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Abstract: Several studies demonstrated that cannabinoids reduce tumor growth, inhibit angiogenesis,
and decrease cancer cell migration. As these molecules are well tolerated, it would be interesting to
investigate the potential benefit of newly synthesized compounds, binding cannabinoid receptors
(CBRs). In this study, we describe the synthesis and biological effect of 2-oxo-1,8-naphthyridine-
3-carboxamide derivative LV50, a new compound with high CB2 receptor (CB2R) affinity.
We demonstrated that it decreases viability of Jurkat leukemia cells, evaluated by Trypan Blue
and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), but mainly induces a
proapoptotic effect. We observed an increase of a hypodiploid peak by propidium iodide staining
and changes in nuclear morphology by Hoechst 33258. These data were confirmed by a significant
increase of Annexin V staining, cleavage of the nuclear enzyme poly(ADP-ribose)-polymerase (PARP),
and caspases activation. In addition, in order to exclude that LV50 non-specifically triggers death of all
normal leukocytes, we tested the new compound on normal peripheral blood lymphocytes, excluding
the idea of general cytotoxicity. To characterize the involvement of CB2R in the anti-proliferative
and proapoptotic effect of LV50, cells were pretreated with a specific CB2R antagonist and the
obtained data showed reverse results. Thus, we suggest a link between inhibition of cell survival and
proapoptotic activity of the new compound that elicits this effect as selective CB2R agonist.

Keywords: Jurkat leukemia cells; cannabinoid; CB2 receptor; Annexin V; apoptosis; mitochondrial
membrane potential

1. Introduction

Cannabinoid receptors (CBRs) are specific targets for endogenous and exogenous cannabinoids.
Among different CBRs, CB2R is almost exclusively expressed in peripheral cells and tissues, derived
from the immune system [1], and is unrelated to cannabinoid psychoactivity. In particular, CB1R and
CB2R levels are exclusively upregulated in different cancer cells without necessarily being expressed
in the tissue type of origin [2–5].

Behavioral, electrophysiological, and neurochemical studies support a role for CB2R activation in
modulating inflammatory nociception, however, beside the palliative actions of cannabinoids, various
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in vitro studies and animal models have shown that activation of the CB2R induces apoptosis or cell
cycle arrest and inhibits neo-angiogenesis, thus inhibiting tumor growth [6–10].

On this regard, it is well known that survival signaling pathways including extracellular
signal-regulated kinase (ERK) [11], c-Jun-NH2-kinase [12], p38 mitogen-activated protein kinase
(MAPK) [13], and the ceramide pathway [14] can be regulated through CBR activation. The cell cycle
arrest is followed by apoptotic death and activation of the transcription factor JunD is essential for
these actions [15,16].

In the last decades, several findings indicate that selective CB2R ligands could be promising drugs
for treating several diseases [1,17–23], without psychoactive effects [24].

Within a research program to identify CB2R selective ligands, a series of 1,8-naphthyridin-2(1H)-on-
3-carboxamides was previously reported as CB2R agonists with high affinity and selectivity [25–27]. Some
of them showed interesting pharmacological properties, such as inhibitory action on immunological
human basophil activation and a medium level of intestinal absorption and blood brain barrier
permeability [28,29]. Moreover, CB2R dependent anti-proliferative effect in several cancer cell lines
was reported for some 2-oxo-1,8-naphthyridine-3-carboxamide derivatives [30], although the precise
mechanism of this effect has not been completely investigated yet.

Several molecular mechanisms underlying the cannabinoid-induced cell death have been
described. Among these, the events that precede activation of caspases and trigger the executive
phase of programmed cell death are included [31]. In fact, changes in the mitochondrial membrane,
a potential consequence of loss of integrity of the outer mitochondrial membrane and release of
apoptogenic proteins, have been described after synthetic cannabinoid exposure in rat C6 glioma
cells [31]. Additionally, a key role for CB2R as potential target in apoptosis induction in malignancies
of the immune system has been proposed. This evidence suggests the consideration of CB2R agonists
as novel pharmacological anti-cancer agents for tumors of immune origin, selectively [32].

In the present study, we describe the synthesis and biological effect of the new 2-oxo-1,8-
naphthyridine derivative LV50 with high CB2R affinity and selectivity. This compound differs from
those previously studied [27] for the substituent in position 1 of the central nucleus. We demonstrated
that this compound decreases cell viability of the Jurkat leukemia cell line, with a proapoptotic effect
higher than that of similar compounds, CB91, LV58, and LV62 previously reported in literature [27].
It is known that Jurkat cells expressed significant levels of CB2R mRNA and low levels of CB1R
mRNA [32]. In the present study, we describe an apoptotic pathway elicited by this novel CB2R ligand.
Thus, we may suggest a link between inhibition of cell survival and proapoptotic activity of the new
compound that elicits this effect as a cannabinoid agonist, suggesting its possible use in anti-cancer
therapeutic protocols, in combination with classical anti-neoplastic therapies.

