Palladium(II)-Catalyzed Highly Regio- and Diastereoselective Cyclization of Difunctional Allylic \mathbf{N}-Tosylcarbamates. A Convenient Synthesis of Optically Active 4-Vinyl-2-oxazolidinones and Total Synthesis of 1,4-Dideoxy-1,4-imino-L-xylitol

Aiwen Lei, Guosheng Liu, and Xiyan Lu*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China
xylu@pub.sioc.ac.cn

Received September 24, 2001

A $\operatorname{Pd}(I I)$-catalyzed cyclization of difunctional allylic N -tosyl carbamates in the presence of halide ions was developed with high regio- and diastereoselectivity. The reaction invol ves aminopalladation of alkene and β-heteroatom elimination to regenerate $\mathrm{Pd}(\mathrm{II})$ species. When the readily available homochiral alcohols were used as substrates, highly optically active 4-vinyl-2-oxazol idinones were easily obtained. The utility of this method was exemplified by the convenient synthesis of 1,4-dideoxy-1,4-imino-L-xylitol.

Introduction

In recent years, a number of palladium(0)-catalyzed reactions that proceed by way of π-allylpalladium have been extensively studied. ${ }^{1}$ However, the attack of nucleophiles to the unsymmetric π-allyl moiety often leads to a mixture of regioisomers. ${ }^{1 a, 2}$ Thus, the control of regioselectivity of the π-allylic substitution has been a major challenge. ${ }^{3}$ Furthermore, nucleophilic substitutions on difunctional substrates such as I are more complicated. Two kinds of π-allyl palladium intermedi ates may arise (II in path a and III in path b), and each further affords two products, making the regioselectivity of this reaction more complicated (Scheme 1). ${ }^{4}$
As we know, instead of forming π-allylpalladium intermediates, the palladium(II) catalyst can coordinate with the carbon-carbon double bond and the latter can be attacked by nucleophiles. ${ }^{5}$ Two paths may arise, which are simpler than those of the π-allyls (Scheme 2).

[^0]We have been interested in using Pd(II)-catalyzed reaction to control the regioselectivity of difunctional substrates such as I. Here, we wish to report a palladium(II)-catalyzed cyclization of 1-substituted butenylene di(N -tosyl cabamates) ${ }^{6}$ giving 4-vinyl-2-oxazol idi nones with high regio- and diastereoselectivity.

Results and Discussion

On the basis of our previous work on $\mathrm{Pd}(\mathrm{II})$-catalyzed reactions, the carbon-palladium bond was quenched by β-heteroatom elimination to regenerate $\mathrm{Pd}(\mathrm{II})$ species. ${ }^{7}$ Treatment of compound 1a with $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$ and LiBr (4 equiv) in THF at room temperature for 10 min afforded product 2a in 97\% yield. Similar results were obtained with 1b-d (Scheme 3).

It was observed that halide ions were extremely important for the process. Reactions with excess chloride ion gave similar results with bromide ion (Scheme 3). No reaction occurred in the absence of halide ions. While no reaction occurred under the catalysis of $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$,
(5) (a) Hirai, Y.; Watanabe, J.; N ozaki, T.; Y okoyama, H.; Yamaguchi, S. J. Org. Chem. 1997, 62, 776. (b) Yokoyama, H.; Otaya, K.; K obayashi, H.; Miyazawa, M.; Yamaguchi, S.; Hirai, Y. Org. Lett. 2000, 2, 2427. (c) Hirai, Y.; Nagatsu, M. Chem. Lett. 1994, 21. (d) Hirai, Y.; Terada, T.; Amemiya, Y.; Momose, T. Tetrehedron Lett. 1992, 33, 7893. (e) Lei, A.; Lu, X. Org. Lett. 2000, 2, 2357.
(6) N -Tosyl carbamates could be used as the efficient nucleophiles in the aminopalladation reaction of alkenes or alkynes under $\operatorname{Pd}(0)$ catalysis. (a) Trost, B. M.; Vranken, D. L.-V. Angew. Chem., Int. Ed. Engl. 1992, 31, 228. (b) Tamaru, Y.; Kimura, M. Synlett 1997, 749. (c) Bando, T.; Harayama, H.; Fukazawa, Y.; Shiro, M.; Fugami, K.; Tanaka, S.; Tamaru, Y. J. Org. Chem. 1994, 59, 1465. (d) Kimura, M.; Wakamiya, Y.; Horino, Y.; Tamaru, Y. Tetrahedron Lett. 1997, 38, 3963. (e) Tamaru, Y.; Hojo, M.; Higashimura, H.; Y oshida, Z. J. Am. Chem. Soc. 1988, 110, 3994.
(7) (a) Mailtis, P. M. TheOrganic Chemistry of Palladium; Academic Press: New York, 1971; Vol. 1, p 79. (b) Maitlis, P. M. Acc. Chem. Res. 1976, 9, 93-99. (c) Kaneda, K.; Uchiyama, T.; Fujiwarka, Y.; Teranishi, S. J. Org. Chem. 1979, 44, 55. (d) Yanagi hara, N.; Lambert, C.; I ritani, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 2753. (e) Lu, X.; Zhu, G.; Wang, Z. Synlett. 1998, 115. (f) Lu, X.; Ma, S. In New Age of Divalent Palladium Catalysis, in Transition Metal Catalyzed Reaction; Murahashi, S.-I., Davies, S. G., Eds.; Blackwell Science: Oxford, 1999; Chapter 6, p 133. (g) Zhang, Q.; Lu, X. J. Am. Chem. Soc. 2000, 122, 7604.

