

Tetrahedron Letters 39 (1998) 6003-6006

TETRAHEDRON LETTERS

Synthetic Studies on Concanamycin A: Synthesis of the C5~C13 and C20~C28 Segments

Takaaki Jyojima, Masataka Katohno, Naoki Miyamoto, Masaya Nakata, Shuichi Matsumura and Kazunobu Toshima*1

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Received 14 May 1998; revised 11 June 1998; accepted 12 June 1998

Abstract: The enantioselective synthesis of the C5-C13 (2) and C20-C28 (3) segments, which are promising synthetic intermediates toward the total synthesis of the 18-membered macrolide antibiotic, concanamycin A (1), were described. @ 1998 Elsevier Science Ltd. All rights reserved.

Keywords: concanamycin A; macrolides; vacuolar H⁺-ATPase inhibitor; segment synthesis.

Concanamycin A (1) [1], first isolated in 1981 by Kinashi *et al.* [1a,c], is a potent and specific inhibitor of vacuolar H⁺-ATPase attracting particular interest [2]. The structure and absolute configuration of 1 has been established by chemical degradation [1a], NMR analysis [1a] and X-ray crystallographic analysis [1d] of its diacetate derivative. Concanamycin A (1) belongs to a family of structurally related polyketide macrolide antibiotics. Although the other macrolide antibiotics such as the bafilomycins [3,4], the hygrolidins [5,6] and recently discovered formamicin [7] are closely related to the concanamycins, the concanamycins possess most complex structures among them. The most unique and striking structural feature of this macrolide are an unusual 18-membered tetraenic lactone ring with an methyl enol ether and a β -hydroxy hemiacetal side chain incorporating 4'-carbamoyl-2'-deoxy- β -D-rhamnose moiety.

1. E-mail: toshima@applc.keio.ac.jp

0040-4039/98/\$ - see front matter © 1998 Elsevier Science Ltd. All rights reserved. *PII:* S0040-4039(98)01233-7 Previously, we reported the synthesis of the C20-C28 fragment of 1 starting from carbohydrate building blocks [8]. Very recently, elegant synthetic studies of the C19 \sim C28 [9] and C1 \sim C13 [10] segments of 1 have been announced by Paterson and co-workers. Herein we now disclose the effective synthesis of the C5 \sim C13 segment (2) and the improved and asymmetric synthesis of the C20 \sim C28 segment (3), both of which are promising synthetic intermediates [11] toward the total synthesis of the biologically important natural products, concanamycin A (1) and other concanamycins (Figure 1).

The synthesis of the suitably protected vinyl iodide 2 corresponding to the C5-C13 segment of 1 is summarized in Scheme 1. The 1,3-diol of the starting material 4 (erythro/threo=85:15), which was readily obtained from D-malic acid by Seebach's alkylation [12], was first regioselectively protected by pmethoxybenzylidene group to give the pure primary alcohol 5 in 64% yield. Swern oxidation of 5 followed by Grignard reaction using EtMgBr in Et₂O at 25 °C for 3 h afforded 7 in 87% overall yield. The secondary alcohol 7 was subjected to Swern oxidation and then Wittig reaction employing Ph3P=CH2 in benzene to furnish 9 in 88% overall yield. Hydroboration of 9 utilizing dicyclohexylborane in THF at room temperature for 3 h was found to proceed with complete stereoselectivity to give only the desired alcohol 10 in 89% yield after the subsequent oxidative workup [4a,c]. Swern oxidation of the resultant alcohol 10 yielded the aldehyde 11 which was subjected to Evans' addol reaction [13] using N-propionyl-(4S)-benzyl-2-oxazolidinone, n-Bu2BOTf and Et3N in CH2Cl2 to give the desired aldol 12 in 81% overall yield. Removal of the chiral auxiliary in 12 using LiBH4 and EtOH in Et₂O at -10 °C for 1 h gave the diol 13 in quantitative yield. Regioselective tosylation of the primary alcohol in 13 (TsCl, Py, 97%) and the silvlation with tbutyldimethylsilyl (TBS) group (TBSOTf, 2,6-lutidine, CH₂Cl₂, 99%) of the resultant alcohol 14 yielded the tosylate 15 which was subjected to the reaction with lithium acetylide (5 equiv.) in dimethyl sulfoxide (DMSO) to give the acetylene 16 in 69% yield. After concurrent deprotection of the p-methoxybenzylidene and silyl groups in 16 under acidic conditions (HF(aq.), THF-MeCN, 70%), the resultant triol 17 was selectively pivaloylated (PvCl, Py, 4-dimethylaminopyridine (4-DMAP), CH₂Cl₂) at the primary alcohol and then silvlated with diethylisopropylsilyl (DEIPS) group [14] using DEIPSOTf and 2,6-lutidine in CH₂Cl₂ to furnish the acetylene 19 in 82% overall yield. Finally, treatment of 19 with Cp2ZrCl2, Me3Al and I2 in 1,2dichloroethane [15] afforded the tri-substituted trans vinyl iodide 2 in 88% yield.

