

CHEMISTRY & SUSTAINABILITY

CHEM5U5CHEM

ENERGY & MATERIALS

Accepted Article

Title: Effects of Electrolyte Anions on the Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper (100) and (111) Surfaces

Authors: Yun Huang, Cheng Wai Ong, and Boon Siang Yeo

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: ChemSusChem 10.1002/cssc.201801078

Link to VoR: http://dx.doi.org/10.1002/cssc.201801078

WILEY-VCH

www.chemsuschem.org

Effects of Electrolyte Anions on the Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper (100) and (111) Surfaces

Yun Huang,^[a] Cheng Wai Ong,^[a] and Boon Siang Yeo*^[a]

Abstract: The CO₂ electroreduction reaction has been investigated on Cu(100) and Cu(111) surfaces in 0.1 M KClO₄, KCl, KBr and KI electrolytes. The formation of ethylene (C₂H₄) and ethanol (EtOH) products on these surfaces generally increased as the electrolyte anion was changed from $CIO_4^- \rightarrow CI^- \rightarrow Br^- \rightarrow I^-$. For example, on Cu(100) at -1.23 V vs. RHE, as the electrolyte anion changed from CIO₄⁻ to I⁻, the Faradaic efficiencies of ethylene (FE_{ethylene}) improved from 31 to 50%, FE_{ethanol} increased from 7 to 16%, and the current densities of ethylene and ethanol showed respectively 5 and 7 folds enhancement. A remarkable total FE up to 74% for C2 and C3 products were also obtained in the KI electrolyte. Despite their roughening in the presence of the electrolytes, the Cu(100) electrode still showed a greater propensity than Cu(111) for enhancing the formation of C2 compounds. The favorable reduction of CO2 to C2 products in KI electrolyte was correlated with a higher *CO population on the surface, as shown using linear sweep voltammetry. In situ Raman spectroscopy indicates that the coordination environment of *CO was altered by the electrolyte anion used. Thus, apart from affecting the morphology of the electrode and local pH, we propose that the anion plays a critical role in enhancing the formation of C2 products, by tuning the coordination environment of adsorbed *CO for more efficient C-C coupling.

Introduction

Reducing CO_2 emission from the use of fossil fuels is urgently needed to prevent undesirable global warming.^[1] Using renewable electricity and catalysts to electroreduce CO_2 to chemicals and fuels offers a promising approach to reduce our reliance on fossil fuels.^[2] Copper-based catalysts are particularly attractive for such a purpose, owing to their unique ability to reduce CO_2 to ethylene and ethanol.^[3] However, the poor product selectivity and large overpotentials required by these catalysts make them inapt for industrial applications. Hence, considerable resources have been invested to tune the structure of the Cu catalysts, and their electrochemical environment, in order to optimize their CO_2 -to-C₂ selectivity.

The activity of Cu catalysts for the CO₂ reduction reaction (CO2RR) is influenced by their surface orientation,^[4] grain boundaries,^[5] type of electrolytes used,^[6] etc. The importance of electrolyte cation was first reported by Hori et al.^[67] An increase in the selectivities for CO, ethylene and ethanol production on

 Y. Huang, C.W. Ong, Prof. Dr. B.S. Yeo Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore 117543
 E-mail: chmyeos@nus.edu.sg

Supporting information for this article is given via a link at the end of the document.((Please delete this text if not appropriate))

copper electrodes was observed as the sizes of the cations (from Li⁺ to Cs⁺) used increased. This effect was also found by Kenis and Bell for the electroreduction of CO₂ to CO on silver electrodes.^[6b, 7] Bell's group further investigated the role of the electrolyte cation by modeling the local pH and electric field near the cathode.^[6b, 6c] Due to the consumption of protons (supplied from water dissociation) during CO2RR and hydrogen evolution, the pH at the surface of the working electrode is expected to rise.^[3] However, larger cations, especially Cs⁺, are also predicted to hydrolyze easily $([Cs(H_2O)_n]^+ + H_2O \rightarrow [Cs(H_2O)_{n-1}]^+)$ $_1(OH)$] + H $_3O^*$), and their use will buffer the rise of local pH.^[6b] The resultant lowered local pH will facilitate the dissolution of CO_2 near the cathode and consequently enhance the CO_2 reduction activity. It was further suggested that hydrated Cs⁺ ions were more concentrated in the outer Helmholtz plane, and could induce a greater electric field to stabilize *CO and *OCCO adsorbates, the key intermediates for ethylene and ethanol production.[6c]