Scheme 1

Scheme 2

Scheme 3

the reaction proceeded smoothly on adding excess LiCl. The reaction did not take place using $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ as the catalyst even in the presence of LiCl . Some ionic palladium species, such as $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{2+}\left[\left(\mathrm{BF}_{4}\right)_{2}\right]^{2-}$, $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{2+}\left[(\mathrm{OTf})_{2}\right]^{2-}$, and $[\mathrm{Pd}(\mathrm{bpy})]^{2+}\left[\left(\mathrm{BF}_{4}\right)_{2}\right]^{2-}$, were ineffective for this reaction.

The reaction can be carried out in one pot using the corresponding allylic alcohol and TsNCO (1.1 equiv) to yield the carbamate first, ${ }^{8}$ followed by the catalytic reaction in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and LiBr at reflux temperature to yield the product. For the 1-substituted allylic al cohols (Z)-3, only one diastereomer $\mathbf{2}$ with trans substituents was obtained (Scheme 4). ${ }^{9}$

When 4-substituted allylic al cohols (Z)-4 (4a, 4b) were used as the starting materials, the reaction under the same conditions also gave cyclization products 5 with high yield and high stereoselectivity of the vinyl group (Scheme 5). These results indicated that both reactions of substituted allylic alcohols $\mathbf{3}$ and $\mathbf{4}$, catalyzed by Pd$(\mathrm{OAc})_{2} / \mathrm{LiBr}$, proceeded smoothly regardless of the substituent on the 1 or 4 position (Schemes 4 and 5).

[^1]Scheme 4

Scheme 5

$Z-4 a: R=M e$

5a (88% yield) $E: Z=93: 7$
Z-4b: $\mathrm{R}=\mathrm{F} \operatorname{Pr}$

5b (84\% yield)

 E:Z>97:3Surprisingly, the reactions of 1-substituted butenylene dicarbamates ($\mathbf{1}-\mathbf{m}$) also gave $\mathbf{2}$ as sole product with high regioselectivity, although both nitrogen atoms of butenylene dicarbamates 1 can attack the Pd(II)-coordinated alkene. No regioisomer 7 was detected. Reactions of 1-substituted butenylene dicarbamates 1, formed in situ from the corresponding diol 6 with TsNCO (2.2 equiv), gave products with high regioselectivity and good yields under the catalysis of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{LiBr}$ in THF at reflux (Scheme 6).

The reactions of (E)-configuration butenylene dicarbamates gave similar results; e.g., the reactions of (E)la and (E)-1I, catalyzed by $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{LiBr}$ in THF, gave

Scheme 6

Scheme 7

$6 m$

total yield: $66 \%(2 m: 7 m=37: 63)$

2a and trans-2l with yields of 79\% and 82\%, respectively (Scheme 6).
Before the mechanism of the reaction was speculated, the reaction of $\mathbf{1 b}$ was tried using $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ as the catalyst, no reaction occurred but only the Pd black precipitated out. Again, the reactions of $\mathbf{1 b}$ and $\mathbf{1 c}$ were tried with $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%) / \mathrm{PPh}_{3}(20 \mathrm{~mol} \%)$, which was regarded as the precursor of the $\mathrm{Pd}(0)$ species. ${ }^{10}$ Both reactions are more complicated than those catalyzed by $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{LiBr}$, yielding $\mathbf{2 a}$ as the sole product. Moreover, the reaction of $\mathbf{1 m}$ catalyzed by $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%) / \mathrm{PPh}_{3}$ ($20 \mathrm{~mol} \%$) gave a mixture of products $\mathbf{2 m}$ and $\mathbf{7 m}$ with poor regiosel ectivity (Scheme 7, compare with the reaction of $\mathbf{1 m}$ in Scheme6). The reaction of substratesimilar to that of $\mathbf{1 m}$ with $\operatorname{Pd}(0)$ has been reported in the literature. ${ }^{11}$

From the different results obtained from the reactions in the presence of different additives (LiBr or PPh_{3}) in addition to the fact that the yields of the reaction were influenced by the halide ions, it is most probably that the reaction proceeds through the $\mathrm{Pd}(\mathrm{II})$ mechanism, ${ }^{12}$ although the $\operatorname{Pd}(0)$ mechanism cannot be completely ruled out. Thus, a mechanism is speculated as follows: first, the Pd(II) species coordinates with the olefinic
(10) $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ was regarded as the precursor of $\mathrm{Pd}(0)$ species due to the in situ reduction of $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(0)$ by PPh_{3}; see: (a) Amatore, C.; J utand, A.; Barki, M. A. Organometallics. 1992, 11, 3009. (b) Ozawa, F.; Kubo, A.; Hayashi, T. Chem. Lett. 1992, 2177. (c) Hayashi, T.; Kubo, A.; Ozawa, F. Pure Appl. Chem. 1992, 64, 421.
(11) Cyclization of N-phenyl-1-substituted butenyl dicarbamates catalyzed by $\mathrm{Pd}(0)$ gave poor regioselectivity; see: Hayashi, T.; Yamamoto, A.; Ito, A. Tetrahedron Lett. 1987, 28, 4837.
(12) The excess halide ions can effectively inhibit the β-hydride elimination; see: (a) Wang, Z.; Zhang, Z.; Lu, X. Organometallics. 2000, 19, 775. (b) Zhang, Z.; Lu, X.; Xu, Z.; Zhang, Q.; Han, X. Organome tallics, 2001, 20, 3724.

Scheme 8

Scheme 9

double bond, then trans attack of the nitrogen atom to the double bond forms intermediate $\mathbf{8}$ from the opposite side (aminopalladation), ${ }^{5,6}$ foll lowed by β-heteroatom elimination in the presence of the halide ions ${ }^{7,12}$ to form the product $\mathbf{2}$ with high stereoselectivity and regeneration of the Pd(II) species (Scheme 8). Here, excess hal ide ions effectively inhibit the β-hydride elimination, ${ }^{12}$ making the reaction with high yield. Different from quenching the carbon-palladium bond by β-hydride elimination or reductive elimination, ${ }^{1 \mathrm{a}}$ oxidants are not necessary in this reaction.