The improved and asymmetric synthesis of the ethyl ketone **3** corresponding to the C20-C28 segment of concanamycin A (1) from *trans*-crotonaldehyde (**20**) is depicted in Scheme 2. The reaction of *trans*-crotonaldehyde and the Brown's chiral (*E*)-crotyldiisopinocamphenylborane **21** [16], which was prepared from *trans*-butene, *n*-BuLi and (-)-lpc2BOMe, in the presence of BF3•Et2O in THF-Et2O at -78 °C for 2 h gave the allyl alcohol **22** (>99% e.e.) [17] in 58% yield with 1:14 syn/anti selectivity. *p*-Methoxybenzylation of the resultant alcohol **22** with *p*-methoxylbenzyl trichloroacetimidate [18] gave **23** in 75% yield. Regioselective dihydroxylation of the terminal olefin in **23** was best effected by Sharpless method [19] using the bulky reagent, AD-mix α , in *t*-BuOH-H₂O to give the diol **24** in 50% yield. Oxidative cleavage of the diol in **24** using NaIO4 gave the aldehyde **25** in 95% yield. Mukaiyama aldol reaction [20] of **25** and the silyl enol ether **26** using BF3•Et2O in CH₂Cl₂ at -78 °C for 1 h proceeded smoothly to furnish the Cram-product, ethyl ketone **27**, in 62% yield as a sole aldol product. Treatment of **27** with DDQ in CH₂Cl₂ gave the fully protected ethyl ketone **28** was unfortunately found to be not suitable for aldol reactions using several boron reagents [11]. Therefore, **28** was converted into the suitably protected ethyl ketone **3** [11] by standard procedures. Reduction of **28** using NaBH4, followed by acetylation gave the acetate

Scheme 1. *Reagents and conditions*: a) (MeO)₂CHC₆H₄OMe, CSA, CH₂Cl₂, r. t., 16 h, 64%; b) (COCl)₂, DMSO, TEA, CH₂Cl₂, -78 °C, 20 min; c) EtMgBr, Et₂O, r. t., 3 h, 87% from 4; d) (COCl)₂, DMSO, TEA, CH₂Cl₂, -78 °C, 20 min; e) Ph₃P=CH₂, PhH, r. t., 0.5 h, 88% from 6; f) BH₃•Me₂S, C₆H₁₀, THF, r. t., 3 h then NaOH-H₂O, H₂O₂, 50 °C, 1 h, 89%; g) (COCl)₂, DMSO, TEA, CH₂Cl₂, -78 °C, 20 min; h) *N*-propionyl-(4S)-benzyl-2-oxazolidinone, *n*-Bu₂BOTf, Et₃N, CH₂Cl₂, 0 °C, 1 h, 81% from 9; i) LiBH₄, EtOH, Et₂O, -10 °C, 1 h, 100%; j) TsCl, Py, r. t., 2 h, 97%; k) TBSOTf, 2,6-lutidine, CH₂Cl₂, r. t., 2 h, 99%; l) HC=CLi, DMSO, r. t., 3 h, 69%; m) HF(aq.), THF. MeCN, 40 °C, 48 h, 70%; n) PvCl, 4-DMAP, Py, CH₂Cl₂, r. t., 16 h, 83%; o) DEIPSOTf, 2,6-lutidine, CH₂Cl₂, r. t., 16 h, 99%; p) Cp₂ZrCl₂, Me₃Al, I₂, (CICH₂)₂, r. t., 16 h, 88%.