2. Results

2.1. CB1R and CB2R Affinity

The binding affinities (Ki values) of LV50 were evaluated by competitive radioligand
displacement assays against the human CB1R and CB2R using [3H]CP-55,940 as radioligand for
both receptors [26]. The results are summarized in Table 1 with the Ki values of the previously reported
2-oxo-1,8-naphthyridine-3-carboxamide derivatives, CB91, LV58, and LV62 [26,27]. The results indicate
that LV50 displays excellent affinities for CB2R and low affinities at CB1R, so this compound behaves
similarly to previously studied compounds CB91, LV58, and LV62 [26,27]. Moreover, based on
our previous studies on 2-oxo-1,8-naphthyridine-3-carboxamide derivatives [27], it is reasonable
to assume that LV50 behaves as a CB2R agonist. Indeed, it was previously demonstrated that
2-oxo-1,8-naphthyridine-3-carboxamide derivatives unsubstituted at position C-6 of naphthyridine
nucleus, such as LV50, showed a CB2R agonist behavior [27].
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Table 1. Radioligand binding data of CB91, LV58, LV62, and LV50 a.
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Figure 1. CB2R expression. Whole cell extracts of Jurkat, lymphoblastoid T cell line (CEM), and 
peripheral blood lymphocytes (PBL) were analyzed by Western blot to detect cannabinoid receptor 2 
(CB2R) levels using antibodies specific for CB2R protein. The loading control was evaluated using 
anti-tubulin mAb. Densitometric CB2R/β-tubulin ratio is shown. The results are represented as the 
mean ± SD from three independent experiments. Statistical analysis indicated: *** p < 0.001 versus 
PBL cells. 

2.3. Preliminary Analysis of the Compounds 

To select the most active compound, we have performed a preliminary analysis evaluating cell 
viability and proliferation. Jurkat cells were treated with CB91, LV58, LV62, and LV50 (concentration 
range 0.1–10 μM) for different incubation times (24–72 h) and then analyzed to investigate cell 
viability [Trypan Blue and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 
assay] and pro-apoptotic effect [propidium iodide (PI) staining]. In addition, a dose-dependent 
effect of CB91, LV62, and LV58 compounds on cell viability was assessed as shown in the 
Supplementary Figure S1. The most effective results were obtained at 10 μM concentration (Table 2), 
indicating LV50 as the most interesting compound deserving further biological activity studies.  
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Compound R1 Ki CB1R (nM) Ki CB2R (nM) Ki CB1R/Ki CB2R

CB9126 p–fluorobenzyl 200 ± 7.7 0.90 ± 0.038 222
LV6227 CH2(CH2)4OH >10,000 3.60 ± 0.13 >187
LV5827 CH2(CH2)3F 1011 ± 46.5 1.36 ± 0.053 743
LV50 CH2(CH2)3Cl 224 ± 8.53 0.54 ± 0.017 415

a Data represent mean values for at least three distinct assays made in duplicate and are reported as Ki (nM).
Affinity of the tested compounds for cannabinoid receptor 1 (CB1R) and CB2R were assessed using membranes
from HEK-293 cells transfected and [3H]CP55,940.

2.2. CB2R Expression

The expression of CB2R was determined by Western blot. Whole cell lysates of Jurkat,
lymphoblastoid T cell line (CEM) and peripheral blood lymphocytes (PBL) were analyzed; the results
showed that Jurkat and CEM cells lines expressed significant levels of CB2R protein compared with
PBL cells (Figure 1).
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Figure 1. CB2R expression. Whole cell extracts of Jurkat, lymphoblastoid T cell line (CEM), and
peripheral blood lymphocytes (PBL) were analyzed by Western blot to detect cannabinoid receptor
2 (CB2R) levels using antibodies specific for CB2R protein. The loading control was evaluated using
anti-tubulin mAb. Densitometric CB2R/β-tubulin ratio is shown. The results are represented as the
mean ± SD from three independent experiments. Statistical analysis indicated: *** p < 0.001 versus
PBL cells.

2.3. Preliminary Analysis of the Compounds

To select the most active compound, we have performed a preliminary analysis evaluating cell
viability and proliferation. Jurkat cells were treated with CB91, LV58, LV62, and LV50 (concentration
range 0.1–10 µM) for different incubation times (24–72 h) and then analyzed to investigate cell viability
[Trypan Blue and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay] and
pro-apoptotic effect [propidium iodide (PI) staining]. In addition, a dose-dependent effect of CB91,
LV62, and LV58 compounds on cell viability was assessed as shown in the Supplementary Figure S1.
The most effective results were obtained at 10 µM concentration (Table 2), indicating LV50 as the most
interesting compound deserving further biological activity studies.

Similar analyses have also been performed in the presence of CB2R antagonist SR144528 (1 µM).
The results are shown in Table 3.
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Table 2. Preliminary analysis of CB91, LV58, LV62, and LV50 a.

Compound Trypan Blue Positive Cells (%) Viability (%) subG1 Phase (%)

24 h

CB91 2.10 ± 0.13 83.35 ± 7.34 2.35 ± 0.16
LV62 7.60 ± 0.55 86.75 ± 7.37 3.45 ± 0.27
LV58 2.85 ± 0.20 87.80 ± 7.26 2.41 ± 0.18
LV50 18.13 ± 1.26 77.78 ± 6.22 7.85 ± 0.60

48 h

CB91 2.15 ± 0.16 78.80 ± 6.30 2.82 ± 0.17
LV62 10.5 ± 0.82 82.33 ± 6.25 8.88 ± 0.61
LV58 3.50 ± 0.22 85.50 ± 6.85 4.50 ± 0.26
LV50 23.93 ± 1.91 70.90 ± 5.31 18.7 ± 1.40

72 h

CB91 2.30 ± 0.18 75.45 ± 4.35 3.93 ± 0.18
LV62 14.80 ± 0.88 70.25 ± 4.21 10.60 ± 0.53
LV58 3.8 ± 0.25 81.25 ± 4.46 5.19 ± 0.33
LV50 30.00 ± 2.05 59.32 ± 3.85 24.70 ± 1.95

a Data represent mean ± SD of different experiments.

