Described herein is the independent synthesis of these derivatives, except for the first (which had been reported); and their 1 H-n.m.r. spectra, chemical-ionization (NH₃) mass spectra, and electron-impact mass spectra are tabulated.

INTRODUCTION

In a previous report¹, the applicability of the Reductive Cleavage Method² for establishing the positions of substitution of methoxy or ethoxy groups in partially-methylated or -ethylated cellulose was demonstrated. The strategy employed in these analyses was to ethylate *O*-methylcellulose fully and methylate *O*-ethylcellulose fully, and then to carry out reductive cleavage and acetylation in the usual way³. Subsequent g.l.c. analysis was expected to reveal the presence of only eight products (1-8) and, indeed, all eight were observed when commercial samples of *O*-methylcellulose and *O*-ethylcellulose were analyzed. The identities of these components were established by comparison to independently synthesized standards by g.l.c. retention-time and by their electron impact (e.i.) and chemical ionization (c.i.) mass spectra. Compound 1 was available from previous work⁴; consequently, reported herein is the synthesis of compounds 2-8. Also reported herein are e.i.- and c.i.-mass-spectral data for compounds 2-8, as an aid to those who may wish to use this method.

^{*}This investigation was supported by Grant GM34710 awarded by the Department of Health and Human Services.

[†]To whom correspondence should be addressed.

RESULTS AND DISCUSSION

Synthesis. — The various manipulations employed in the syntheses were standard, and therefore the intermediates were usually not isolated and fully characterized. The product of each reaction was, however, checked by ¹H-n.m.r. spectroscopy, to ensure completion of protection or deprotection.

4-O-Acetyl-1,5-anhydro-6-O-ethyl-2,3-di-O-methyl-D-glucitol (2) and 4-Oacetyl-1,5-anhydro-2,3-di-O-ethyl-6-O-methyl-D-glucitol (5) were prepared as shown in Scheme 1. Methylation⁵ of methyl 4,6-O-benzylidene- α -D-glucopyranoside gave 9a, which was subsequently treated with a mixture of lithium aluminum hydride and aluminum chloride as described by Liptak *et al.*⁶, to yield 10a and its corresponding 6-O-benzyl regioisomer (11a) in the ratio of 7:3. Chromatography of this mixture on silica gel afforded pure 10a and 11a, which were distinguished by the ¹H-n.m.r. spectra of their acetates. The H-6 and H-6' resonances of acetylated 10a were observed at δ 4.25 as an apparent doublet (J 3.4 Hz), whereas the H-4 resonance of acetylated 11a was observed at δ 4.95 as an apparent triplet (J 9.4 Hz). The conversion of 10a into 2 was accomplished by sequential ethylation to produce 12a, reductive cleavage³ thereof to give 13a, catalytic hydrogenolysis, and acetylation.

Compound 5 was produced by the same sequence of reactions shown in Scheme 1, with the exceptions that 9b was formed by ethylation of methyl 4,6-O-benzylidene- α -D-glucopyranoside, and 12b was produced by methylation of 10b. Reductive opening of the benzylidene acetal of 9b was found to give a greater proportion (90%) of the favored regioisomer (10b) than was observed when 9a was used as the starting material.

The synthesis of compounds **3**, **4**, **6**, and **7** was accomplished as outlined in Scheme 2. The strategy employed in these syntheses was the same as that for the synthesis of compounds **2** and **5** (see Scheme 1), in that reductive opening of a 4,6-O-benzylidene protecting group was used to derive a 4-O-benzyl protecting group. The strategy employed for synthesizing compounds **3**, **4**, **6**, and **7** differed, however, from that used in the synthesis of compounds **2** and **5**, in that it allowed independent alkylation of each of the 2-, 3-, and 6-hydroxyl groups. The syntheses therefore differed only in the sequence of methylation and ethylation reactions. The synthesis of 4-O-acetyl-1,5-anhydro-2-O-ethyl-3,6-di-O-methyl-D-glucitol (**4**) is