Scheme 2. *Reagents and conditions*: a) BF₃·Et₂O, THF/Et₂O, -78 °C, 2h, 58%; b) MeOC₆H₄CH₂OC(=NH)CCl₃, CSA, CH₂Cl₂, r. t., 14 h, 75%; c) AD-mixα, t-BuOH/H₂O, r. t., 19 h, 50%; d) NaIO₄, MeOH/H₂O, r. t., 0.5 h, 95%; e) BF₃·Et₂O, CH₂Cl₂, -78 °C, 1 h, 60%; f) DDQ, CH₂Cl₂, 0 °C, 0.5h, 62%; g) NaBH₄, MeOH/CH₂Cl₂, 0 °C, 2 h, 67%; h) Ac₂O, 4-DMAP, Py, r. t., 17 h, 95%; i) AcOH:THF:H₂O= 1:1:1, 40 °C, 0.5 h, 90%; j) *t*-Bu₂Si(OTf)₂, 2.6-lutidine, DMF, 0 °C, 0.5 h, 80%; K) NaOMe, MeOH, 0 °C, 4 h, 91%; l) Dess-Martin periodinane, Py, CH₂Cl₂, r. t., 2 h, 82%.

30 in 64% overall yield. Deprotection of p-methoxybenzylidene group under acidic conditions gave the diol **31** which was silvlated with a di-t-butylsilvl group to give 32 in 68% overall yield. Finally, deacetylation of 32 followed by Dess-Martin oxidation [22] gave the suitably protected ethyl ketone 3 in 75% overall yield.

Acknowledgment. Financial support by The Naito Foundation is gratefully acknowledged.