The effect of electrolyte anion has also been investigated for CO2RR.^[6a, 6d, 6e] Hori et al. reported higher selectivities towards ethylene on polycrystalline Cu electrodes in nonbuffering KCI, KCIO₄ and K₂SO₄ electrolytes, as compared to buffers such as KHCO₃ and K₂HPO₄.^[6a, 8] Local pHs are expected to rise higher when electrolytes with lower buffering abilities are used. Thus, Hori attributed the higher ethylene selectivities detected in the non-buffering electrolytes to the higher local pHs at the electrode surface.^[6a] This can be rationalized in terms of the decoupled proton-electron transfer step that occurs during the formation of ethylene. Subsequently, the Ogura group reported selective ethylene formation on copper electrodes coated with Cu halide in concentrated (3 M) potassium halide electrolytes.^[9] Of the three halides (Cl⁻, Br⁻ and I) used, Br most favored ethylene production. The halide was proposed to aid the adsorption of CO2 via charge transfer and stabilize the pertinent carboxyl (COOH) intermediates. The absence of infrared spectroscopic signals belonging to adsorbed CO also led them to propose that this species is not involved in the formation of ethylene.^[9a] Roldan-Cuenya et al. performed CO2 reduction on preoxidized Cu catalysts in KHCO3 electrolytes mixed with KCI, KBr or KI (non-buffers).^[6e] Therein, the current densities of ethylene and ethanol increased as the anion was changed from $Cl^- \rightarrow Br^- \rightarrow l^{-.[6e]}$ The higher selectivity and activity for C2 products observed on these electrodes (compared to a copper foil reference) was not attributed to significant changes in local pHs as a KHCO3-based buffer was used. The change in activity was instead ascribed to effects from the adsorbed halide anion, subsurface oxygen and roughened surface. Here, we note that both Cu halides and preoxidized Cu electrodes are already known to promote the formation of C2 products.[6e, 9a, 10] Thus, it is difficult to clarify the role of the electrolyte anion on the selectivity of CO2RR.

Figure 1. Scanning electron micrographs of Cu(100) and Cu(111) electrodes (A-B) before CO₂ reduction; after CO₂ reduction in (C-D) KClO₄, (E-F) KCl, (G-H) KBr and (I-J) KI electrolytes at -1.23 V vs. RHE. Scale bar: 500 nm. (K-T) The corresponding cyclic voltammograms of the same electrodes (in N₂-saturated 0.1 M KOH, scan rate of 50 mV/s).

In this work, we examine the product distribution of CO_2 reduction on Cu(100) and Cu(111) electrodes in non-buffering KCIO₄, KCI, KBr and KI electrolytes. The formation of ethylene and ethanol increased on both surfaces as the electrolyte anion was varied from $CIO_4^- \rightarrow CI^- \rightarrow Br^- \rightarrow I^-$. Effects of morphology and local pH were examined. Linear sweep voltammetry and Raman spectroscopy were also used to probe the anion's effect on CO adsorption on Cu. The effect of the anion on the formation of C2 compounds is discussed.

Results and Discussion

Characterization of the electrodes before and after \mbox{CO}_2 reduction

Scanning electron microscopy (SEM) of freshly-prepared Cu(100) and Cu(111) electrodes showed that their surfaces were smooth (Figure 1). Their cyclic voltammograms (CV) were consistent with previous studies, as evidenced by their OH⁻ adsorption/desorption peaks located between -0.2 and 0.3 V vs. RHE (all potentials cited in this work are referenced to the reversible hydrogen electrode).^[11]

CO₂ reduction was then performed on these surfaces for 40 min in 0.1 M KClO₄, KCl, KBr and KI electrolytes at a representative potential of -1.23 V. SEM images of these surfaces after CO2RR revealed their roughening, especially when electrolysis were performed in KBr and KI electrolytes (Figure 1G-J).^[6d] We could not discern any differences between the way the two surfaces were roughened in each electrolyte. Double-layer capacitance measurements showed that these surfaces had up to $1.6 \times$ larger surface roughness factors than those before CO₂ reduction (Table S1 of the Supporting Information). The surface roughening could be due to formation of CuBr/CuI particles on the Cu surfaces upon their contact with electrolytes at open circuit condition, followed by their reduction during CO₂ electrolysis (Figure S1 of the Supporting Information).^[6e] Interestingly, the CVs of the Cu electrodes after CO2RR resembled those of freshly-prepared ones (Figure 1K-T). This indicates that the surface orientation of the Cu single crystals were largely maintained after electrolysis, consistent with additional results from high resolution and 2D X-ray diffraction analyses of the electrodes (Figures S2 and S3 of the Supporting Information).

Distribution of CO_2 reduction products on Cu(100) and Cu(111) surfaces

 CO_2 reduction was performed on Cu(100) and Cu(111) electrodes at potentials between -0.98 and -1.38 V in 0.1 M KCIO₄, KCI, KBr and KI electrolytes. The products were analyzed using gas and liquid chromatography (Figures S4 and S5 of the Supporting Information). The data is grouped based on our products of interest, which are CO, formate, ethylene, ethanol and CH₄ (Figures 2 and 3, Figure S6 of the Supporting Information). The FEs for other products including hydrogen, n-propanol, etc. are listed in Tables S2-9 of the Supporting Information.