According to the speculated mechanism, for reactions of 1-substituted butenylene dicarbamates (Scheme 6), the intermediate 9 (Scheme 9, path a) will be formed preferentially over $\mathbf{1 0}$ (Scheme 9, path b) during the amino-

Scheme 10

(4S, 5S)-2f 96% e.e yield 88%

1,4-Dideoxy-1,4-imino-L-xylitol $\mathbf{1 1}$, as the 2 -epimer of 1,4-dideoxy-1,4-imino-D-arabinitol which was isolated from Arachni odes Standishii and Angyl ocalyx boutiqueanus, has been proven to be a potential glycosidase inhibitor. ${ }^{16 d}$ Starting from ($4 \mathrm{~S}, 5 \mathrm{R}, 4^{\prime} \mathrm{R}$)-2n prepared by our method, 11 can be easily synthesized (Scheme 12). First, isopropylidene group was removed by treatment of ($4 \mathrm{~S}, 5 \mathrm{R}, 4^{\prime} \mathrm{R}$) -2 n with $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CH}_{3} \mathrm{CN}^{17}$ to give the diol $\mathbf{1 4}$ in 93% yield. The diol $\mathbf{1 4}$ was protected with toluenesulfonyl chloride in the prensence of a catalytic amount of $\mathrm{Bu}_{2} \mathrm{SnO} .{ }^{18}$ Surprisingly, $\mathbf{1 5}$ was formed with 91% yield accompanied by the transfer of the cyclic carbamate to cyclic carbonate. ${ }^{19}$ Instead of giving the nitrogen heterocyclic derivative 17, the reactions of 15 with bases, such as NaH and ButOK, were very complex. To hydrolyze the cyclic carbonate $\mathbf{1 5}$, the reaction proceeded smoothly in a dilute solution of sodium hydroxide in a mixture of $\mathrm{H}_{2} \mathrm{O}$ and dioxane with the simultaneous formation of the nitrogen heterocycle $\mathbf{1 8}^{\mathbf{2 0}}$ by eliminating TsOH. Compound $\mathbf{1 8}$ has been used as an important chiral building block for the preparation of nitrogencontaining natural products. Reaction of $\mathbf{1 8}$ with ozone followed by reduction with NaBH_{4} gave 19. Treatment of 19 with NaNH_{2} in liquid ammonia afforded target compound $\mathbf{1 1}$ in moderate yield.

In conclusion, we developed a Pd(II)-catal yzed cyclization of difunctional allylic N -tosyl carbamates in the presence of halide ions with high regio- and diastereoselectivity involving aminopalladation of alkene, and β-heteroatom elimination to regenerate $\mathrm{Pd}(\mathrm{II})$ species.

[^2]
Scheme 12a

${ }^{\text {a }}$ Reaction conditions: (a) $\mathrm{CuCl}_{2}, \mathrm{MeCN}$, reflux, 93%; (b) $\mathrm{Bu}_{2} \mathrm{SnO}\left(4 \mathrm{~mol} \%\right.$), $\mathrm{TsCl}^{2} \mathrm{Et}_{3} \mathrm{~N}, 91 \%$; (c) $0.5 \mathrm{~N} \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, dioxane; (d) O_{3}, $\mathrm{MeOH},-78{ }^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}, 86 \%$; (e) NaNH_{2}, liquid $\mathrm{NH}_{3}, \mathrm{THF}, 65 \%$.

When the readily available homochiral alcohols were used as substrates, highly optically active products 4 -vinyl-2-oxazolidinones were easily obtained. 1,4-Dideoxy-1,4-imino-L-xylitol was synthesized conveniently using this cydization as a key step.

Experimental Section

General Methods. Melting points were uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were obtained at 300 or 400 MHz . Optical rotations were measured with a Perkin-EImer model 341 polarimeter. HPLC was conducted on a Waters 515 pump/2487 instrument. LiBr and LiCl were dried under vacuum by heating at $120^{\circ} \mathrm{C}$ for 24 h in the presence of $\mathrm{P}_{2} \mathrm{O}_{5}$.

Materials. Homochiral butenylene alcohol (S)-3f was synthesized from ethyl L-(-)-lactate; ${ }^{13 a}$ (R)-6I from L-tartaric acid; ${ }^{13 b}$ (R)-6j from propargyl al cohol. ${ }^{13 \mathrm{c}}$

Typical Procedure for the Synthesis of Compound 1. Compound 1 was easily prepared from the corresponding allylic alcohol with p-toluenesulfonyl isocyanate according to the literature. ${ }^{9}$
(Z)-2-Butene-1,4-diol ditosylcarbamate (1a): col orless crystal; mp 176.0-176.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.66(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.61(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.45(\mathrm{~s}, 6 \mathrm{H})$; IR (neat) $v 3247,2954$, 2925, 1729, 1598, 1494, 1453, 1361, 1222, 1210, 1171, 1090, 857, 813, 769, 704, 666, $550 \mathrm{~cm}^{-1}$; MS m/e 288, 268, 216, 197, 171, 155, 139, 107, 91, 65. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$: C, 49.78; H, 4.60; N, 5.81. Found: C, 49.63; H, 4.57; N, 5.81.
(Z)-4-Acetoxybut-2-enyl tosylcarbamate (1b): oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.72(\mathrm{dt}, \mathrm{J}=13.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dt}, \mathrm{J}=13.9,6.5 \mathrm{~Hz}$, 1 H), $4.67(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}$, 3H), 2.05 (s, 3H); IR (neat) v 3236, 1743, 1451, 1353, 1225, $1162,1091 \mathrm{~cm}^{-1} ;$ MS m/e 268 (M+ - OAc), 171, 155, 108, 107, 91, 89, 65, 43. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}, 51.37 ; \mathrm{H}, 5.23$; N, 4.28. Found: C, 51.77; H, 5.22; N, 4.28.
(Z)-4-Methoxycarbonyloxybut-2-enyl tosylcarbamate (1c): oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}$, $\mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.77 (ttd, J $=0.9,6.7,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.68$ (ttd, $\mathrm{J}=1.1,6.7,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.66(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, 2.45 (s, 3H); IR (neat) v 3236, 2961, 1752, 1598, 1448, 1356, 1272, 1223, 1162, $1091 \mathrm{~cm}^{-1}$; MS m/e $268\left(\mathrm{M}^{+}-\mathrm{OCO}_{2} \mathrm{Me}\right)$,