Scheme 1

representative. 1,2:5,6-Di-O-isopropylidene-3-O-methyl- α -D-glucofuranose (14a) was converted into 16a by standard procedures. Ethylation⁵ of 16a afforded 17a, which, upon treatment⁶ with lithium aluminum hydride and aluminum chloride, gave the anomeric 6-O-benzyl (18a) and 4-O-benzyl (19a) regioisomers in the ratio of 3:7. The mixture of 18a and 19a was not separated, but was methylated⁵, to yield a mixture of 20a and 21a. Reductive cleavage³ of the mixture of 20a and 21a afforded a 3:7 mixture of 22a and 23a that was readily resolved by chromatography on silica gel. Debenzylation of 23a, and acetylation of the product, afforded 4.

The regiochemistry that was observed for reductive opening of the benzylidene acetal of **17a,b** was the same as was observed for **9a,b** (see Scheme 1); *i.e.*, the 4-O-benzyl and 6-O-benzyl regioisomers were produced in the ratio of 7:3 if a methoxy group was present at C-3, but in the ratio of 9:1 if an ethoxy group was present thereat. Due to the fact that each of the regioisomers was present as an anomeric mixture of glycosides, which made separation difficult, the syntheses were continued with the mixture (**18a** + **19a**, or **18b** + **19b**) of regioisomers **22** and **23** was readily accomplished by chromatography on silica gel, and the 4-O-benzyl regioisomers (**23**) were selected for deprotection and acetylation.

Synthesis of the remaining 4-O-acetyl-1,5-anhydro-D-glucitol derivative (8) was accomplished from cyclomaltoheptaose by successive ethylation⁵, reductive cleavage³, and acetylation.

¹*H-N.m.r. spectra.* — The ¹*H*-n.m.r. spectra of compounds **2-8** were compared to the previously reported⁴ spectrum of **1**. All spectra displayed the expected triplet (J 9.2 Hz) for H-4 at δ 4.8, which is characteristic^{4,7,8} for 4-*O*-acetyl-1,5-

anhydro-D-glucitol derivatives. Interestingly, the H-4 triplet was broadened in the spectra of derivatives (2, 6-8) that contained an ethoxy group at C-6, and this broadening may arise as a consequence of rotational preferences of the exocyclic ethoxymethyl group. All spectra also displayed the expected doublet of doublets (J 5 and 11 Hz) for H-1e, and this resonance was downfield ($\delta 4.105 \pm 0.010$ p.p.m.) in the spectra of 2-O-methyl derivatives (1-3, and 7) as compared to 2-O-ethyl derivatives (4-6, and 8), where it was observed at $\delta 4.060 \pm 0.006$ p.p.m. The chemical shift of the O-acetyl resonance was likewise found to depend upon the vicinal (O-3) substituent; *i.e.*, in 3-O-methyl derivatives (1, 2, 4, and 6), the acetyl resonance was observed at $\delta 2.105 \pm 0.002$ p.p.m., whereas, in 3-O-ethyl derivatives (3, 5, 7, and 8), the acetyl resonance was observed slightly upfield at $\delta 2.091 \pm 0.005$ p.p.m.

Analysis of the chemical shifts of the O-methyl resonances and the C-methyl resonances of the O-ethyl groups also revealed a pattern consistent with their positions of substitution. The 2-O-, 3-O-, and 6-O-methyl resonances were observed at δ 3.48, 3.54, and 3.35, respectively, and the chemical shifts of these resonances were independent of other substituents in the positional isomers. The C-methyl resonances of the O-ethyl groups were not quite as characteristic, however. The C-methyl resonances of 2-O-ethyl and 6-O-ethyl groups were consistently observed together, at δ 1.19, whereas the C-methyl resonances of 3-O-ethyl groups were observed slightly upfield, at δ 1.16.

The spectra of these derivatives are therefore fully in accord with the expected positions of substitution of all acetyl, methyl, and ethyl groups.