Cu(100)

Starting at a potential of -0.98 V, CO production on Cu(100) was favored in KI over KCIO₄ electrolyte (Figure 2A-B).

Specifically, when the electrolyte was switched from KClO₄ to KI, FE_{CO} increased from 11.8% to 22.8% and the corresponding j_{CO} doubled from -0.06 to -0.12 mA/cm². At -1.08 V, ethylene and ethanol production increased while CO evolution decreased (Figure 2C-F). These observations indicate that CO is an intermediate for the formation of these C2 products.^[12]

The selectivity towards ethylene peaked at -1.23 V in all four electrolytes, with FE_{ethylene} of 50.3% in KI and FE_{ethylene} of 30.6% in KCIO₄ (Figure 2C-D). In KI electrolyte, the optimum $j_{ethylene}$ reached -6.06 mA/cm², which was 5 times higher than

that in KClO₄ (-1.20 mA/cm²). The enhancement in ethanol production follows the same trend as that of ethylene (Figure 2E-F). At -1.23 V, the optimized FE_{ethanol} increased from 7.1% to 16.4% and the corresponding j_{ethanol} improved from -0.28 to -1.98 mA/cm² when switching electrolytes from KClO₄ to KI.

It is noteworthy that the total FEs for C2 and C3 products at -1.23 V reached as high as 74 % in KI electrolyte. This value is the state-of-the-art as compared to those reported for plasma-activated Cu (FE_{C2-C3} = ~65%),^[6e] Cl-induced Cu₂O-Cu (FE_{C2-C3} = ~60%)^[13] and oxide-derived Cu catalysts (FE_{C2-C3} = ~70%).^[14]

10.1002/cssc.201801078

WILEY-VCH

Figure 3. Faradaic efficiencies and partial current densities for (A-B) ethylene and (C-D) ethanol produced on Cu(111) in 0.1 M KCIO₄, KCI, KBr and KI electrolytes at various applied potentials.

Selectivity towards formate is less favored in KBr/KI as compared to KClO₄ electrolytes (Figure 2G-H). At -0.98 V, the FE_{formate} reduced from 17.3% in KClO₄ to 11.9% in KI electrolyte, in contrast to the enhancement of CO and ethylene production observed at the same conditions. This can be ascribed to the competing production of formate and CO (and its further reduced products).^[15]

At potentials negative to -1.28 V, Cu(100) became selective for CH₄ production in KCIO₄, KCI and KBr electrolytes (Figure 2I-J). The highest FE_{CH4} of 49.1% was obtained in KBr electrolyte at -1.38 V, while a highly suppressed FE_{CH4} of 11.9% was found in KI electrolyte at the same potential. Despite the generally suppressed FE_{CH4} in KI, the geometric current density for CH₄ in KI is comparable to that in the KBr system. This is likely due to the increased surface roughness of the Cu electrolytes.

Cu(111)

The trend in which C2 products are formed on Cu(111) in different electrolytes is similar to that described on Cu(100). Changing the electrolyte from KCIO₄ to KI increased the optimum FE_{ethylene} from 13.3 to 35.7% and the corresponding $j_{ethylene}$ from -0.19 to -2.96 mA/cm² (Figure 3A-B). The FE and current densities of ethanol also improved (Figure 3C-D).

It is noteworthy that though Cu(100) and Cu(111) were visibly roughened during CO_2 electrolysis, their original surface crystallographies were largely preserved (Figure 1, Figures S2 and S3). This could explain the higher ethylene selectivity observed on Cu(100) as compared to on Cu(111). Such a surface structure effect has been confirmed by density functional theory (DFT) calculations and by performing CO_2 reduction on Cu foils, whose exposed facets are tuned using metal ion cycling.^[16] The propensity of Cu(100) electrodes to reduce CO_2 to ethylene has also been attributed to the presence of a high *CO coverage on the electrode during CO2RR, which lowered

the activation barrier for CO dimerization.^[4a, 17] The potentialdependent production of CO, formate and CH₄ on Cu(111) in the four electrolytes were similar to that observed on Cu(100) (Figure S6 of the Supporting Information).

Factors responsible for the C2 enhancement

We now investigate the reasons behind the increased formation of ethylene and ethanol as the electrolyte anion was changed from $ClO_4^- \rightarrow Cl^- \rightarrow Br^- \rightarrow l^-$. Is it due to electrode roughening, rise in local pH induced from the non-buffering electrolytes, or the anion's role in tuning the *CO adsorption environment?