155, 91, 70, 69, 65, 43, 42, 41. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{7} \mathrm{~S}: \mathrm{C}$, 48.97; H, 4.99; N, 4.08. Found: C, 49.04; H, 4.70; N, 4.15.
(Z)-4-Chlorobut-2-enyl tosylcarbamate (1d): colorless solid; mp 83-84 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{~m}, 1 \mathrm{H}), 4.67$ (d, J $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{IR}$ (neat) $v 3213,1732,1600,1477,1367,1241,1162,1091 \mathrm{~cm}^{-1}$; MS m/e $287\left(\mathrm{M}^{+}\right), 268,197,155,91,81,65,41$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{CINO}_{4} \mathrm{~S}: \mathrm{C}, 47.45 ; \mathrm{H}, 4.65 ; \mathrm{N}, 4.61$. Found: $\mathrm{C}, 47.55$; H, 4.67; N, 4.46.

Typical Procedure for the Synthesis of Compounds 3, 4, and 6. The (Z)- and (E)-alk-2-ene-1,4-diols 6 were obtained from the alk-2-yne-1,4-diols that were synthesized by alkynylation of an aldehyde, ${ }^{21}$ followed by hydrogenation ${ }^{22}$ or reduction with $\mathrm{LiAlH}_{4} .{ }^{23}$ Compounds $\mathbf{3}$ and $\mathbf{4}$ were prepared from 6 according to the literature. ${ }^{24}$
Compounds (Z)-3e, ${ }^{25}(Z)-3 \mathbf{f},{ }^{25}(Z)-\mathbf{3 g},{ }^{24}(Z)-4 a,{ }^{26}(Z)-4 b,{ }^{26}(Z)-$ $\mathbf{6 i},{ }^{27}(\mathrm{Z})-\mathbf{6 j},{ }^{28}(\mathrm{Z})-\mathbf{6 k},{ }^{27}$ and (Z)-6m ${ }^{29}$ were synthesized according to the literature.
(Z)-1-Acetoxy-4-hydroxy-5-methylhex-2-ene (3h): oil; 1H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.69-5.59(\mathrm{~m}, 2 \mathrm{H}), 4.86-4.74(\mathrm{~m}, 2 \mathrm{H}), 4.54$ $(\mathrm{dd}, \mathrm{J}=4.4,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.10(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$, $1.76-1.69(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 3 \mathrm{H}$); IR (neat) v 3474, 2965, 2877, 1741, 1374, 1240, 1028, $978 \mathrm{~cm}^{-1}$; MS m/e 155, 112, 95, 76, 71, 56, 55, 43. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 62.77$; H, 9.36. Found: C, 62.44; H, 9.52.
(Z)-5-Benzyloxypent-2-ene-1,4-diol ((Z)-6I): oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.79(\mathrm{dt}, \mathrm{J}=11.3,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.51(\mathrm{dd}, \mathrm{J}=11.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dt}, \mathrm{J}=6.4,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.55(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{dd}, \mathrm{J}=7.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 3.43$

[^3]$(d, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 2.90(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}) ;$ IR (neat) v 3370, 3030, 1454, 1103, 1028, 739, $699 \mathrm{~cm}^{-1}$; MS m/e 209 $\left(\mathrm{M}^{+}+1\right), 181,173,143,129,91(100), 83,69 ; \operatorname{HRMS}\left(M-\mathrm{H}_{2} \mathrm{O}\right)$ cal cd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ 190.0994, found 190.1010.
(E)-5-Benzyloxypent-2-ene-1,4-diol ((E)-6I): oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.79(\mathrm{dt}, \mathrm{J}=15.6,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.51 (dd, J $=15.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{~m}, 1 \mathrm{H}), 4.15$ (s, 2H), 3.53 (dd, J $=9.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.36(\mathrm{~m}, 1 \mathrm{H}), 2.55$ (s br, 1H), 1.63 (s br, 1H); IR (neat) $v 3370,3032,2864,1454,1098$, 1003, 740, $699 \mathrm{~cm}^{-1}$; MS m/e $208\left(\mathrm{M}^{+}\right), 190,177,145,107,91$ (100), 87, 69; HRMS ($\mathrm{M}-\mathrm{H}_{2} \mathrm{O}$) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ 190.0994, found 190.0983.
(Z)-(4R,5R)-5,6-0-isopropylidenehex-2-ene-1,4-diol (6n). To a sol ution of Cul ($13.6 \mathrm{~g}, 72 \mathrm{mmol}$) in a mixture of THF (100 mL) and $\mathrm{Me}_{2} \mathrm{~S}(20 \mathrm{~mL})$ was added the Grignard reagent 12 (60 mmol) in THF (30 mL) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min at $-78{ }^{\circ} \mathrm{C}$ under argon. (R)-2,3-I sopropylideneglyceraldehyde ($6.3 \mathrm{~g}, 48 \mathrm{mmol}$) was then added, and the mixture was gradually warmed to room temperature. After the mixture was stirred for 2 h , saturated $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ sol ution was added, and the mixture was extracted with ethyl acetate. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude oil was purified by column chromatography on silica gel (ethyl acetate/petrolum ether $=1 / 5$) to give 13 (12.3 g , yield 86\%) as an oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $4.22(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{ddd}, \mathrm{J}=6.5,5.4$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (dd, J = 6.5, 8.5 Hz, 1H), 3.77 (dd, J = 5.4, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}$, 9H), 0.01 (s, 6H); IR (neat) v 3439, 1473, 1464, 1373, 1256, 1074, 838, $780 \mathrm{~cm}^{-1}$; MS m/e 285, 185, 111, 101, 75 (100), 59, 43. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 59.96 ; \mathrm{H}, 9.39$. F ound: C, 59.64; H, 9.07.