Mass spectra. — Some preliminary conclusions can be drawn that permit a distinction to be made among positional isomers. One of the major fragmentation pathways (see Scheme 3) for these derivatives begins with loss⁹ of the exocyclic methoxymethyl group (M - 45) or ethoxymethyl group (M - 59), to give fragment ions **24a** or **24b**, respectively. The further elimination of methanol or ethanol from the (M - 45) ion (**24a**) gives rise to fragment ions **25a** (M - 77) and **25b** (M - 91), respectively, whereas the elimination of methanol or ethanol from the (M - 59) ion (**24b**) gives rise to fragment ions **25b** (M - 91) and **25c** (M - 105), respectively. A fragment ion (**26a**) at (M - 105) is also formed by elimination of acetic acid from the (M - 45) ion (**24a**), but elimination of acetic acid from the (M - 59) ion (**24b**) gives a fragment ion at (M - 119).

It was anticipated that the further elimination of methanol or ethanol, as appropriate, from fragment ions 25a-c would give rise to an ion at m/z 139; however, this ion was not observed in the mass spectrum of any of the positional isomers (1-8). Similarly, elimination of methanol or ethanol from fragment ion 26 would give rise to ions at m/z 111 (R¹ = Me) or m/z 125 (R² = Et). The latter ions were observed in low intensity in the mass spectra of compounds 1-8, but they appeared to arise *via* fragmentation pathways either in addition to, or instead of, the one depicted in Scheme 3.

There was excellent correlation, however, between the presence or absence of fragment ions at (M - 45), (M - 59), (M - 77), (M - 91), and (M - 105) and the positions of substitution of O-methyl and O-ethyl groups (see Table I). For example, the (M - 45) fragment ion (24a) was present only in the mass spectra of 6-O-methyl derivatives, whereas the (M - 59) fragment ion (24b) was present only in the mass spectra of 6-O-ethyl derivatives. The further elimination of methanol or ethanol from fragment ions 24a,b also displayed complete regiospecificity, *i.e.*, loss of the alkoxy group from C-3. The (M - 77) fragment-ion was therefore only observed in the spectra of derivatives (1 and 4) that contained methoxy groups at both C-3 and C-6. Similarly, the (M - 91) fragment ion was observed in the spectra of derivatives (2 and 6) that contained 3-methoxy and 6-ethoxy groups as well as derivatives (3 and 5) that contained 3-ethoxy and 6-methoxy groups. The (M -105) fragment ion (26a), which arises by elimination of acetic acid from the (M - M)45) fragment ion (24a), was present in the mass spectra of all 6-O-methyl derivatives (1, 3, 4, and 5), as expected. The (M - 105) fragment-ion (25c) was also present in the mass spectra of both 3,6-di-O-ethyl derivatives (7 and 8) as a consequence of elimination of ethanol from the (M - 59) fragment-ion 24b.

It should be pointed out that, because loss of the exocyclic methoxymethyl group or ethoxymethyl group (see Scheme 3) is a major fragmentation-pathway, compounds differing only in substitution at O-6 will give exactly the same series of fragment ions. For example, loss of the exocyclic methoxymethyl group of 1 gives an (M - 45) ion at m/z 203, whereas loss of the exocyclic ethoxymethyl group of 2 gives an (M - 59) ion at the same m/z value (203). Subsequent fragment-ions arising from the m/z-203 ion will obviously be identical. Identical results are obtained for the three other such pairs of compounds, namely, 4 and 6, 3 and 7, and 5 and 8. The mass spectra of the members of these pairs differ, however, in other ways, that allow a distinction to be made. Of particular significance, the m/z-45 ion (MeOCH $\frac{1}{2}$) is always greater in intensity than the m/z-59 ion (EtOCH $\frac{1}{2}$) in 6-O-methyl derivatives whereas the m/z-59 ion is greater in intensity than the m/z-45 ion in 6-O-ethyl derivatives. The members of these pairs are also readily distinguished by c.i.m.s., because, within each pair, each compound has a different molecular weight.

TABLE I

Compound	Mol. wt.	(M - 45)	(M - 59)	(M - 77)	(M - 91)	(M - 105)
l ^a	248	+		+		+
2	262	_	+	_	+	-
3	262	+		_	+	+
4	262	+		+		+
5	276	+		_	+	+
5	276		+	_	+	
7	276		+		_	+
3	290		+			+

SELECTED FRAGMENTS OBSERVED IN THE ELECTRON-IMPACT MASS SPECTRA OF COMPOUNDS $1\!-\!8$

^aData from ref. 4.