Morphological factor

A Cu(100) electrode was used for two consecutive CO₂ reductions (each for 40 min) at -1.23 V, first in KI and then in KCIO₄ electrolyte. The production of C2 compounds in KI was significantly reduced during the second electrolysis in KCIO₄ (Table 1, Table S10 of the Supporting Information). Specifically, the FE_{ethylene} and FE_{ethanol} decreased respectively from 50.3 to 37.2% and 16.4 to 10.0%. Nonetheless, the production of ethanol and ethylene at the 2nd electrolysis [i.e., KI-treated Cu(100) in KCIO₄] is still higher than that shown by a fresh Cu(100) in KCIO₄ electrolyte (FE_{ethylene} = 30.6%, FE_{ethanol} = 7.1% at -1.23 V). Its total current density is also larger by 1.5×. This enhancement (in the production of C2 compounds) can be attributed to the more extensive roughening of its surface after the 1st electrolysis in KI electrolyte. However, it is significantly smaller than the enhancement observed using only KI as the electrolyte. Therefore, we conclude that while a rough Cu surface may contain catalytically-active defect sites for reducing CO₂ to C2 products, the morphology itself cannot be the sole responsible factor.

Local pH

The electrolytes used in this work are non-buffers.^[8] Previous

 Table 1: Faradaic efficiencies for CO_2 reduction products formed on Cu(100) during sequential CO_2 reductions in 0.1 M KI and 0.1 M KCIO₄ electrolytes, and Cu(100) in 0.1 M KCIO₄ electrolyte. All experiments were performed at -1.23 V for 40 min.

j _{tot} (mA/cm²)	Faradaic Efficiency (%)							
	CH₄	C_2H_4	со	H₂	EtOH	HCOO.	Other liquid products ^[a]	Total
1 st electrolysis of Cu(100) in Kl								
-12.06	9.2	50.3	0.5	19.9	16.4	1.5	7.1	104.9
			2 nd e	lectrolysis of C	Cu(100) in KClO₄			
-5.89	28.3	37.2	1.5	14.1	10.0	4.8	6.0	101.9
				Cu(100) in	KCIO₄			
-3.93	23.6	30.6	2.2	28.3	7.1	6.5	5.1	103.5

[a]: Other liquid products include acetaldehyde, propionaldehyde, methanol, ally alcohol and n-propanol. The standard deviations of the measurements have been listed in Table S10 of the Supporting Information

Figure 4. (A) Linear sweep voltammograms of Cu(100) electrodes in 0.1 M KCIO₄, KCI, KBr and KI electrolytes saturated in CO (solid lines) and N₂ (dotted lines). Scan rate = 10 mV/s. (B) Correlation between the integrated charges beneath CO adsorption peaks (from a) and the partial current densities for ethylene (black) and ethanol (red) produced on Cu(100) at -1.23 V in the four electrolytes.

studies have shown that local pH is dependent on the applied current densities.^[18] Herein, we model the local pH within the diffusion layer using Gupta's model.^[18a, 19] As expected, the pH rises when going from bulk electrolyte to the surface of the Cu(100) during CO₂ reduction at -1.23 V (Table S11 and Figure S7 of the Supporting Information). Experimentally, Cu(100) in KI electrolytes exhibited the largest current densities. Thus, its surface pH (pH 11.0) was calculated to be the highest as compared to those electrodes held in the other three electrolytes (pHs between 10.3 and 10.4).

To investigate the effect of local pH on ethylene formation, we analyzed the Faradaic efficiencies for ethylene on Cu(100) in the four electrolytes at -1.23 V against the calculated surface pH values (Figure S8 of the Supporting Information). Interestingly, while KClO₄, KCl and KBr electrolyte systems shared similar surface pHs at ~10.4, the spread of their FE_{ethylene} values varied greatly from 30.6 to 46.9%. The weak correlation of local pH and FE_{ethylene} suggests that local pH is not a dominant factor for enhancing the formation of C2 products during CO2RR in KClO₄, KBr and KCl electrolytes.

Role of anion

CO adsorption on Cu single crystals: The adsorption of CO on Cu in different electrolytes was probed by linear sweep voltammetry (Figure 4A and Figure S9 of the Supporting Information). By comparing the cathodic currents on Cu(100) in CO- and N₂-saturated electrolytes, we noted that the onsets of H₂ evolution were delayed under CO environment (by 44-87 mV at -1.2 mA/cm²). We attribute this to the presence of adsorbed *CO which blocks available sites for HER and also weakens Cu-H bonding.^[20] Copper's HER activity will thus be lower as it lies on the right-hand (weak-binding) side of the HER volcano plot.^[20a]