Table 3. Preliminary analysis of CB91, LV58, LV62, and LV50 after pretreatment with CB2R antagonist
SR144528 a.

Compound Trypan Blue Positive Cells (%) Viability (%) subG1 Phase (%)

24 h

SR144528 + CB91 2.00 ± 0.12 82.5 ± 7.30 2.31 ± 0.15
SR144528 + LV62 7.56 ± 0.54 85.73 ± 7.35 3.40 ± 0.26
SR144528 + LV58 2.8 ± 0.21 86.80 ± 7.15 2.39 ± 0.17
SR144528 + LV50 9.53 ± 0.86 87.68 ± 6.12 2.55 ± 0.20

48 h

SR144528 + CB91 2.11 ± 0.16 77.50 ± 6.25 2.77 ± 0.17
SR144528 + LV62 10.10 ± 0.81 81.20 ± 6.20 8.87 ± 0.61
SR144528 + LV58 3.43 ± 0.21 84.00 ± 6.75 4.48 ± 0.25
SR144528 + LV50 12.50 ± 0.95 85.60 ± 6.81 12.70 ± 1.10

72 h

SR144528 + CB91 2.31 ± 0.18 75.50 ± 4.35 3.92 ± 0.18
SR144528 + LV62 14.81 ± 0.87 70.24 ± 4.22 10.61 ± 0.53
SR144528 + LV58 3.79 ± 0.26 81.20 ± 4.45 5.18 ± 0.32
SR144528 + LV50 16.58 ± 1.25 86.18 ± 4.34 19.00 ± 2.05

a Data represent mean ± SD of different experiments.

2.4. LV50 Reduces Cell Viability

In order to exclude a Jurkat-specific effect or a non-specific cytotoxic effect on normal leukocytes,
we tested the dose-dependent effect of LV50 on Jurkat, CEM, and PBL cell viability by using Trypan
Blue assay.

In Jurkat and CEM cells, the results show a reduction of cell viability in the samples treated with
5 µM and 10 µM concentrations of the compound. The number of viable cells is significantly reduced
at 10 µM concentration after 72 h of LV50 treatment, compared with control vehicle-treated cells (left
panel of Figure 2A,B). No significant cytotoxicity can be observed in PBL cells after LV50 treatment
(Figure 2C, left panel).

Furthermore, we evaluated the anti-proliferative dose-dependent effect of LV50 on Jurkat cells,
determined by MTT assay at various time points. We observed an anti-proliferative effect proportional
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to the rate of MTT cleavage reaction in treated samples in a dose- and time-dependent manner, as
compared with vehicle-treated cells (Figure 2D, left panel).

Moreover, in order to demonstrate that molecular mechanism of the new compound may involve
CB2R, we performed the experiments in the presence of a selective antagonist for CB2R, SR144528
(1 µM). Figure 2A (right panel), Figure 2B (right panel), and Figure 2D (right panel) showed that
cell pretreatment with CB2R antagonist partially reversed the cytotoxic and anti-proliferative effect
induced by LV50.

Instead, no significant reduction of cell viability or proliferation was observed in cells treated
with CB2R antagonist SR144528 alone (left panel of Figure 2A,D).

We observed similar results in CEM cells, whereas no significant effect in PBL cells was observed
(data not shown).
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Figure 2. LV50 decreases cell viability and inhibits cell proliferation. Jurkat, CEM, and PBL cells
were cultured with different concentrations of LV50 for 24, 48, and 72 h. The number of viable cells
was determined by Trypan Blue exclusion test. (A, left panel) Jurkat cells, data are reported as the
mean ± SD among ten independent experiments. Statistical analysis indicated: **** p < 0.0001 versus
vehicle. (A, right panel) Jurkat cells were pretreated with selective antagonist for CB2R (SR144528,
1 µM), exposed to LV50 for 72 h and then analyzed for cell viability. Statistical analysis indicated:
**** p < 0.0001 versus vehicle; **** p < 0.0001 versus pretreated with SR144528. (B, left panel) CEM
cells, data are reported as the mean ± SD among ten independent experiments. Statistical analysis
indicated: **** p < 0.0001 versus vehicle. (B, right panel) CEM cells were pretreated with selective
antagonist for CB2R (SR144528, 1 µM), exposed to LV50 for 72 h and then analyzed for cell viability.
Statistical analysis indicated: **** p < 0.0001 versus vehicle; **** p < 0.0001 versus pretreated with
SR144528. (C) PBL cells, data are reported as the mean ± SD among ten independent experiments.
Statistical analysis indicated: LV50 10 µM versus vehicle NS (not significant). (D, left panel) Cell
proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay in Jurkat cells. The results represent the mean ± SD of five independent experiments performed
in triplicate and represent cell viability as a percentage of untreated control cells. Statistical analysis
indicated: ** p < 0.01 versus vehicle; *** p < 0.001 versus vehicle. (D, right panel) Jurkat cells were
pretreated with selective antagonist for CB2R (SR144528, 1 µM), exposed to LV50 for 72 h and then
analyzed for proliferation. Statistical analysis indicated: **** p < 0.0001 versus vehicle; **** p < 0.0001
versus pretreated with SR144528.