EXPERIMENTAL

General. — Methylations and ethylations were conducted by a modification⁵ of the Hakomori¹⁰ procedure. Benzylidenations were performed as described by Evans¹¹. Reductive cleavages were achieved with triethylsilane as the reducing agent and a mixture of trimethylsilyl methanesulfonate and boron trifluoride etherate as the catalyst, as previously described³. 1,2:5,6-Di-O-isopropylidene- α -D-glucofuranose and methyl 4,6-O-benzylidene- α -D-glucopyranoside were obtained from Pfanstiehl and Aldrich, respectively. Elemental analyses were performed by M-H-W Laboratories, Inc., Phoenix, Arizona, on samples purified by m.p.l.c. on a column (0.8 × 25 cm) of silica gel in 2:1 (v/v) hexane–ethyl acetate.

¹H-N.m.r. spectra were recorded with an IBM NR-200 AF n.m.r. spectrometer for solutions in CDCl₃, and were referenced to internal tetramethylsilane (CHCl₃ resonance at δ 7.262). G.l.c.-m.s. analyses were performed by using either a Finnigan 4000 mass spectrometer equipped with a VG Multispec data system or a VG Analytical Ltd Model VG 7070E-HF high-resolution, double-focusing mass spectrometer. Medium pressure liquid chromatography (m.p.l.c.) was carried out in an instrument consisting of a Rheodyne 7125 injector, Eldex model B-100-S4 pump, Scientific Systems model LP-21 pulse dampener, and Waters Associates differential refractometer. Chromatography was conducted on 40A silica gel (35–70 mesh) from Merck.

4-O-Acetyl-1,5-anhydro-6-O-ethyl-2,3-di-O-methyl-D-glucitol (2). - Methylation⁵ of methyl 4,6-O-benzylidene- α -D-glucopyranoside gave **9a** in 82% yield. Treatment of **9a** with a mixture of 5 equiv. of LiAlH_4 and 5 equiv. of AlCl₃ as described by Liptak et al.⁶, afforded a 7:3 mixture of 10a and 11a, respectively, in 83% yield. Chromatography (m.p.l.c.) of the mixture of 10a and 11a on a column $(2.1 \times 30 \text{ cm})$ of silica gel and elution with hexane; ethyl acetate (2:1, v/v) afforded pure 10a in 58% yield from 9a. Ethylation⁵ of 10a gave 12a (61%), which was converted to 13a (78%) by reductive cleavage³ in the presence of 5 equiv. each of triethylsilane and trimethylsilyl methanesulfonate and 1 equiv. of boron trifluoride etherate. Debenzylation of 13a in EtOH with H₂ at 101 kPa in the presence of Pd for 18 h, and acetylation of the product, yielded 2 as an oil; ¹H-n.m.r.: δ 1.196 (t, 3 H, J 7.0 Hz, 6-O-ethyl CH₃), 2.103 (s, 3 H, AcO), 3.480 (s, 3 H, MeO-2), 3.530 (s, 3 H, MeO-3), 3.08–3.49 (complex, 8 H, H-1a, 2, 3, 5, 6, 6', ethyl CH₂), 4.11 (dd, 1 H, J 4.7, 10.9 Hz, H-1e), and 4.82 (broadened t, 1 H, J 9.3 Hz, H-4); g.l.c.c.i.m.s. (NH₃, positive): m/z 263 (100) and 280 (48); g.l.c.-e.i.m.s.: m/z 43 (100), 45 (14), 58 (42), 59 (25), 97 (39), 101 (10), 111 (6), 129 (11), 143 (13), 171 (12), and 203 (7).

Anal. Calc. for C₁₂H₂₂O₆: C, 54.95; H, 8.45. Found: C, 54.90; H, 8.45.