Reduction peaks also appeared at approx. -0.45 V during the cathodic scans of Cu(100) in CO-saturated 0.1 M KCIO₄, KCI, KBr and KI electrolytes (Figure 4A). These peaks could be ascribed to CO adsorbed onto Cu(100) accompanied by electron transfer.^[19, 20b, 21] In support of this, we note that the first CO reduction product, ethylene, was observed only at -0.76 V on the same surface in CO-saturated KI electrolyte (Table S12 of the Supporting Information). Roberts et al. had also reported an onset potential of -0.5 V vs. RHE for CO reduction on Cu(100) in pH 7 electrolyte.^[21b]

The integrated charges of the CO adsorption peaks (which increased as the electrolyte anion was changed from $CIO_4^- \rightarrow CI^- \rightarrow Br^- \rightarrow I^-$) are associated with the population of *CO on the Cu surface. Interestingly, when the current densities of ethylene and ethanol obtained on a Cu(100) surface at -1.23 V was plotted against these charges, a linear correlation was observed (Figure 4B). This indicates that enhancement in C2 products is linked to

the increased *CO population on the electrode. This result agrees with our previous studies of CO adsorption on CuClderived Cu mesocrystals, Cu nanoparticles and polycrystalline Cu surfaces.^[19, 22] Therein, we found that catalysts, which exhibited good selectivity towards CO₂ reduction to ethylene, adsorb CO most readily. We further highlight that Verdaguer-Cassadevall et al. have reported the presence of strongly chemisorbed CO on Cu catalysts active for the reduction of CO₂ to C₂ compounds.^[23]

We note that the LSVs of Cu(111) did not show the charge transfer peak (Figure S9 of the Supporting Information). This is consistent with previous findings by Hori et al.^[20b] Nonetheless, suppression in HER was similarly observed in the order of ClO₄⁻ < Cl⁻ < Br⁻ < l⁻.

*CO binding environment on Cu single crystals probed by *in situ* Raman spectroscopy: *In situ* Raman spectroscopy was performed on copper in CO₂-saturated 0.1 M KX (X = CIO₄⁻, Cl⁻, Br⁻ and l⁻) electrolytes (Figure 5 and Figure S10 of the Supporting Information). Mechanically polished polycrystalline Cu was used for this purpose as we found it easier to focus the Raman laser tightly on this surface as compared to the smooth single crystal surface. The working potential was set at -0.98 V, where strong CO production is expected (Figure 2 and Figure S6 of the Supporting Information).

Only Raman bands at 280, 365 and ~2060-2090 cm⁻¹ were recorded (Figure 5). These can be assigned respectively to the Cu-CO frustrated rotation, Cu-CO stretching and C=O stretching

Figure 5. In situ Raman spectra of polycrystalline Cu cathode during electrochemical reduction of CO₂ in KCIO₄, KCI, KBr and KI electrolytes at – 0.98 V. The top Insert shows the red shifting of the C=O stretching bands in the order of CIO₄⁻ < CI⁻ < Br⁻ < I⁻, and the bottom Insert presents a schematic illustration of CO adsorbed on the Cu surface.

modes of adsorbed *CO.^[24] Interestingly, the stretching vibration of C=O decreased from 2087 to 2060 cm⁻¹, when the electrolyte was changed from KCIO₄ to KI. The weakening of C=O stretching indicates that the coordination environment of CO was altered by the presence of different anions.

Although CO production was strongest in KI electrolyte at -0.98 V (Figure 2 and Figure S6 of the Supporting Information), its *CO Raman bands did not show the highest intensities. This could be related to the roughening of the surface, which affects the optical properties of the surface. Additionally, no peaks corresponding to Cu-I (~125/~140 cm⁻¹) or Cu-Br (~135/~170 cm⁻¹) could be discerned,^[25] as they were obscured by the background peak at ~100 cm⁻¹. We also could not detect signals belonging to further reduced species, which can be attributed to the insufficient limits of detection afforded by our spectrometer.

Effects of anions on C2 production: In this work, the formation of ethylene and ethanol on Cu(100) and Cu(111) surfaces generally increase as the electrolyte anion was changed from $ClO_4^- \rightarrow Cl^- \rightarrow Br^- \rightarrow l^-$. This trend mirrors that of the binding abilities of the anions on Cu in the order of $ClO_4^- < Cl^- < Br^- < l^-$. [^{26]} The Cu(100) facet was also shown better than Cu(111) in enhancing the formation of C2 products.