2.5. Pro-Apoptotic Activity of LV50

2.5.1. LV50 Increases the Percentage of Cells in Apoptotic Sub-G1 Population and Nuclear
Morphological Changes

Cell cycle and DNA content were measured in Jurkat, CEM, and PBL cells, by cytofluorimetric
analysis using PI staining. However, the main result is an evident sub-G1 peak in LV50 treated cells that
identifies DNA fragmentation as typical nuclear changes that define apoptosis (Figure 3A,B). We found
a significant increase in sub-G1 phase when cells were treated with LV50 10 µM for 48 or 72 h (left panel
of Figure 3A,B). In PBL cells treated with LV50, we obtained no significant pro-apoptotic effect
(Figure 3C). Pretreatment with SR144528 (1 µM) selective antagonist for CB2R showed a modulation of
LV50 induced cytotoxic effect, suggesting a role for CB2R in this molecular mechanism (right panel of
Figure 3A,B).
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summarized below the histograms. Vehicle-treated or cells incubated with 5 μM or 10 μM LV50 were 
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mean ± SD of three independent experiments. Statistical analysis indicated: * p < 0.05 versus vehicle; 
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Figure 3. Effect of LV50 on nuclear fragmentation. Jurkat, CEM, and PBL cells incubated with 5 µM or
10 µM LV50 for 72 h were analyzed by flow cytometric analysis after staining with propidium iodide.
Histograms show cell cycle profiles and hypodiploid sub-G1 peak indicates typical DNA fragmentation
that defines apoptosis. The percentage of cells in each phase of cell cycle is summarized below the
histograms. Vehicle-treated or cells incubated with 5 µM or 10 µM LV50 were analyzed at three
incubation times (24, 48, and 72 h). (A, left panel) Jurkat cells, results represent mean ± SD of three
independent experiments. Statistical analysis indicated: * p < 0.05 versus vehicle; *** p < 0.001 versus
vehicle. (A, right panel) In Jurkat cells, Propidium Iodide staining was performed in the presence or
absence of the selective CB2R antagonist (1 µM). The results represent mean ± SD of three independent
experiments. Statistical analysis indicated: ** p < 0.01 versus vehicle; § p < 0.05 versus pretreated with
SR144528. (B, left panel) CEM cell, results represent mean ± SD of three independent experiments.
Statistical analysis indicated: * p < 0.05 versus vehicle; *** p < 0.001 versus vehicle. (B, right panel) In
CEM cells, propidium iodide staining was performed in the presence or absence of the selective CB2R
antagonist (1 µM). The results represent mean ± SD of three independent experiments. Statistical
analysis indicated: ** p < 0.01 versus vehicle; §§ p < 0.01 versus pretreated with SR144528. (C) PBL cells,
results represent mean ± SD of three independent experiments. Statistical analysis indicated: LV50
10 µM versus vehicle NS (not significant).

2.5.2. Pro-Apoptotic Activity of LV50 Revealed by Hoechst 33258, Annexin V Staining and
Caspases Activation

Data obtained on the proapoptotic activity of LV50 were confirmed in Jurkat cells, by a
morphological approach using Hoechst 33258. Nuclei of cells treated with the compound appeared
fragmented with a higher chromatin condensation, compared with vehicle-treated cells where we
observed intact nuclei (Figure 4A).

Cell apoptosis was further analyzed by flow cytometry using Annexin V/PI staining. In cells
treated with LV50 for 4 h, we observed a significant increase of Annexin V/PI positive cells
(13.2 ± 0.8%), as compared with the vehicle (p < 0.01) (Figure 4B, upper panel). At longer exposure
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times (24 h), we observed a higher Annexin V staining at the cell surface in a significant percentage
(26.8 ± 1.4) of cells (Annexin V/PI positive), with a further increase of percentage of PI positive cells,
typical of the late phase of apoptosis (Figure 4A, bottom panel). Statistical analysis was performed on
data obtained from three independent experiments (Figure 4).
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Figure 4. Pro-apoptotic activity of LV50. (A) Morphological analysis of Jurkat nuclei stained with
Hoechst 33258 after incubation with 10 µM LV50 for 72 h. Vehicle-treated cells are uniformly stained
and the nuclei are intact, indicating that cells are viable; treatment causes nuclear fragmentation and
condensation. A representative example of three independent experiments. (B, left panel) Analysis
of apoptosis of Jurkat cells (treated with 10 µM LV50 for 4 and 24 h) by biparametric flow cytometry
analysis after double staining with fluorescein isothiocyanate (FITC) Annexin V/PI staining. Numbers
represent the percentage of Annexin V-single positive cells (early apoptosis, upper left quadrant)
or Annexin V/propidium iodide (PI)-double positive cells (late apoptosis, upper right quadrant).
(B, right panel) The results shown in bar graphs were obtained from three independent experiments
and are reported as mean ± SD. Histograms show the percentages of single Annexin V and Annexin
V/PI-double positive cells. ** p < 0.01 versus vehicle.