To a solution of $13(12 \mathrm{~g}, 40 \mathrm{mmol})$ in THF (100 mL) was added dropwise TBAF ($40 \mathrm{~mL}, 1.0 \mathrm{M}$) in THF at room temperature, and the mixture was stirred. After the reaction was complete as monitored by TLC, the solvent was removed under vacuum and the residue was purified by column chromatography on silica gel to give the alkynediol. The alkynediol was hydrogenated with $\mathrm{Ni}(\mathrm{OAC})_{2} / \mathrm{NaBH}_{4}$ to give $\mathbf{6 n}$ using the literature method. 22 After purification by column chromatography on silica gel (ethyl acetate/petrolum ether $=$ $1 / 1$), optically pure (4R,5R)-6n was obtained by recrystallization (ethyl acetate/petrol eum ether) at $-20^{\circ} \mathrm{C}$ as a col orless solid: $\mathrm{mp} 25-26^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=-5.1(\mathrm{c}=1.30, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.88$ (ddt, J $\left.=5.7,1.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.53$ (ddt, J $=$ $11.4,8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (ddd, J $=8.0,6.4,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.32 (ddd, J $=6.6,5.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (ddd, $\mathrm{J}=6.6,5.7,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.09(\mathrm{dt}, \mathrm{J}=6.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, \mathrm{J}=8.4,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, \mathrm{J}=8.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 2.64$ (s, br, 1H), $1.46(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$; IR (neat) $v 3371,1442$, 1383, 1258, 1063, 864, $679 \mathrm{~cm}^{-1}$; MS m/e 173, 101 (100), 95, 83, 73, 67, 59, 55, 43. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4}$: $\mathrm{C}, 57.43 ; \mathrm{H}$, 8.57. Found: C, 57.15; H, 8.32.

Typical Procedure for the Reaction of 1. Compound 1 (0.5 mmol) was added to a sol ution of $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol} \%$) and $\mathrm{LiBr}(2 \mathrm{mmol})$ in THF, and the mixture was stirred at room temperature. After the reaction was complete as monitored by TLC, the solvent was removed under vacuum and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$) to give product 2a.

Typical Procedure for the Reaction of 3 and 4. Compound 3 (0.5 mmol) was reacted with TsNCO (0.55 mmol) in THF (5 mL) for 10 min at room temperature under N_{2}. Then $\mathrm{Pd}(\mathrm{OAC})_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{LiBr}(2 \mathrm{mmol})$ were added, and the mixture was heated to reflux. After the reaction was complete as monitored by TLC, the solvent was removed under vacuum and the residue was purified by column chromatography on silica gel (petroleum ether/ ethyl acetate) to give product 2. Products 5 were obtained from 4 using the same procedure.

Compounds 2a, ${ }^{9} \mathbf{2 e},{ }^{30}$ trans-2f, ${ }^{9}$ trans- $\mathbf{2 h},{ }^{9}$ and $\mathbf{5 a}{ }^{9}$ are known compounds, and their spectroscopic data matched those in the literature.
(30) Kimura, M.; Tanaka, S.; Tamaru, Y.; J . Org. Chem. 1995, 60, 3764.

