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Abstract: The synthesis of 8-fluoroadenosine has been accomplished for the first time. The kinetics 
of deamination of 8-fluoroadenosine with the enzyme adenosine deaminase has also been measured. 
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1 R = H  
2 R=COCH3 

As an outgrowth of recent new procedures to access to 8-fluoropurines, t we now 
report the synthesis of the hitherto elusive 8-fluoroadenosine (8-FAdo, 1). The purported 
synthesis of 8-FAdo involving the application of the Balz-Schiemann reaction on 8-amino- 
2',3',5'-tri-O-acetyladenosine with fluoroboric acid, followed by treatment with methanolic 
ammonia for l0 h 2 has been refuted by subsequent investigations. 3'a It seems now clear that 
2',3',5'-tri-O-acetyl-8-fluoroadenosine (2) is quite sensitive to deprotection conditions 
involving the use of alcoholic ammonia] '5~ Other standard conditions for nucleoside 
deprotection using alkali 5b or alkoxides 5c are equally ineffective, causing rapid 
defluorination 5, 

On the other hand, an enzymatic deprotecfion with thermostable hydrolases 6 in 
organic solvents could offer an excellent alternative to the chemical approaches for 

sensitive derivatives such as the fuorinated purine 2. Thus, we have successfully utilized these enzymes] for 
the first time, to cleanly hydrolyze the fluorotriacetyl derivative 2 without causing any defluorination. The 
following experimental procedure is illustrative: 3.0 mg of ESL-001-02 biocatalyst 7 were added to a 2.3 mM 
solution of 2 ~ in MeOH (20 mL)andthe reaction mixture was stirred at 45°C for 3h. The reaction mixture 
was ultracentrifuged at 4°C to recover the enzyme 8 and 1.0 mL 50 mM MOPS buffer, pH 7.0 was added, 
followed by additional ultracentrifugation to assure complete recovery of the deprotected product. After 
buffer removal by flash chromatography (silica gel, HCCI3: MeOH: H20, 40:9:1), the product was purified 
by HPLC (Whatman Partisil 10, 9.4 x 50 ram; HCCI3: MeOH: H20, 41:8.5:1) to afford pure 8-FAdo 
(yield: 5.91 mg; 44.9%). 9 Fluorine-19 NMR (CD3OD/CFCI ¢ 5-103.96), proton NMW ° and carbon-13 NMR 
(Table 1), all confirm the assigned structure. The C-8 NMR signal in 1 was shifted downfield by more 
than 10ppm in comparison with its counterpart in adenosine (Ado, Table 1).The value of the Cs-Fcoupling 
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Table 1. Carbon-13 Chemical Shifts a 

Nucleoside C- I '  C-2'  C-3'  C-4' C-5' C-2 C-4 C-5 C-6 C-8 

Adenosine 91.26 75.47 72.67 88.19 63.48 153.51 150.02 121.05 157.61 142.01 

1 89.76 74.16 72.77 88.71 63.84 153.28 148.92 115.34 156.92 152.45 

aShifts (125 MHz) are given in parts per million relative to TMS. All determinations were made with a 
3 mM solution of  the nucleoside in CD3OD at 22°C. 

constant (250.7 Hz) is in general agreement with published values for 2-fluoroadenosine, '~ substituted 
monofluorobenzenes j2 and fluoropyridines.13 Interestingly, the C-2' signal in 1 was shifted upfield by 1.31 ppm 
relative to that of Ado (Table I), whereas, the C-3' chemical shifts in both Ado and 8-FAdo were quite similar. In 
other 8-substituted nucleosides, analogous changes have been attributed to conformational changes from anti to 
syn around the N(9)-C(I ' )  bond. The magnitude of such relative chemical shift differences in 1, suggests an 
increase in the syn population when compared with that of Ado. This is in agreement with the expected low 
steric influence of the fluorine atom on the nucleoside conformation in comparison with the results observed for 
8-chloro- and 8-bromopurine nucleosides (Table 2).'4 This is also consistent with the experimental observations 
of a marked flexibility about the glycosydic bond of 8-substituted purine analogs with substituents having a 

Table 2, Differences in Carbon-13 Chemical Shifts for C-2' and C-3 a 

Compound A6C2' - ~iC3' Attributed 

Conformation 

Adenosine ~ + 2.80 TM anti 

8-Fluoroadenosine b + 1.39 see ref 14c 

8-Chloroadenosine" + 0.4214J syn 

8-Bromoadenosine ~ + 0.24 j4d syn 

2-Fluoroadenosine c + 3.26 ~ ' anti 

~In DMSO-d6; bCD3OD; ~H20/D20 

van der Waals radius of less than 2A. ~5'6 

Having prepared pure 8-FAdo, we also measured the kinetics of deamination with adenosine deaminase. 
Calf spleen adenosine deaminase (EC 3.5.4.4.), an enzyme that requires substrate binding in the anti 
conformation, '7 hydrolyzed 8-FAdo at a slower rate than Ado] 8 8-FAdo exhibited a markedly increased Km value 
and a Kc,/Krn of 0.87 x 106, about 10% of that reported and also measured in our laboratory for Ado ~9 (Table 3). 
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Table 3. Kinetic Parameters of Wild-Type and Mutant Adenosine Deaminase 

Enzyme Substrate Km (p,M) K~,,, S-t K ~ / K m  Reference 
(M -I S -t) 

Wild-type Ado 21 240 11 x l06 23 
(mouse) 

Wild-type Ado 38 342 9 x 106 This work 
(calf spleen) 

Wild-type 8F-Ado 74 64 0.87 x 106 
(calf spleen) 

This work 

It has been postulated that the hydrolysis catalyzed by adenosine deaminase involves protonation of N~ of the 
purine ring by an active sulfhydryl group of the enzyme 2° followed by nucleophilic hydroxylation on C 6 leading to 
the formation of a tetrahedral intermediate]  ~ It has also been noted that Asp 296, well conserved in bacterial as 
well as mammalian enzymes, 22 contributes to substrate binding by forming a hydrogen bond between its terminal 
carboxylate and N 7 of the purine ring. 2~ Beyond the conformational effects, ~4° the strong electronegative effects of 
fluorine in 1 could potentially affect N~ protonation 24 [as reflected by the measured pKa of 1 (2.95), a 0.6 pH unit 
drop when compared with that of Ado] 25 and hydrogen bond formation between Asp 296 and N7. 2~ Also these 
results support predictions based on global purine charges ('~Q) and orbital frontier parameters]  6 

The first successful procedure developed for the synthesis of 8-FAdo described herein provides a useful 
methodology to access highly sensitive nucleosides which are otherwise difficult to prepare. With their general 
accessibility, efficient means to probe enzyme reactions, 27 to produce new antiviral and anticancer drugs and to 
develop in-vivo non-invasive procedures for imaging gene expression 28 have now become possible. 
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