4-O-Acetyl-1,5-anhydro-3-O-ethyl-2,6-di-O-methyl-D-glucitol (3). — Ethylation⁵ of 1,2:5,6-di-O-isopropylidene- α -D-glucofuranose, and hydrolysis with 50% acetic acid for 24 h at reflux gave 3-O-ethyl-D-glucose, which was converted into the anomeric methyl 3-O-ethyl- α , β -D-glucopyranosides (**15b**) by refluxing for 24 h

.

with M HCl in methanol. Successive benzylidenation¹¹ and methylation⁵ of **15b**, and reduction (LiAlH₄-AlCl₃)⁶ of the product gave a mixture of the 6-*O*-benzyl (**18b**) and 4-*O*-benzyl (**19b**) regioisomers in 78% yield. The **18b**, **19b** mixture was subjected to methylation⁵ and reductive cleavage³, to yield **22d** and **23d** in the ratio of 1:9 (69% yield). Chromatography (m.p.l.c.) of the mixture of **22d** and **23d** on a column (0.8×25 cm) of silica gel, and elution with 1:1 (v/v) hexane-ethyl acetate afforded pure **23d**. Debenzylation (H₂, Pd) of **23d**, and acetylation of the product, gave **3** as an oil; ¹H-n.m.r.: δ 1.159 (t, 3 H, *J* 7.0 Hz, 3-*O*-ethyl CH₃), 2.095 (s, 3 H, AcO), 3.352 (s, 3 H, MeO-6), 3.482 (s, 3 H, MeO-2), 3.07–3.84 (complex, 8 H, H-1a,2,3,5,6,6', ethyl CH₂), 4.10 (dd, 1 H, *J* 4.3, 10.9 Hz, H-1e), and 4.797 (t, 1 H, *J* 9.2 Hz, H-4); g.l.c.-c.i.m.s. (NH₃, positive): *m/z* 263 (100) and 280 (58); g.l.c.-e.i.m.s.: *m/z* 43 (100), 45 (84), 57 (20), 58 (77), 59 (56), 60 (13), 69 (25), 71 (20), 74 (15), 85 (15), 87 (40), 88 (26), 89 (29), 97 (38), 99 (20), 111 (7), 117 (25), 125 (4), 129 (20), 143 (5), 157 (26), 171 (13), and 217 (5).

Anal. Calc. for C₁₂H₂₂O₆: C, 54.95; H, 8.45. Found: C. 55.25; H, 8.47.

4-O-Acetyl-1,5-anhydro-2-O-ethyl-3,6-di-O-methyl-D-glucitol (4). — Methylation⁵ of 1,2:5,6-di-O-isopropylidene- α -D-glucofuranose and hydrolysis with 50% acetic acid for 24 h at reflux gave 3-O-methyl-D-glucose, which was converted into a mixture of **18a** and **19a** (80% yield) as described for **3**, except that ethylation was performed. The mixture of **18a** and **19a** was subjected to methylation⁵ and reductive cleavage³, to yield **22a** and **23a** in the ratio of 3:7 (78% yield). Chromatography (m.p.l.c.) of the mixture of **22a** and **23a** on silica gel as described previously for the synthesis of **3** afforded pure **23a**. Debenzylation of **23a** as already described, and acetylation of the product gave **4** as an oil; ¹H-n.m.r.: δ 1.198 (t, 3 H, J 7.0 Hz, 2-O-ethyl CH₃), 2.106 (s, 3 H, AcO), 3.354 (s, 3 H, MeO-6), 3.542 (s, 3 H, MeO-3), 3.11–3.71 (complex, 8 H, H-1*a*,2,3,5,6,6', ethyl CH₂), 4.066 (dd, 1 H, J 5.1, 11.1 Hz, H-1*e*), and 4.798 (t, 1 H, J 9.0 Hz, H-4); g.l.c.–c.i.m.s. (NH₃, positive): *m*/*z* 263 (100) and 280 (55); g.l.c.–e.i.m.s.: *m*/*z* 43 (100), 44 (16), 45 (56), 59 (9), 71 (11), 74 (11), 114 (4), 125 (4), 143 (3), 157 (3), 185 (3), and 217 (2).

Anal. Calc. for C₁₂H₂₂O₆: C, 54.95; H, 8.45. Found: C, 55.03; H, 8.58.