N-(p-Toluenesulfonyl)-5-pentyl-4-vinyl-2-oxazolidinone (2g): mp 61.0-61.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.79-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{~d}$, $\mathrm{J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, \mathrm{J}=4.3$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dt}, \mathrm{J}=6.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.61-$ $1.19(\mathrm{~m}, 8 \mathrm{H}), 0.81(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; IR (neat) $v 2958,2931$, 2862, 1784, 1371, 1175, $665 \mathrm{~cm}^{-1}$; MS (m/e) $338\left(\mathrm{M}^{+}+1\right)$, 173, 155, 119, 108, 91, 82, 65, 41. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}$, 60.51; H, 6.87; N, 4.15. Found: C, 60.41; H, 6.75; N, 4.09.
(E)-N-(p-Toluenesulfonyl)-4-(2'-isopropylvinyl)-2-oxazolidinone (5b): oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.92$ (d, J $=8.4$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.32(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{dd}, \mathrm{J}=6.2,15.3 \mathrm{~Hz}$, 1 H), 5.30 (ddd, J $=15.4,9.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.89 (dt, J $=3.4$, $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, \mathrm{J}=3.4,8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$; IR (neat) $v 1785,1598,1372,1174,1092,815,667,580 \mathrm{~cm}^{-1}$; MS m/e $310\left(\mathrm{M}^{+}+1\right), 266,240,202,155,139,110,91$ (100), 65. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 58.23 ; \mathrm{H}, 6.19 ; \mathrm{N}, 4.53$. Found: C, 58.23; H, 6.08; N, 4.55.
Typical Procedure for the Reaction of 6. Compound 6 $(0.5 \mathrm{mmol})$ was reacted with TsNCO (1.10 mmol) in THF (5 $\mathrm{mL})$ for 10 min at room temperature under N_{2}. Then $\mathrm{Pd}(\mathrm{OAC})_{2}$ ($5 \mathrm{~mol} \%$) and $\mathrm{LiBr}(2 \mathrm{mmol})$ were added, and the mixture was heated to reflux. After the reaction was complete as monitored by TLC, the solvent was removed under vacuum and the residue was purified by column chromatography on silica gel (petroleum ether/ ethyl acetate) to give product 2.
\mathbf{N}-(p-Toluenesulfonyl)-5-benzyloxymethyl-4-vinyl-2oxazolidinone (21): oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.89$ (d, J $=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.84$ (ddd, $\mathrm{J}=7.7,10.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}$, $\mathrm{J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, \mathrm{J}=7.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H})$, 4.25 (dt, J $=3.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}$, 3H); IR (neat) v 1782, 1364, 1272, 1174, 1091, 815, 666, 567 $\mathrm{cm}^{-1} ; \mathrm{MS}(\mathrm{m} / \mathrm{e}) 388\left(\mathrm{M}^{+}+1\right), 387,181,155,126,91$ (100), 82, 65; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}$ 387.1100, found 387.1140.
(4S,5R,4'R)-N-(p-Toluenesulfonyl)-5-(2,2-dimethyl-1,3-dioxolan-4-yl)-4-vinyl-2-oxazolidinone (2n): mp 120-121 ${ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}=-14.5\left(\mathrm{c}=2.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.94$ $(\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.93$ (ddd, J = $7.7,10.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, \mathrm{~J}=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, \mathrm{J}=7.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dt}, \mathrm{J}=7.7$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, \mathrm{J}=3.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, \mathrm{J}=8.6$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (dd, J $=8.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.27$ (s, 3H), $1.10(\mathrm{~s}, 3 \mathrm{H})$; IR (neat) $v 1769,1569,1373,1352,1171$, 1152, 1051, 820, $665 \mathrm{~cm}^{-1}$; MS (m/e) 352, 248, 171, 155, 146, 101, 91(100), 65, 43. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}, 55.66$; H, 5.92; N, 4.10. Found: C, 55.57; H, 5.76; N, 3.81.
($4 \mathrm{~S}, 5 \mathrm{R}, \mathbf{1}^{\prime} \mathrm{R}$)-N-(p-Toluenesulfonyl)-5-($\mathbf{1}^{\prime}, \mathbf{2}$-dihydroxyl-ethyl)-4-vinyl-2-oxazolidinone (14). $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(340 \mathrm{mg}$, 2.0 mmol) was added to a solution of $\mathbf{2 n}(367 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$, and the solution was refluxed for $\sim 5 \mathrm{~h}$. After the reaction was complete as monitored by TLC, water (10 mL) was added. The mixture was extracted with ethyl acetate (4 $\times 15 \mathrm{~mL}$). The combined extracts were dried, filtered, and concentrated. The residue was purified by col umn chromatography on silica gel (petroleum ether/ethyl acetate $=1: 1$) to give product 14 (310 mg , yield 93\%) as an oil: $[\alpha]^{20} \mathrm{D}=-40.8$ ($\mathrm{c}=$ 2.66, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ $(\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.86$ (ddd, J $=8.0,10.1,17.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.50(\mathrm{~d}, \mathrm{~J}=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}$, $\mathrm{J}=8.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, \mathrm{J}=4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, \mathrm{~J}$ $=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ (s, br, 1H), 2.42 (s, 3H); IR v (neat) 3519, 3410, 1781, 1597, 1370, 1174, 815, $668 \mathrm{~cm}^{-1}$; MS m/e 327, 210, 172, 155, 112, 91 (100), 68, 65. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}, 51.64 ; \mathrm{H}, 5.45$; N, 4.05. Found: C, 51.37; H, 5.23; N, 4.28.
(4R,5R,1'S)-N,O-Di(p-toluenesulfonyl)-5-(1'-aminoallyl)-4-hydroxymethyl-1,3-dioxolan-2-one (15). To a solution of 14 ($310 \mathrm{mg}, 0.93 \mathrm{mmol}$), $\mathrm{Bu}_{2} \mathrm{SnO}\left(15 \mathrm{mg}, 0.04 \mathrm{mmol}\right.$), and $\mathrm{Et}_{3} \mathrm{~N}$ ($110 \mathrm{mg}, 1.1 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added p-toluenesulfonyl chloride ($188 \mathrm{mg}, 1 \mathrm{mmol}$), and then the mixture was stirred at room temperature. After the reaction was complete as monitored with TLC, the mixture was evaporated under vacuum and purified by column chromatog-
raphy on silica gel (petroleum ether/ethyl acetate $=2 / 1$) to give product 15 (405 mg , yield 91\%) as a col orless crystal: $\mathrm{mp} 120-$ $121{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}=+31.0\left(\mathrm{c}=1.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.80(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.53 (ddd, J $=17.2,10.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97(\mathrm{dt}, \mathrm{J}=5.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.64 (dd, J $=5.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.28 (d, J $=2.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.98 (t, $\mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$; IR (neat) $v 3271$, 1808, 1598, 1367, 1178, 1094, $667 \mathrm{~cm}^{-1}$; MS m/e481 (M+), 212, 210 (100), 155, 91, 89, 65. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{8} \mathrm{~S}_{2}$: C, 52.02; H, 5.15; N, 2.68. Found: C, 52.38; H, 4.81; N, 2.91.
(4R,5R,1'S)-N-(p-Toluenesulfonyl)-5-(1'-ami noallyl)-4-hydroxymethyl-1,3-dioxolan-2-one (16). The mixture of 14 ($167 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(50 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ was stirred at room temperature. After the reaction was complete as monitored by TLC, the mixture was evaporated under vacuum and purified by col umn chromatography on silica gel (petroleum ether/ethyl acetate $=1 / 1$) to give product 16 (154 mg , yield: 92%) as a colorless crystal: mp $128-129^{\circ} \mathrm{C},[\alpha]^{20} \mathrm{D}=+46.0\left(\mathrm{c}=0.79, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.72(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.89(\mathrm{~d}, \mathrm{~J}$ $=8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.58 (ddd, J $=17.2,10.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}$, $\mathrm{J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dt}, \mathrm{J}=5.9$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, \mathrm{J}=5.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 2 \mathrm{H}), 3.77$ (m, 1H), $3.2(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.45(\mathrm{~s}, 3 \mathrm{H})$; IR (neat) $v 3449$, 3247, 1783, 1597, 1330, 1163, 1091, $672 \mathrm{~cm}^{-1}$; MS m/e 210 (100), 155, 139, 128, 91, 89, 65. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{~S}$: C, 51.37; H, 5.23; N, 4.28. Found: C, 51.64; H, 5.27; N, 4.28.
(2S,3R,4R)-N-(p-Toluenesulfonyl)-2-vinyl-3,4-dihydroxypyrrolidine (18). To a mixture of aqueous $\mathrm{NaOH}(0.5 \mathrm{~N}, 10$ mL) and $\mathrm{H}_{2} \mathrm{O} /$ dioxane ($1: 1,20 \mathrm{~mL}$) was added 15 ($240 \mathrm{mg}, 0.5$ mmol), and the mixture was stirred at room temperature for about 20 min . After the reaction was complete as monitored with TLC, the mixture was extracted with ethyl acetate ($6 \times$ 15 mL). The combined extracts were dried, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/ ethyl acetate $=1 / 1$) to give product 18 (124 mg , yield 89\%) as a colorless crystal ; mp: $122-123^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}=+77.5(\mathrm{c}=0.55, \mathrm{MeOH}),{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.72$ (d, J $=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.32 (d, J $=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.88 (ddd, $\mathrm{J}=17.3,10.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, \mathrm{~J}=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}$, $\mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.90$ $(\mathrm{m}, 1 \mathrm{H}), 3.77(\mathrm{dd}, \mathrm{J}=11.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, \mathrm{J}=3.0,1.4$ Hz, 1H), 2.43 (s, 3H), 2.01 (s, br, 1H), $1.84(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$; IR (neat) v 3487, 3398, 1599, 1332, 1155, 1089, 926, 821, $667 \mathrm{~cm}^{-1}$; MS (m/e) $283\left(\mathrm{M}^{+}\right), 240,155,128,91,68(100), 65,56,41$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: ~ \mathrm{C}, 55.11 ; \mathrm{H}, 6.05 ; \mathrm{N}, 4.94$. Found: C,
54.93; H, 6.09; N, 4.84. The stereostructure of $\mathbf{1 8}$ was confirmed by X-ray crystallography. ${ }^{20}$
(2S,3R,4R)-N-(p-Toluenesulfonyl)-2-hydroxymethyl-3,4-dihydroxypyrrolidine (19). Ozone was introduced into a solution of $\mathbf{1 8}(347 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ using Sudan III as an indicator at $-78^{\circ} \mathrm{C}$. When the red solution turned to colorless, $\mathrm{NaBH}_{4}(90 \mathrm{mg}, 2.4 \mathrm{mmol})$ was added to the mixture for 10 min at $-78{ }^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature and stirred for 2 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (2 mL) was added, and the mixture was concentrated. The residue was purified by col umn chromatography on silica gel (ethyl acetate) to give product 19 (305 mg , yield 86%) as a colorless crystal. 19: mp 142-143 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{20} \mathrm{D}=$ +19.3 ($\mathrm{c}=1.30, \mathrm{EtOH}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 7.75(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{dt}, \mathrm{J}=4.0,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.01-3.86(\mathrm{~m}, 3 \mathrm{H}), 3.67-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.20$ (dd, J $=3.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42 (s, 3H); IR (neat) $v 3309,1599$, 1460, 1342, 1154, 1035, 809, $664 \mathrm{~cm}^{-1}$; MS (m/e) 288 ($\mathrm{M}^{+}+$ 1), 256 (100), 238, 156, 155, 192, 91, 65. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17^{-}}$ $\mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 50.16 ; \mathrm{H}, 5.96 ; \mathrm{N}, 4.87$. Found: C, $50.13 ; \mathrm{H}, 5.87$; N, 4.84.