In parallel experiments, the expression of caspases and poly(ADP-ribose)-polymerase (PARP)
protein was evaluated by Western blot analysis. LV50 treatment induced a significant increase, in a
time-dependent manner, of the active cleaved form of caspase-3 expression (Figure 5), a key molecule
for induction of caspases activation. Among initiator caspases, we analyzed the expression of the
cleaved form of caspase-8, which significantly appeared with a higher expression in the samples
treated with LV50, as compared with the vehicle-treated sample (Figure 5). As a consequence of
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their proteolytic functions, caspase activation resulted in the cleavage of the downstream substrates,
including the nuclear enzyme PARP engaged in DNA repair. In fact, we observed that the level of
cleaved PARP protein increased with the time of incubation after LV50 treatment. These findings
suggest that LV50-induced Jurkat cell death involves caspase activation. Furthermore, cleaved caspases
and cleaved PARP expression significantly decreased when cells were pretreated with the selective
CB2R antagonist SR144528 (1 µM), supporting the view of an involvement of CB2R in the LV50
proapoptotic activity (Figure 5). On the contrary, no significant increase of cleaved forms of caspase-3,
caspase-8, or PARP was evident when cells were treated with CB2R antagonist SR144528 alone.
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Figure 5. LV50 induce activation of caspase-3, caspase-8, and poly(ADP-ribose)-polymerase (PARP) as
indicated by detection of cleaved proteins after Western blot analysis. Jurkat cells were treated with
the compound, or alternatively, pretreated with CB2R antagonist SR144528 (1 µM) and then incubated
with LV50 10 µM for indicated incubation times. Whole cell extracts were analyzed by antibodies
specific for uncleaved caspase-3, cleaved caspase-3, uncleaved caspase-8, cleaved caspase-8, and PARP.
The loading control was evaluated using anti-actin mAb. Densitometric cleaved caspase-3/uncleaved
caspase-3, cleaved caspase-8/uncleaved caspase-8, and cleaved PARP/uncleaved PARP ratios are
shown. The results are represented as the mean ± SD from three independent experiments. Statistical
analysis indicated: *** p < 0.001 versus vehicle; §§ p < 0.01 versus pretreated with SR144528; § p < 0.05
versus pretreated with SR144528.
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2.6. Molecular Involvement during Apoptotic Execution

Changes in the mitochondrial membrane permeabilization (MMP) (∆Ψ) are usually associated
with Apoptosis [33]. Thus, MMP alterations were assessed by flow cytometry, using the fluorescent
probe 5,5′,6,6′tetraethylbenzimidazolylcarbocyanine iodide (JC-1), a cationic carbocyanine dye that
accumulates in mitochondria. JC-1 forms monomers (low MMP, green fluorescence) or aggregates
(high MMP, red fluorescence). As shown in Figure 6, vehicle-treated cells exhibited intensive red
fluorescence, consistent with the formation of JC-1 J-aggregates. Conversely, LV50 exposure induced an
evident reduction of red fluorescence and enhanced green fluorescence intensity, indicative of a change
in the ∆Ψ, in the populations induced to undergo apoptosis (Figure 6A). In fact, cells treated with the
compound, compared with the control, appeared to display a depolarization of the mitochondrial
membrane in a time-dependent manner. However, the two fluorescences (green and red) do not appear
exactly inversely proportional, in fact, the increase in green fluorescence was not accompanied by a
proportional decrease in red fluorescence. This is a limit of the specific cytofluorimetric analysis of JC-1,
so much so that the ratio between the two fluorescences is indicated. Statistical significance of these
data was confirmed by analyzing results obtained from three independent experiments. Values of the
mean fluorescence ratio red/green (Figure 6B) significantly decreased in LV50-treated cells compared
with the vehicle-treated cells, after 12 h and 24 h of treatment (p < 0.01 and p < 0.001, respectively).

In order to better characterize the apoptotic pathway and the proteins addressing apoptotic
execution, we analyzed by Western blot the Bcl2 family member Bid, truncated Bid (t-Bid), caspase-9,
and cytochrome c, following LV50 treatment. As shown in Figure 6C, low levels of t-Bid and cleaved
caspase-9 were detected. Moreover, a significant increase of cytochrome c was revealed (Figure 6C),
suggesting that both apoptotic pathways may be involved, although in this case, the extrinsic type
appears to be predominant.Int. J. Mol. Sci. 2018, 19, x  12 of 20 
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Figure 6. Molecular involvement during apoptotic execution. (A) Analysis of mitochondrial membrane
permeabilization (MMP) of Jurkat cells (treated with 10 µM LV50 for 12 and 24 h) by biparametric flow
cytometry after staining with 5,5′,6,6′tetraethylbenzimidazolylcarbocyanine iodide (JC-1). Numbers
reported represent the percentage of cells with depolarized mitochondria (green florescence, upper right
quadrant). (B) Bar graphs show results obtained from three independent experiments and reported
as mean ± SD. Histograms show JC-1 fluorescence intensity red/green ratio indicating an increase
of green fluorescence in treated cells, represented as a lower ratio, compared with vehicle-treated
cells. ** p < 0.01 (12 h); *** p < 0.001 (24 h). (C) Jurkat cells were treated with the compound,
or alternatively, pretreated with CB2R antagonist SR144528 (1 µM) and then incubated with LV50
for indicated incubation times. Whole cell extracts were analyzed by Western blot using antibodies
specific for Bid/t-Bid and cleaved caspase-9/uncleaved caspase-9. Furthermore, cytosolic fraction was
analyzed by Western blot for cytochrome c release. The results are represented as the mean ± SD from
three independent experiments. Statistical analysis indicated: * p < 0.05 versus vehicle; § p < 0.05 versus
pretreated with SR144528; ** p < 0.01 versus vehicle; §§ p < 0.01 versus pretreated with SR144528.

3. Discussion

The possibility to use CB2R as a key molecule to convey any adjuvant drugs of classical
chemotherapy has for some time been a suggestive proposal of the scientific world [34].
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In fact, CB2R has been found in many types of cancer cells, including human leukemia and
lymphoma cell lines. As reported, activation of the CB2R induces apoptosis or cell cycle arrest and
inhibits neo-angiogenesis, thus inhibiting tumor growth and progression [8,9].

Among the involved molecular mechanisms, much has been studied both for the signal
transduction and the apoptotic pathway [13,31]. In this work, we demonstrate the anti-proliferative
and proapoptotic activity of a newly synthesized compound, LV50, with a marked CB2R affinity
and selectivity.