4-O-Acetyl-1,5-anhydro-2,3-di-O-ethyl-6-O-methyl-D-glucitol (5). — Compound 5 was prepared as described for 2, with the following exceptions. Ethylation⁵ of methyl 4,6-O-benzylidene- α -D-glucopyranoside gave 9b, which was converted into a 9:1 mixture of 10b and 11b. Separation of this mixture was accomplished as described for the mixture of 10a and 11a, and the pure 10b was then methylated to give 12b; for 5: ¹H-n.m.r.: δ 1.155 (t, 3 H, J 6.9 Hz, 3-O-ethyl CH₃), 1.189 (t, 3 H, J 6.6 Hz, 2-O-ethyl CH₃), 2.096 (s, 3 H, AcO), 3.354 (s, 3 H, MeO-6), 3.09–3.80 (complex, 10 H, H-1a,2,3,5,6,6', and two ethyl CH₂), 4.058 (dd, 1 H, J 4.6, 10.9 Hz, H-1e), and 4.789 (t, 1 H, J 9.0 Hz, H-4); g.l.c.–c.i.m.s. (NH₃, positive): *m/z* 277 (100) and 294 (72); g.l.c.–e.i.m.s.: *m/z* 43 (100), 44 (20), 45 (42), 57 (11), 59 (14), 60 (11), 69 (13), 72 (33), 73 (22), 87 (10), 88 (12), 97 (15), 99 (10), 117 (10), 125 (6), 143 (11), 159 (5), 171 (12), 185 (6), 203 (2), and 231 (3).

Anal. Calc. for C₁₃H₂₄O₆: C, 56.51; H, 8.75. Found: C, 56.61; H, 8.61.

4-O-Acetyl-1,5-anhydro-2,6-di-O-ethyl-3-O-methyl-D-glucitol (6). — Compound 6 was prepared as described for compound 4, with the exception that the mixture of **18a** and **19a** was ethylated⁵ to yield a mixture of **20b** and **21b**. Reductive cleavage³ of the **20b** + **21b** mixture yielded **22b** plus **23b** in the ratio of 3:7 (68% yield); for 6: ¹H-n.m.r.: δ 1.197 (t, 6 H, J 7.0 Hz, 2- and 6-O-ethyl CH₃), 2.103 (s, 3 H, AcO), 3.543 (s, 3 H, MeO-3), 3.12–3.65 (complex, 10 H, H-1a,2,3,5,6,6', two ethyl CH₂), 4.064 (dd, 1 H, J 5.1, 11.1 Hz, H-1e), and 4.809 (broadened t, 1 H, J 9.3 Hz, H-4); g.l.c.-c.i.m.s. (NH₃, positive): m/z 277 (100) and 294 (31); g.l.c.-e.i.m.s.: m/z 43 (100), 44 (17), 45 (18), 59 (21), 69 (16), 72 (36), 73 (22), 75 (17), 85 (13), 88 (10), 99 (26), 143 (16), 157 (8), 185 (6), and 217 (5).

Anal. Calc. for C₁₃H₂₄O₆: C, 56.51; H, 8.75. Found: C, 56.40; H, 8.60.

4-O-Acetyl-1,5-anhydro-3,6-di-O-ethyl-2-O-methyl-D-glucitol (7). — Compound 7 was prepared as described for compound 3, with the exception that the mixture of **18b** and **19b** was ethylated⁵, to yield a mixture of **20c** and **21c**. Reductive cleavage³ of the **20c** + **21c** mixture yielded **22c** and **23c** in the ratio of 1:9 (85% yield); for 7: ¹H-n.m.r.: δ 1.153 (t, 3 H, J 6.9 Hz, 3-O-ethyl CH₃), 1.187 (t, 3 H, J 7.0 Hz, 6-O-ethyl CH₃), 2.086 (s, 3 H, AcO), 3.474 (s, 3 H, MeO-2), 3.07–3.84 (complex, 10 H, H-1a,2,3,5,6,6', two ethyl CH₂), 4.095 (dd, 1 H, J 4.2, 10.9 Hz, H-1e), and 4.808 (broadened t, 3 H, J 9.2 Hz, H-4): g.l.c.-c.i.m.s. (NH₃, positive): m/z 277 (100) and 294 (8); g.l.c.-e.i.m.s.: m/z 43 (100), 45 (23), 57 (18), 58 (43), 59 (41), 60 (12), 61 (10), 69 (21), 71 (16), 73 (15), 74 (13), 85 (30), 87 (25), 88 (21), 89 (43), 97 (61), 99 (31), 101 (88), 102 (15), 103 (18), 111 (17), 113 (13), 114 (14), 115 (18), 117 (34), 125 (15), 129 (40), 130 (12), 142 (23), 143 (15), 157 (70), 159 (15), 171 (51), and 217 (29).