We acknowledge that the electrolyte anions might compete with active CO₂RR intermediates for adsorption sites. However, our LSV results suggest that *CO adsorption on Cu surface was actually enhanced by the co-adsorbed anions. The resultant high population of *CO could then in turn facilitate C-C coupling of the CO intermediates to C2 products. ^[4a, 17a] Our hypothesis is supported by Shaw et al., who revealed using DFT calculations, that the *CO binding energy on Cu can be increased by up to 0.2 eV in the presence of co-adsorbed anions (F⁻ and Cl⁻).^[21a] It is noteworthy that an infrared spectroscopy study by Scarano et al. demonstrated the greater ability of CuCl surface to bind to CO.^[27] Our propositions also agree well with recent DFT calculations by Nørskov and our group, which showed that increasing *CO coverage on Cu surfaces lowers the energy barrier for C-C coupling.^[4a, 17a]

Additionally, the adsorbed anion could modify the electronic structure of the local Cu sites, which could induce a more positive charge on carbon atom of *CO adsorbate. Anion-free copper sites, on the other hand, tend to promote π -back donation (from Cu) into the antibonding $2\pi^*$ orbital of *CO,^[28] resulting in a more negatively charged carbon atom of *CO adsorbate. The electrostatic attraction between the oppositely charged carbon atoms could render stability to the CO dimerization product and in turn facilitate the C-C coupling process. Goddard et al. have similarly attributed the enhanced formation of C2 products on Cu₂O-derived Cu surface to the electrostatic stabilization between two carbon atoms induced by Cu⁺ and Cu⁰ interface.^[29] Their DFT calculations suggest such stabilization.

Hori et al. first reported the use of non-buffers for enhancing the formation of C2 products and the improved performance was attributed to the rise of local pH at the working electrode surface.^[8] Roldan Cuenya et al. further demonstrated increased CO₂ reduction rate on preoxidized Cu electrodes in halide containing KHCO₃ buffers,^[6e] and factors including subsurface oxygen, anion adsorption and surface roughening were proposed for the enhancement. In this work, we have demonstrated that the enhancement in ethylene and ethanol production (in terms of both Faradaic efficiencies and partial current densities) strongly correlates with the population of *CO on the surface. The presence of the adsorbed anion, specifically Γ , is suggested to be a dominant cause for the enhancement. We show that the catalytic selectivity and activity of electrochemical reduction of CO₂ can be tuned by the judicious selection of appropriate electrolyte anion.

Conclusions

We have examined the electroreduction of CO₂ on Cu(100) and Cu(111) surfaces in 0.1 M KClO₄, KCl, KBr and Kl electrolytes. The formation of ethylene and ethanol on these surfaces was enhanced when the anion of the electrolyte was varied in the order of ClO₄⁻ \rightarrow Cl⁻ \rightarrow Br⁻ \rightarrow l⁻. The use of Kl as the electrolyte yielded the highest FE_{ethylene} of 50% and FE_{ethanol} of 16%, and with the total FE for C2-C3 products reaching 74% at -1.23 V. Apart from affecting the surface morphologies and local pHs of the electrodes, we propose that the electrolyte anion can facilitate a higher population of adsorbed *CO, which thus promotes their C-C coupling to C2 products.

Experimental Section

Electrode preparation and characterization: Cu(100) and Cu(111) single-crystal surfaces (99.99%, 10 mm diameter, MTI Corp.) were prepared through mechanical polishing, electropolishing and acid rinsing in 0.1 mM HCIO₄ solution.^[30] The surface morphology of the electrodes was characterized using scanning electron microscopy (JEOL JSM-6710 F, 5 kV, 10 µA). Their surface orientation were checked by cyclic voltammetry in 0.1 M KOH,^[11] as well as high resolution and 2D X-ray diffraction. The surface roughness factors of these electrodes after CO2 reduction were estimated using their double-layer capacitances. CO adsorption on the Cu single-crystal surfaces was examined by linear sweep voltammetry.^[4b] An Autolab PGSTAT100 potentiostat was used for controlling the aforementioned electrochemistries. In situ Raman spectroscopy (Horiba Jobin Yvon) was performed to probe the structure of the *CO intermediates on mechanically polished polycrystalline Cu surfaces. A He-Ne laser (633 nm, CVI Melles Griot) was employed as the excitation source. A water-immersion objective (Olympus LUMFL, 60×, numerical aperture = 1.10) protected with an optically transparent Teflon film (0.013 mm, American Durafilm) was used during the in situ electrochemical measurements.