1,4-Dideoxy-1,4-imino-L-xylitol (11). To a solution of $\mathrm{NaNH}_{2}(2 \mathrm{mmol})$ in liquid ammonia (10 mL) was added 19 $(62 \mathrm{mg}, 0.22 \mathrm{mmol})$ in THF (1 mL). After the reaction was stirred at $-33^{\circ} \mathrm{C}$ for 30 min , a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (2 mL) was added. The mixture was treated with Dowex 50-8X to give $\mathbf{1 1}$ (17 mg , yield 63%) as an oil. 11: oil; $[\alpha]^{20}{ }_{\mathrm{D}}=-4.0$ ($\mathrm{c}=0.10, \mathrm{H}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 4.07(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H})$, 3.68 (ddd, J = 11.3, 5.4, 1.2 Hz, 1H), 3.56 (ddd, J = 11.3, 7.1, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 79.46,79.07,63.66,62.35,53.33$; MS (m/e) $134\left(\mathrm{M}^{+}+1\right), 102,91,73,60,57,55$ (100), 43; HRMS calcd for $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{3}$ 133.0739, found 133.0720.

Acknowledgment. We thank the Major State Basic Research Program (Grant No. G2000077502-A) for support of this work. We thank the National Natural Sciences F oundation of China and Chinese Academy of Sciences for financial support.

Supporting Information Available: ${ }^{1} \mathrm{H}$ NMR spectrum of compounds 21, (E)-6I, and (Z)-6I, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 11, and X-ray crystallographic data for 18. This material is available free of charge via the Internet at http://pubs.acs.org.