Anal. Calc. for C₁₃H₂₄O₆: C, 56.51; H, 8.75. Found: C, 56.78; H, 8.61.

4-O-Acetyl-1,5-anhydro-2,3,6-tri-O-ethyl-D-glucitol (8). - Cyclomaltohepta-

ose was ethylated by the standard procedure and the product was re-ethylated to give the fully ethylated derivative in 78% yield. Minor, polar contaminants were removed by chromatography (m.p.l.c.) on a column (0.8×25 cm) of silica gel in 1:1 (v/v) hexane-ethyl acetate; reductive cleavage³ then afforded 1,5-anhydro-2,3,6-tri-O-ethyl-D-glucitol (69%), which was acetylated. Chromatography (m.p.l.c.) under the same conditions afforded pure **8** as an oil; ¹H-n.m.r.: δ 1.152 (t, 3 H, J 6.9 Hz, 3-O-ethyl CH₃), 1.186, 1.193 (two t, 6 H, J 7.0 Hz, 2- and 6-O-ethyl CH₃), 2.092 (s, 3 H, AcO), 3.10–3.86 (complex, 12 H, H-1*a*,2,3,5,6,6', three O-ethyl CH₂), 4.054 (dd, 1 H, J 4.9, 11.1 Hz, H-1*e*), and 4.804 (broadened t, 1 H, J 9.3 Hz, H-4); g.l.c.-c.i.m.s. (NH₃, positive): *m*/z 291 (100) and 308 (50); g.l.c.-e.i.m.s.: *m*/z 43 (100), 44 (20), 45 (17), 57 (16), 59 (21), 60 (11), 69 (14), 72 (37), 73 (25), 85 (12), 88 (13), 97 (23), 99 (13), 101 (20), 117 (12), 125 (9), 143 (22), 171 (14), 185 (14), 217 (3), and 231 (7).

Anal. Calc. for C₁₄H₂₆O₆: C, 57.91; H, 9.03. Found: C, 58.17; H, 9.01.

REFERENCES

1 A. J. D'AMBRA, M. J. RICE, S. G. ZELLER, P. R. GRUBER, AND G. R. GRAY, *Carbohydr. Res.*, 177 (1988) 111-116.

- 2 D. ROLF AND G. R. GRAY, J. Am. Chem. Soc., 104 (1982) 3539-3541.
- 3 J.-G. JUN AND G. R. GRAY, Carbohydr. Res., 163 (1987) 247-261.
- 4 D. ROLF, J. A. BENNEK, AND G. R. GRAY, Carbohydr. Res., 137 (1985) 183-196.
- 5 A. B. BLAKENEY AND B. A. STONE, Carbohydr. Res., 140 (1985) 319-324.
- 6 A. LIPTÁK, I. JODÁL, AND P. NÁNÁSI, Carbohydr. Res., 44 (1975) 1-11.
- 7 D. ROLF AND G. R. GRAY, Carbohydr. Res., 152 (1986) 343-349.
- 8 S. A. VODONIK, AND G. R. GRAY, Carbohydr. Res., 175 (1988) 93-102.
- 9 N. K. KOCHETKOV AND O. S. CHIZHOV, Adv. Carbohydr. Chem., 21 (1966) 39-93.
- 10 S. HAKOMORI, J. Biochem. (Tokyo), 55 (1964) 205-208.
- 11 M. E. EVANS, Carbohydr. Res., 21 (1972) 473-475.