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The memory effect of a trilayer structufeapid thermal oxide/Ge nanocrystals in Si€puttered

SiO,) was investigated via capacitance versus voltage\() measurements. The Ge nanocrystals
were synthesized by rapid thermal annealing of the cosputteredS& films. The memory effect

was manifested by the hysteresis in theV curve. Transmission electron microscope &V

results indicated that the hysteresis was due to Ge nanocrystals in the middle layer of the trilayer
structure. ©2002 American Institute of Physic§DOI: 10.1063/1.1459760

The increasing use of portable electronics and embeddesemiconductofMIS) structure. The insulating layer consists
systems has resulted in a need for low-power high-densitef a trilayer structure. A thiit5 nm) SiO, layer was grown on
nonvolatile memories. Current floating-gate flash memorya p-type silicon substrate in dry oxygen ambient using rapid
cells use a relatively thick tunnel oxide to prevent directthermal oxidation at 1000 °C. A GeSiO, layer of thickness
tunneling current leakage to ensure a good data retentior0 nm was then deposited by the radio frequemtycosput-
capability and to reduce the off-state power consumption ofering technique. Details of the cosputtering process can be
the memory array. However, such a thick tunnel oxide meanfound in our previous papérThe sputtering target was a 4
that the write and erase pulse durations during programmingn. SiO, (99.999% purgdisk with six pieces of undoped Ge
of the flash memory are relatively long and these compro{10 mmx 10 mmx 0.3 mm) attached. The argon pressure
mise the programming speed of the device. Tinetal'  and rf power were fixed at:310 2 mbar and 100 W, re-
proposed a silicoriSi) nanocrystal memory device that can spectively. A third pure Si@layer (50 nm was then depos-
be programmed at fast spee@tmundreds of nanoseconds ited by rf sputtering in argon at rf power of 100 W and
using low voltages for direct tunneling and storage of elecsputtering pressure of>310™ 2 mbar. The trilayer structure
trons in Si nanocrystals. By using nanocrystal charge storaggas then rapid thermal annealed in argon ambient at 1000 °C
sites that are isolated electrically, charge leakage through IGor 300 s. The RTA ramp-up and ramp-down rates were fixed
calized oxide defects is reduced. Kiegal?® also demon- 4t 30°C/s.
strated a germaniuniGe) nanocrystal memory device that Figure 1 shows the capacitance versus voltage\()
can be programmed at low voltages and high speeds. Thigharacteristics of a trilayer structure devidevice A. It can
device was fabricated by implanting Ge atoms into a Si subpe seen that device A exhibits counterclockwise hysteresis
strate. However, the implantation process can cause Ge {0-6 V). Note that all our A devices25 devices tested
locate at the silicon—tunnel oxide interface, forming trapshowed hysteresis larger than 4 V. Wahkl® and Shiet al’
sites that can degrade device performance. observed hysteresis 6f2—-2.5 V (for a voltage sweep of

Recently, we reported structural results of Ge nanocrys-_5_ 5 v/) for a Si nanocrystal transistor structure with 1.8
tals synthesized by the rapid thermal annealif®TA) (Ref. 6 and 2.4 nn{Ref. 7) tunnel oxide layers, respectively.
technique’®> We showed that Ge nanocrystal growth is criti- Note that the hysteresis width depends on the range of the
cally dependent on the Ge concentration and the RTA condivo“age sweep in th€—V measurements and on the device
tions. In this letter, we report observations of memory effectsiycture.
of Ge nanocrystals fabricated using a trilayer structure. Figure 1 also shows th€—V curve of another trilayer

The devices used in this work have a metal—insulator—;rycture devicédevice B with the middle layer consisting
of 20 nm thick pure sputtered oxide. Counterclockwise hys-
dElectronic mail: elechoi@nus.edu.sg teresis was also observed but was of smaller wiatA3 V).
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FIG. 1. Capacitance vs voltage characteristics of trilayer structure devices:

device A[RTO SiG, (5 nm)—Get SiO, (20 nm)—sputtered SiX(50 nm)] FIG. 2. Transmission electron micrograph of the trilayer structure rapid
and device B [RTO SiO (5nm)-—sputtered Si9(20 nm)—sputtered  thermal annealed at 1000 °C for 300 s. The trilayer structure consists of 5
SiO, (50 nm)], and two-layered structure device C[RTO  nm of RTO SiQ, 20 nm of a cosputtered GeSiO, layer, and a 50 nm of
SiO, (5 nm)—Get SiO, (20 nm)]. pure sputtered SiO(device A.