In particular, we show that LV50, a new 2-oxo-1,8-naphthyridine derivative, was capable of
eliciting cytotoxic effects in cancer cells, such as Jurkat and CEM lymphoblastoid cells, but not in
peripheral blood lymphocytes, thus excluding the idea of general cytotoxicity or cell line specific
effect. These data were confirmed by evaluating the percentage of proliferating cells stained by MTT
assay, which clearly displayed a significant anti-proliferative effect in a dose- and time-dependent
manner. In addition, LV50 appears to be a good apoptosis inducer in leukemia cells, as shown by flow
cytometric analysis of PI stained cells.

The regulation of the apoptotic mechanism is very complex from a molecular point of view.
However, this has a positive implication, because of the high number of molecular actors in the
apoptotic pathway, which offer ample opportunities for interaction with new therapeutic strategies [31,35].
This is the reason we decided to focus on molecules belonging to apoptotic machinery.

The pharmacological treatment of cancer has, as a general rule, the objective of improving
the clinical response to treatments, using strategies to weaken the proliferation of cancer cells,
control unwanted cellular toxicity, and overcome the intrinsic resistance to the drug. Most of the
chemotherapeutic agents have been identified by virtue of their cytotoxicity against tumor cell lines.
On this purpose, a further important point is represented by the induction of apoptosis, which
represents an important goal for anti-tumor treatment strategies [7,8,36]. Cannabinoids effects in the
cell cycle modulation and in the signaling pathways are different and may depend on the type of
cancer cells. Although there is evidence that some cannabinoids induce anti-proliferative effects on
cancer cells in vitro, at the same time, some evidences suggest that effects may depend on the context
of the disease, with differential effects observed in different types of cancer [7–10,37–40].

An increase in apoptotic cells was observed after treatment of Jurkat leukemia cells with 10 µM
concentration of the LV50 compound. Indeed, at shorter time (4–24 h) of LV50 exposure, the cells
displayed a clear positivity of the Annexin V test, indicating the early stages of apoptotic pathway. This
effect became more meaningful at longer exposure times, studied with PI staining and cytofluorimetric
analysis, with the increase of sub-G1 peak after 72 h, which was evident not only in terms of percentage,
but also in the morphology of the sub-G1 peak, which identifies DNA fragmentation as typical nuclear
changes that define apoptosis. Apoptotic data were confirmed by a morphological approach using
Hoechst 33258. Indeed, nuclei of cells treated with LV50 showed the typical fragmentation with a higher
chromatin condensation. Moreover, the increase of the active cleaved form of caspase-3 and caspase-8
in the samples treated with LV50, compared with vehicle-treated cells, as well as the cytochrome c
release and the depolarization of the mitochondrial membrane in a time-dependent manner after LV50
treatment, indicated both extrinsic and intrinsic apoptotic triggering of the LV50 treatment.

It is interesting to note that the effects of LV50 of this study were partially inhibited by the
pretreatment of cells with selective CB2R antagonist SR144528, indicating a clear involvement of CB2R
in the signaling pathway of the cytotoxic mechanism triggered by LV50.

Identifying the molecular pathways that trigger apoptosis following the engagement of CBRs
is essential to understand how cannabinoids can regulate the growth of immune cells. In 1975,
Munson and collaborators [41] were the first to report the anti-proliferative properties of cannabis
compounds. Our data, in accordance with the literature, suggest that apoptotic mechanism through
CB2R may involve both extrinsic and intrinsic pathways of apoptosis [42]. However, on the basis of
our findings, we suggest that, in this case, the involved apoptotic pathway may be predominantly of
an extrinsic type.
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In conclusion, our study provides new information on the development of a novel class of
anti-cancer drugs targeting CB2R.

Although our study is not the first to demonstrate that activation of cannabinoid receptors on
transformed T cells triggers apoptosis [32,40,43,44], the data presented in this study provide evidence
for the first time of a recently synthesized molecule that, by binding CB2R, triggers an apoptotic
pathway, involving new insights into the functional roles of cannabinoid receptors.

In fact, the use of cannabinoids that activate CB1R is very limited by their side effects [24,45].
In this case, the malignant cells of the immune system express CB2R and this molecule can be targeted
by LV50 to induce apoptosis. CBR ligands, in addition to their anti-proliferative effect on cancer
cells, exert palliative effects that prevent nausea, vomiting, and pain and stimulate appetite in cancer
patients receiving chemotherapy or conventional radiotherapy. Thus, we suggest the possibility of
using selected CB2R protein agonists, including LV50, in a new role as anticancer drugs, in particular as
part of a mixture of molecules able to target the CBR system in order to improve the antitumor activity
of chemotherapy and to soften unwanted iatrogenic side effects, without psychoactive properties.

4. Materials and Methods

4.1. Synthesis of 1-(4-Chlorobutyl)-1,2-dihydro-N-(4-methylcyclohexyl)-2-oxo-1,8-naphthyridine-
3-carboxamide (LV50)

The synthetic route to obtain LV50 is outlined in Scheme 1. The reaction at reflux of
2-aminopyridin-3-carboxaldheyde with diethylmalonate in EtOH and in the presence of piperidine
afforded the ethyl ester 1 [26], which was treated with a cis/trans diastereoisomeric mixture of
4-methylcyclohexylamine in a sealed tube at 150 ◦C for 24 h, to give the carboxamide 2. The desired
2-oxo-1,8-naphthyridine-3-carboxamide derivative LV50 was obtained by N-alkylation of carboxamide
2 with the 1,4-dichlorobutane in anhydrous N,N-Dimethylformamide (DMF) and in the presence of
cesium carbonate at 50 ◦C for 12 h.