Electrochemical reduction of CO2: 0.1 M KClO4 (99.99%, Sigma-Aldrich), KCI (99.99%, Sigma-Aldrich), KBr (99.95%, Merver Chemical) and KI (99.99%, Meryer Chemical) electrolytes were prepared with ultrapure water (Type I, Barnstead, Thermo Scientific). We employed a two-compartment electrochemical cell,[31] separated by a cationexchange membrane (Selemion CMV, AGC Asahi Glass), to perform CO₂/CO chronoamperometric measurements using a Gamry Reference 600 potentiostat. 20 sccm of CO2 (99.999%, Linde Gas) or 5 sccm of CO (99.9%, Linde Gas) were purged into the two compartments during the 40 min electrolysis. A Ag/AgCl electrode (Saturated KCl, Pine Research Instrumentation) and a Pt wire (ALS Japan) were employed as reference and counter electrodes respectively. The current interrupt mode was used for compensating the iR drop. All potentials reported here were referenced to the RHE. The pHs were measured to be ~3.8 for CO2saturated KCIO₄, KCI, KBr and KI solutions and 5.8 for CO-saturated KI solution. The gas products were periodically analyzed by gas chromatography (GC, 7890A, Agilent). Liquid products were collected after chronoamperometry and quantified using headspace gas chromatography (HSGC, Agilent, 7890B) and high-performance liquid chromatography (HPLC, Agilent, 1260 Infinity). The product distribution reported here is the average of at least three independent measurements at each potential. All the currents were normalized to the exposed geometric surface area (0.385 cm²) of the working electrode.

Modeling of local pH: A steady-state 1-D modeling in MATLAB 8.5 was performed to calculate the local pH within the diffusion layer in various electrolytes, and to investigate its effect on C2 production.^[18a, 19]

Acknowledgements

This work is supported by a research fund (R-143-000-683-112) from the Ministry of Education, Singapore. Y.H. and C.W.O acknowledge Ph.D. research scholarships from the Ministry of Education, Singapore. We thank Dr. Albertus D. Handoko (Institute of Materials Research and Engineering) for the XRD measurements.

Keywords: carbon dioxide reduction • copper single crystals • anion • ethylene • ethanol

- P. Friedlingstein, R. M. Andrew, J. Rogelj, G. P. Peters, J. G. Canadell, R. Knutti, G. Luderer, M. R. Raupach, M. Schaeffer, D. P. van Vuuren, C. Le Quéré, *Nat. Geosci.* 2014, 7, 709-715.
- [2] D. Ren, N. W. X. Loo, L. Gong, B. S. Yeo, ACS Sustainable Chem. Eng. 2017, 5, 9191-9199.
- [3] M. Gattrell, N. Gupta, A. Co, *J. Electroanal. Chem.* **2006**, 594, 1-19.
- [4] a) Y. Huang, A. D. Handoko, P. Hirunsit, B. S. Yeo, ACS Catal. 2017, 7, 1749-1756; b) Y. Hori, I. Takahashi, O. Koga, N. Hoshi, J. Mol. Catal. A: Chem. 2003, 199, 39-47.
- [5] X. Feng, K. Jiang, S. Fan, M. W. Kanan, J. Am. Chem. Soc. 2015, 137, 4606-4609.
- [6] a) Y. Hori, A. Murata, R. Takahashi, J. Chem. Soc., Faraday Trans. 1
 1989, 85, 2309-2326; b) M. R. Singh, Y. Kwon, Y. Lum, J. W. Ager, A. T. Bell, J. Am. Chem. Soc. 2016, 138, 13006-13012; c) J. Resasco, L. D. Chen, E. Clark, C. Tsai, C. Hahn, T. F. Jaramillo, K. Chan, A. T. Bell, J. Am. Chem. Soc. 2017, 139, 11277-11287; d) A. S. Varela, W. Ju, T. Reier, P. Strasser, ACS Catal. 2016, 6, 2136-2144; e) D. Gao, F. Scholten, B. Roldan Cuenya, ACS Catal. 2017, 7, 5112-5120; f) A. Murata, Y. Hori, Bull. Chem. Soc. Jpn. 1991, 64, 123-127.
- [7] M. R. Thorson, K. I. Siil, P. J. A. Kenis, J. Electrochem. Soc. 2013, 160, F69-F74.
- [8] Y. Hori, in *Modern Aspects of Electrochemistry, Vol. 42* (Eds.: C. G. Vayenas, R. E. White, M. E. Gamboa-Aldeco), Springer New York, New York, NY, **2008**, pp. 89-189.
- a) K. Ogura, J. CO₂ Util. 2013, 1, 43-49; b) H. Yano, T. Tanaka, M. Nakayama, K. Ogura, J. Electroanal. Chem. 2004, 565, 287-293.
- [10] D. Gao, I. Zegkinoglou, N. J. Divins, F. Scholten, I. Sinev, P. Grosse, B. Roldan Cuenya, ACS Nano 2017, 11, 4825-4831.
- [11] a) V. D. Jović, B. Jovic M., *J. Serb. Chem. Soc.* 2002, 67, 531-546; b) K.
 J. P. Schouten, E. P. Gallent, M. T. M. Koper, *J. Electroanal. Chem.* 2013, 699, 6-9.
- [12] R. Kortlever, J. Shen, K. J. P. Schouten, F. Calle-Vallejo, M. T. M. Koper, J. Phys. Chem. Lett. 2015, 6, 4073-4082.
- [13] S. Lee, D. Kim, J. Lee, Angew. Chem., Int. Ed. 2015, 54, 14701-14705.
- [14] Y. Lum, B. Yue, P. Lobaccaro, A. T. Bell, J. W. Ager, J. Phys. Chem. C 2017, 121, 14191-14203.