References

- a) H. Kinashi, K. Someno, K. Sakaguchi, T. Higashijima, T. Miyazawa, Tetrahedron Lett. 1981, 22, 3857-3860 and 3861-3864; b) H. Kinashi, K. Sakaguchi, T. Higashijima, T. Miyazawa, J. Antibiot. [1]1982, 35, 1618-1620; c) H. Kinashi, K. Someno, K. Sakaguchi, J. Antibiot. 1984, 37, 1333-1343; d) J. W. Westley, C.-M. Liu, L. H. Sello, R. H. Evans, N. Troupe, J. F. Blount, A. M. Chiu, L. J. Todaro, P. A. Miller, J. Antibiot. 1984, 37, 1738-1740; e) J.-T. Woo, C. Shinohara, K. Sakai, K. Hasumi, A. Endo, J. Antibiot. 1992, 45, 1108-1116; f) T. Ishii, T. Hida, S. Iinuma, M. Muroi, Y. Nozaki, J. Antibiot. 1995, 48, 12-20.
- a) E. J. Bowman, A. Siebers, K. Altendorf, Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 7972-7976; b) [2] S. Dröse, K. U. Bindseil, E. J. Bowman, A. Siebers, A. Zeeck, K. Altendorf. Biochemistry 1993, 32, 3902-3906.
- [3] Isolation: a) G. Werner, H. Hagenmaier, K. Albert, H. Kohlshorn, H. Drautz, Tetrahedron Lett. 1983, 24, 5193-5196; b) G. Werner, H. Hagenmaier, H. Drautz, A. Baumgartner, H. Zähner, J. Antibiot. 1984, 37, 110-117.
- Synthesis: a) K. Toshima, T. Jyojima, H. Yamaguchi, H. Murase, T. Yoshida, S. Matsumura, M. Nakata, *Tetrahedron Lett.* **1996**, *37*, 1069-1072; b) K. Toshima, H. Yamaguchi, T. Jyojima, Y. Noguchi, M. Nakata, S. Matsumura, *Tetrahedron Lett.* **1996**, *37*, 1073-1076; c) K. Toshima, T. [4] Jyojima, H. Yamaguchi, Y. Noguchi, T. Yoshida, H. Murase, M. Nakata, S. Matsumura, J. Org. Chem. 1997, 62, 3271-3284; d) D. A. Evans, M. A. Calter, Tetrahedron Lett. 1993, 34, 6871-6874; e) W. R. Roush, T. D. Bannister, Tetrahedron Lett. 1992, 33, 3587-3590; f) W. R. Roush, T. D. Bannister, M. D. Wendt, Tetrahedron Lett. 1993, 34, 8387-8390. g) I. Paterson, S. Bower, M. D. Mcleod. Tetrahedron Lett. 1995, 36, 175-178. Isolation: a) H. Seto, H. Akao, K. Furihata, N. Otake, Tetrahedron Lett. 1982, 23, 2667-2670; b) H.
- [5] Seto, I. Tajima, H. Akao, K. Furihata, N. Otake, J. Antibiot. 1984, 37, 610-613.
- [6] Synthesis: a) K. Makino, K. Kimura, N. Nakajima, S. Hashimoto, O. Yonemitsu, Tetrahedron Lett. 1996, 37, 9073-9076. b) K. Makino, N. Nakajima, S. Hashimoto, O. Yonemitsu, Tetrahedron Lett. 1996, 37, 9077-9080.
- Isolation: a) M. Igarashi, N. Kinoshita, T. Ikeda, E. Nakagawa, M. Hamada, T. Takeuchi, J. Antibiot. [7] 1997, 50, 926-931; b) M. Igarashi, H. Nakamura, H. Naganawa, T. Takeuchi, J. Antibiot. 1997, 50, 932-936.
- K. Toshima, M. Misawa, K. Ohta, K. Tatsuta, M. Kinoshita, Tetrahedron Lett. 1989, 30, 6417-6420. [8]
- [9] I. Paterson, M. D. McLeod, Tetrahedron Lett. 1995, 36, 9065-9068.
- I. Paterson, M. D. McLeod, Tetrahedron Lett. 1997, 38, 4183-4186. [10]
- T. Jyojima, N. Miyamoto, M. Katohno, M. Nakata, S. Matsumura, K. Toshima, Tetrahedron Lett. [11]following paper.
- M. Zuger, T. Weller, D. Seebach, Helv. Chim. Acta 1980, 63, 2005-2009. [12]
- a) D. A. Evans, J. Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981, 103, 2127-2129; b) J. R. Gage, D. [13] A. Evans, Org. Synth, 1989, 68, 77-82 and 83-91.
 K. Toshima, K. Tatsuta, M. Kinoshita, Tetrahedron Lett. 1986, 27, 4741-4744.
- [14]
- [15] a) C. L. Rand, D. E. Van Horn, M. W. Moore, E. Negishi, J. Org. Chem. 1981, 46, 4093-4096; b) T. Yoshida, E. Negishi, J. Am. Chem. Soc. 1981, 103, 4985-4987.
- H. C. Brown, K. S. Bhat, J. Am. Chem. Soc. 1986, 108, 293-294 [16]
- T. Hiyama, K. KImura, H. Nozaki, Tetrahedron Lett. 1981, 22, 1037-1040. [17]
- [18] N. Nakajima, K. Horita, R. Abe, O. Yonemitsu, Tetrahedron Lett. 1988, 29, 4139-4142.
- [19] H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483-2547.
- [20] T. Mukaiyama, K. Banno, K. Narasaka, J. Am. Chem. Soc. 1974, 96, 7503-7509.
- [21] Y. Oikawa, T. Yoshioka, O. Yonemitsu, Tetrahedron Lett. 1982, 23, 889-892.
- [22] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155-4156.