LV50 was purified by flash chromatography using hexane/ethyl acetate 1:1.2 v/v as eluent in 30%
yield. 1H-NMR (CDCl3) δ 10.03 and 9.65 (2m, 1H, NH); 8.88 (s, 1H, Ar); 8.74 (m, 1H, Ar); 8.09 (m, 1H,
Ar); 7.30 (m, 1H, Ar); 4.63 (m, 2H, CH2); 4.26 and 3.93 (2m, 1H, CH); 3.63 (m, 2H, CH2); and 1.94–0.92
(m, 16H, 4-methylcyclohexyl+ 2CH2). 13C-NMR (CDCl3) δ 162.73, 161.96, 152.13, 149.86, 141.90, 138.58,
123.41, 119.23, 115.10, 49.03, 45.87, 44.87, 41.22, 34.18, 33.23, 32.25, 31.34, 30.45, 30.24, 30.34, 29.88, 25.78,
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4.2. CB1 and CB2 Receptor Binding Assays

LV50 was evaluated in CB1R and CB2R binding following the same procedure previously reported
for CB91, LV58, and LV62 [26,27]. Briefly, the membranes expressing hCB1R or hCB2R were incubated
with vehicle or LV50 and [3H]CP55,940) [46] for 90 min at 30 ◦C. Non-specific binding was determined
in the presence of 100 nM of WIN55212-2 [47]. Ki values were calculated by applying the ChengePrusoff
equation [48] to the half maximal inhibitory concentration IC50 values (obtained by GraphPad) for the
displacement of the bound radioligand by increasing LV50 concentration.

4.3. Cell Culture and Treatments

Jurkat leukemia cells and human lymphoblastoid CEM cells (American Type Culture Collection,
ATCC, Manassas, VA, USA) were cultured in Roswell Park Memorial Institute medium (RPMI)
1640 medium, containing 10% fetal bovine serum (FBS) supplemented with 2 mM L-glutamine,
100 units/mL penicillin, and 10 mg/mL streptomycin (Sigma-Aldrich, Milan, Italy). Cells were
grown under standard conditions at 37 ◦C in a humified incubator containing 5% CO2. Human
peripheral blood mononuclear cells were isolated from the blood of healthy donors by Lymphoprep
density-gradient centrifugation (Nycomed Pharma, Oslo, Norway). Then, cells were seeded in a flask
for 12 h, and we have recovered suspension cells to be used as peripheral blood lymphocytes (PBL)
excluding adherent cells.

Derivatives of 1,8-naphthyridin-2(1H)-on-3-carboxamide, namely, CB91, LV58, LV62, and LV50,
were dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich) at the 10-mM stock solution.

Cells were seeded into a 12-well cell culture plate at the concentration of 2 × 105 cells/mL and
incubated for 24 h at 37 ◦C with 5% CO2. Then, cells were treated with different concentrations of
compound (0.1–10 µM range) in RPMI medium, containing only 1% FBS avoiding interactions of the
compound with cannabinoid receptor ligands and serum proteins. The incubation times used were in
the range of 4–72 h.

To investigate CB2R involvement, in some experiments, we pretreated Jurkat cells with a selective
CB2R antagonist SR144528 (Tocris Bioscience, Bristol, UK), 1 µM was added 2 h before compound.

We consider vehicle cells without any treatment with only culture medium plus DMSO used as a
vehicle to dissolve the compounds.

4.4. Western Blot Analysis of CB2R Expression

To prepare whole-cell protein extracts, Jurkat, CEM, and PBL cells were lysed in lysis buffer
containing 1% Triton X-100, 10 mM Tris-HCl (pH 7.5), 150 mM NaCl, 5 mM EDTA, 1 mM Na3VO4,
and 75 U of aprotinin. The protein content was analyzed by Bradford assay (Bio-Rad, Segrate,
Italy). Equal amounts of whole-extract proteins were subjected to 10% sodium-dodecyl sulphate
polyacrylamide gel electrophoresis (SDS-PAGE) before electrophoretic transfer onto polyvinilidene
difluoride (PVDF) membranes (Bio-Rad). After blocking with 5% defatted dried milk in tris-buffered
saline (TBS), containing 0.05% tween 20, the membranes were incubated overnight with rabbit
anti-CB2R (Abcam, Cambridge, UK). This reaction was followed by incubation with secondary
antibodies such as horseradish peroxidase (HRP)-conjugated anti-rabbit IgG Abs (Sigma-Aldrich).
Immunoreactivity was detected using an enhanced chemiluminescence reaction by the enhanced
chemiluminescence ECL Western blotting detection system (Amersham, Buckinghmashire, UK). As a
control for loading and purity of preparation, membranes were stripped and reprobed with monoclonal
anti-tubulin antibodies (Sigma-Aldrich).

Densitometric scanning analysis was performed by Mac OS X (Apple Computer International,
Cupertino, CA, USA), using NIH Image 1.62 software. The density of each band (absolute value) in
the same gel was analyzed.
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4.5. Proliferation and Cell Viability Assays

Vehicle-treated cells or cells incubated with compounds (24, 48, 72 h) were analyzed by Trypan
Blue (Sigma-Aldrich) assay to evaluate cell viability and cytotoxic effect [49].

Cell proliferation was evaluated by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyltetrazolium
bromide] (ATCC, Manassas, VA, USA) assay. Briefly, after treatment MTT (10 µL) solution (5 mg/mL)
was added to each well. The reaction was allowed to proceed for 4 h at 37 ◦C. The culture medium
was removed and the water insoluble dark blue formazan crystals that formed from MTT cleavage in
actively metabolizing cells were dissolved by adding DMSO (200 µL). The absorbance of each well was
read at 570 nm and directly correlated with the number of remaining viable cells. All of the samples
and related measurements were carried out in triplicate.