Note that a trilayer structure similar to device B, but with nothat Ge nanocrystals of diametg ~20 nm formed near the
RTA step, showed hysteresis of 1.09 V. This means that thRTO SiQ,-sputtered Ge SiO, interface and smaller Ge
RTA process improved the sputtered oxide’s quality and renanocrystals with § of ~6 nm formed at the RTO
duced the trapped charge density in device B from 3.6%5i0,-sputtered Ge SiO, and the sputtered GeSiO,-pure
X 10" (as preparedto 1.98<10' cm 2 (after RTA. The  sputtered oxide interfaces. There seem to be more Ge nanoc-
pronounced hysteresis exhibited by device A must thereforeystals near the RTO Sisputtered Ge SiO, interface than
be due to charge storage in the Ge nanocrystals located in th@ar the sputtered GeSiO,-pure sputtered oxide interface.
middle layer. Note that Shét al.’” attributed the memory ef- The center region of the middle layer contains many fewer
fects of their metal—-oxide—semiconductor memory devicesse nanocrystals. Fukudst al® pointed out that, at 1000 °C,
to charge stored at deep traps in Si nanocrystals. We a®e can diffuse significantly in oxide. Heinigt al*® sug-
presently investigating this as the possible charge storaggested that, since the concentration of Ge dissolved i SiO
mechanism in our devices. The existence of Ge nanocrystals lower than the solubility at the Si—SjOnterface and
in the middle layer will be discussed further in the transmis-higher at the bulk of the oxide, the concentration gradient
sion electron microscop€TEM) results that will be pre- can lead to diffusion flux, resulting in an accumulation of Ge
sented later. at the interface. We suggest that when device A was annealed
Note that device A also shows a significant positive shiftat 1000 °C, significant Ge diffusion towards the two inter-
(~4 V) and aC-V curve with a gentler slope compared to faces took place. The process described by Hedtigl1°
device B. Since the hysteresis width is approximately 6 Vican account for the larger number of Ge nanocrystals near
this means that device A has better charge storage capabilitifie two interfaces and the smaller number of Ge nanocrystals
than device B. Ahret al® suggested that, in a system that in the center region of the middle layer. We are, however, not
contains S+O-Si and Si—-O-Géonds, the Ge—0O bond is able to provide a reason presently for the preferential forma-
weaker and can be broken easily, leaving a@+dangling tion of big nanocrystals or the higher number of smaller
bond structure. We have shown in our previous x-ray photonanocrystals at the RTO Sj@&puttered Ge SiO, interface.
electron spectroscopyXPS) results that the 1000°C an- Figure 3 shows a TEM micrograph of a two-layered de-
nealed sample contained a substantial amount of ,GeQvice (device G that consists oa 5 nm RTO SiQ layer and
bonds. This dangling bond structure can then trap an electrag 20 nm Ge- SiO, layer. The device was rapid thermal an-
and become negatively charged. The significant positive shiftealed at 1000 °C for 300 s. It can be seen from this Fig. 3
of the C—V curve of device A may be due to the trapping of that Ge nanocrystals are only located at the RTO
electrons by dangling bonds. The gentler slope of@ie/  SiO,-sputtered Ge SiO, interface. Because this device was
curve of device Ais a result of the large voltage shift inducedfabricated without an oxide cap layer, it is reasonable to ex-
by the charge stored in the nanocrystals. This was verified bgect significant outdiffusion of Ge to occur during RTA at
C-V measurements at different delay times, i.e., to simulatd.000 °C.
different sweep rates. The C-V characteristic of device C in Fig. 1 exhibits
Figure 2 shows a TEM micrograph of device A. It can besmall hysteresis 0&k0.5 V. The smaller normalized mini-
seen from this micrograph that the middle layer consists omum capacitance of device C compared to the other devices
Ge nanocrystals of different sizes. It is interesting to notan Fig. 1 is due to a thinner totai oxide thicknd@b nm in
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with Ge nanocrystals embedded in the middle S&yer that
has potential for application in memory devices. This layer is
formed via cosputtering of a GeSiO, target. The Ge nanoc-
rystals were synthesized by the RTA method.
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