WILEY-VCH

- [15] J. S. Yoo, R. Christensen, T. Vegge, J. K. Nørskov, F. Studt, *ChemSusChem* **2016**, 9, 358-363.
- [16] K. Jiang, R. B. Sandberg, A. J. Akey, X. Liu, D. C. Bell, J. K. Nørskov, K. Chan, H. Wang, *Nat. Catal.* **2018**, *1*, 111-119.
- [17] a) J. H. Montoya, C. Shi, K. Chan, J. K. Nørskov, *J. Phys. Chem. Lett.* 2015, 6, 2032-2037; b) R. B. Sandberg, J. H. Montoya, K. Chan, J. K. Nørskov, *Surf. Sci.* 2016, 654, 56-62.
- [18] a) N. Gupta, M. Gattrell, B. MacDougall, *J. Appl. Electrochem.* 2005, 36, 161-172; b) J. Resasco, Y. Lum, E. Clark, J. Z. Zeledon, A. T. Bell, *ChemElectroChem* 2018, 5, 1064-1072.
- [19] A. D. Handoko, C. W. Ong, Y. Huang, Z. G. Lee, L. Lin, G. B. Panetti, B. S. Yeo, *J. Phys. Chem. C* 2016, *120*, 20058-20067.
- [20] a) Y.-J. Zhang, V. Sethuraman, R. Michalsky, A. A. Peterson, ACS Catal. 2014, 4, 3742-3748; b) Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Surf. Sci. 1995, 335, 258-263.
- [21] a) S. K. Shaw, A. Berná, J. M. Feliu, R. J. Nichols, T. Jacob, D. J. Schiffrin, *Phys. Chem. Chem. Phys.* **2011**, *13*, 5242-5251; b) F. S. Roberts, K. P. Kuhl, A. Nilsson, *ChemCatChem* **2016**, *8*, 1119-1124.
- [22] C. S. Chen, A. D. Handoko, J. H. Wan, L. Ma, D. Ren, B. S. Yeo, *Catal. Sci. Technol.* **2015**, *5*, 161-168.
- [23] A. Verdaguer-Casadevall, C. W. Li, T. P. Johansson, S. B. Scott, J. T. McKeown, M. Kumar, I. E. L. Stephens, M. W. Kanan, I. Chorkendorff, *J. Am. Chem. Soc.* 2015, *137*, 9808-9811.
- [24] B. D. Smith, D. E. Irish, P. Kedzierzawski, J. Augustynski, J. Electrochem. Soc. 1997, 144, 4288-4296.
- [25] J. Serrano, M. Cardona, T. M. Ritter, B. A. Weinstein, A. Rubio, C. T. Lin, *Phys. Rev. B* **2002**, *66*, 245202.
- [26] a) A. Ignaczak, J. A. N. F. Gomes, J. Electroanal. Chem. 1997, 420, 71-78; b) I. T. McCrum, S. A. Akhade, M. J. Janik, Electrochim. Acta 2015, 173, 302-309; c) O. M. Magnussen, Chem. Rev. 2002, 102, 679-726.
- [27] D. Scarano, P. Galletto, C. Lamberti, R. De Franceschi, A. Zecchina, Surf. Sci. 1997, 387, 236-242.
- [28] G. Blyholder, J. Phys. Chem. 1964, 68, 2772-2777.
- [29] H. Xiao, W. A. Goddard, T. Cheng, Y. Liu, Proc. Natl. Acad. Sci. U. S. A. 2017, DOI: 10.1073/pnas.1702405114.
- [30] I. Takahashi, O. Koga, N. Hoshi, Y. Hori, J. Electroanal. Chem. 2002, 533, 135-143.
- [31] D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi, B. S. Yeo, ACS Catal. 2015, 5, 2814-2821.

WILEY-VCH

FULL PAPER

Entry for the Table of Contents (Please choose one layout)

FULL PAPER

Switching the electrolyte anion from CIO_4^- to I⁻ improves the production of ethylene and ethanol on Cu(100) surfaces, with the highest Faradaic efficiencies of 50% for ethylene and 16% for ethanol. The high population of *CO facilitated by the electrolyte anion greatly promotes C-C coupling to C2 products.

Y. Huang, C. W. Ong, B. S. Yeo*

Page No. – Page No.

Effects of Electrolyte Anions on the Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper (100) and (111) Surfaces