4.6. Apoptosis Assays

4.6.1. Propidium Iodide Staining

Vehicle-treated cells or cells incubated with compound (24, 48, 72 h) were analyzed for apoptosis
by flow cytometry, and PI staining was used to study DNA fragmentation. Briefly, cells were washed
twice in phosphate buffered saline (PBS) and fixed in 70% ethanol in PBS for 1 h at 4 ◦C. Then, cells
were washed twice with PBS, resuspended in 0.5 mL PBS, 50 µL RNase A (5 µg/mL) (Sigma-Aldrich),
and stained with 0.5 mL of 100 mg/mL propidium iodide (Sigma-Aldrich) in PBS. Cells were incubated
for 30 min at room temperature in the dark and analyzed for DNA content and the fluorescence was
measured using a EPICS profile cytometer (Coulter Electronics, Brea, CA, USA).

4.6.2. Hoechst Staining

Cells, without any treatment or incubated with the compound as described above, were also
analyzed for apoptosis by morphological analysis. Changes in nuclear morphology were analyzed by
DNA-binding fluorescent dye Hoechst 33258 (Sigma-Aldrich). Cells were washed twice with PBS and
fixed in 70% ethanol in PBS. After further washes with PBS, vital dye Hoechst 33258 was used at a
final concentration of 1 µM. A minimum of 2 × 105 cells were analyzed per sample, employing a Leitz
DMRB (Leica Microsystems Wetzlar GmbH, Wetzlar, Germany) inverted fluorescence photomicroscope
(320 nm UV excitation) and photographed under fluorescent light. Nuclei of cells characterized by
marked chromatin condensation were scored as apoptotic.

4.6.3. Annexin V Assay

Alternatively, in cells treated with 10 µM LV50 for 4 and 24 h, apoptosis was evaluated by flow
cytometry using a FITC (fluorescein isothiocyanate) Annexin V apoptosis detection kit (BD Bioscience,
San Diego, CA, USA). Protocol provides for a double staining with FITC Annexin V to identify
apoptotic cells and PI to distinguish viable cells from nonviable cells. This assay allows discrimination
among early apoptotic (single Annexin V positive), late apoptotic (double Annexin V/PI positive),
and necrotic cells (single PI positive). The fluorescence was measured using an EPICS profile cytometer
(Coulter Electronics).

4.7. Western Blot Analysis of Caspase and PARP Proteins

Cells were treated with 10 µM LV50 for 12–48 h. To prepare whole-cell protein extracts, Jurkat
cells without any treatment or cells treated with LV50 were lysed in lysis buffer (as above). After
SDS-PAGE and electrophoretic transfer onto PVDF, the membranes were incubated overnight with
rabbit anti-caspase-3, rabbit anti-cleaved caspase-3, rabbit anti-caspase-8, mouse anti-cleaved caspase-8,
anti-caspase-9, and rabbit anti-PARP (Cell Signaling, Danvers, MA, USA). These reactions were
followed by incubation with secondary antibodies such as horseradish peroxidase (HRP)-conjugated
anti-rabbit IgG Abs and anti-mouse IgG (Sigma-Aldrich). Immunoreactivity was detected using the
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ECL Western blotting detection system (Amersham). As a control for loading and purity of preparation,
membranes were stripped and reprobed with monoclonal anti-actin antibodies (Sigma-Aldrich).

Densitometric scanning analysis was performed by Mac OS X (Apple Computer International),
using NIH Image 1.62 software. The density of each band (absolute value) in the same gel was analyzed.

4.8. Analysis of Mitochondrial Membrane Potential Changes (∆Ψ)

The MMP of vehicle-treated cells or cells incubated with LV50 (12 h and 24 h) was studied by
flow cytometry using 5,5′,6,6′tetraethylbenzimidazolylcarbocyanine iodide (JC-1) (Molecular Probes,
Eugene, OR, USA) [50]. Cells were incubated with 10 µM JC-1 for 15 min at 37 ◦C in the dark. JC-1
is a sensitive marker for MMP, which is a cationic carbocyanine dye able to selectively enter the
mitochondria. The dye exists in a monomeric form, at low concentrations, yielding green fluorescence,
but at higher concentrations (as a result of high mitochondrial membrane potential), it can form
J-aggregates that exhibit a broad excitation spectrum (red fluorescence). MMP collapse is typical of
apoptotic cells with a decrease in the aggregate fluorescent count resulting in a return of the dye to its
monomeric, green fluorescent form. The fluorescence was measured using an EPICS profile cytometer
(Coulter Electronics).

4.9. Analysis of t-Bid Expression and Cytochrome c Release

To investigate Bid expression, Jurkat cells were treated with LV50 and then whole cell lysates
were analyzed by Western blot, as described above, using goat anti-Bid antibodies (R&D Systems,
Minneapolis, MN, USA). Furthermore, to evaluate cytochrome c release, we have isolated cytosolic
proteins [51] from vehicle-treated Jurkat cells or cells incubated with LV50. Then, we performed a
Western blot analysis, as described above, using mouse anti-cytochrome c antibodies (BD Biosciences,
San Jose, CA, USA).

4.10. Statistical Analysis

Data are expressed as means ± standard deviation (SD) of at least three or more independent
experiments. Statistical analysis was performed by parametric Student t test and p values of less than
0.05 were considered significant.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/7/
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