J O0161429

[^0]: (1) (a) Tsuji, J. Palladium reagents and Catalysis: Innovations in Organic Synthesis; J ohn Wiley: Chichester, 1995. (b) Davies, J. A. In Comprehensive Organometallic chemistry; Abel, E. W., Stone, F. G. A., Wilkinson G., Eds.; Pergamon: New York, 1995; Vol. 9, p 323. (c) Godleski, S. A. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Semmelhack, M. F., Eds.; Pergamon: Oxford, 1991; Vol. 4, p 585.
 (2) (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 4545. (b) Lloyd-J ones, G. C.; Stephen, S. C.; Murray, M.; Butts, C. P.; Vyskocil, S.; Kocovsky, P. Chem. Eur. J. 2000, 6, 4348.
 (3) (a) Trost, B. M.; Verhoeven, T. R. J . Am. Chem. Soc. 1980, 102, 4730. (b) Pretot, R.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1998, 37, 323. (c) Hayashi, T.; K awatsura, M.; U ozumi, Y. J . Chem. Soc., Chem. Commun. 1997, 561. (d) Hayashi, T.; Kishi, K.; Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1990, 31, 1743. (e) Hayashi, T.; K awatsura, M.; Uozumi, Y. J. Am. Chem. Soc. 1998, 120, 1681. (f) Trost, B. M.; Krische, M. J.; Radinov, R.; Zanoni, G. J . Am. Chem. Soc. 1996, 118, 6297.
 (4) F or the excellent illustration of this point related to transition metals using the difunctional reagents such as I with different leaving groups, see: (a) Bäckvall, J. E.; Nystrom, J. E.; Nordberg, R. E. J. Am. Chem. Soc. 1985, 107, 3676. (b) Ferroud, D.; Genet, J. P.; Kiolle, R. Tetrahedron Lett. 1986, 27, 23. (c) Tsuji, J .; Shimizu, I.; Minami, I.; Ohashi, Y.; Sugiura, T.; Takahashi, K. J. Org. Chem. 1985, 26, 2779. (d) Colobert, F.; Genet, J. P. Tetrahedron Lett. 1984, 25, 3579. (e) Tanigawa, Y.; Nishimura, K.; Lawashaki, A.; Murahashi, S. Tetrahe dron Lett. 1982, 23, 5549. When the two leaving groups are the same, excellent results were obtained, see: (f) Trost, B. M.; Tometzki, G. B.; Hung, M. H. J. Am. Chem. Soc. 1987, 109, 2176.

[^1]: (8) Tamaru, Y.; Kimura, M.; Tanaka, S.; Kure, S.; Yoshida, Z.-I. Bull. Chem. Soc. Jpn. 1994, 67, 2838.
 (9) The structure and stereochemistry of products were characterized by comparison with the data reported by Tamaru; see: Kimura, M.; Tanaka, S.; Tamaru, Y. Bull. Chem. Soc. J pn. 1995, 68, 1689.

[^2]: (17) Saravanan, P.; Chandrasekhar, M.; Anand, R. V.; Singh, V. K. Tetrahedron Lett. 1998, 39, 3091.
 (18) MartinelI, M. J.; Nayyar, N. K.; Moher, E. D.; Dhokte, U. P.; Pawlak, J. M.; Vaidyanathan, R. Org. Lett. 1999, 1, 447.
 (19) We found that the transfer of cyclic carbamate to cyclic carbonate occurred also in the prensence of $E t_{3} \mathrm{~N}$ to give compound 16 with high yield.
 (20) The stereostructure of compound 18 was determined by X-ray analysis. Crystallographic data for 18: $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{NS}, \mathrm{FW}=283.34$, orthorhombic, space group $\mathrm{P} 2_{1} 2_{1} 2_{1}(\# 19), a=8.552(2) \AA, b=19.575(3)$ \AA, $c=8.406(2) \AA, V=1407.2(5) \AA^{3}, Z=4$, density (calcd) $=1.337$ $\mathrm{g} / \mathrm{cm}^{3} ; \mathrm{F}(000)=600.00, \mathrm{~T}=293 \mathrm{~K}, \mu(\mathrm{M} \circ \mathrm{K} \alpha)=2.39 \mathrm{~cm}^{-1}$. The intensity data were collected on a Rigaku AFC7R diffractometer with Mo K α radiation ($\lambda=0.71069 \AA$, graphite monochromator), and a 12 kW rotating anode generator. The maximum $2 \theta_{\text {max }}$ value was $55.0^{\circ} ; 1893$ unique reflections were observed. The 1596 reflection with $\mathrm{I}=2.00 \sigma$ (I) were used in refinement; R (Rw) $=0.040(0.050)$.

[^3]: (21) Brandsma, L. Preparative Acetylenic Chemistry, 2nd ed.; Elsevier: Amsterdam, 1988; p 79.
 (22) Brown, C. A.; Ahuja, V. K.J . Chem. Soc., Chem. Commun. 1973, 533.
 (23) Cowie, J. S.; Landor, P. D.; Landor, R. J. J . Chem. Soc., Perkin. Trans. 1 1973, 720.
 (24) Zhu, G., Lu, X. J . Org. Chem. 1995, 60, 1087.
 (25) Genet, J. P.; Balabane, M.; Charonnier, F. Tetrahedron Lett. 1982, 23, 5027.
 (26) Lonshchakova, T. I.; Liakumovich, A. G.; Kochneva, N. V.; Tsivunin, V. S. Zh. Org. Kim. 1979, 15, 900.
 (27) Bates, R.; Diez, M. D.; Kerr, W. J.; Knigh, J. G.; Ley, S. V.; Sakellaridis, A. Tetrahedron 1990, 46, 4063.
 (28) Ma, S.; Zhu, G.; Lu, X. J . Org. Chem. 1993, 58, 3692.
 (29) Billington, D. C.; Kenr, W. J.; Pauson, P. L. J. Organomet. Chem. 1987, 328, 223.

