
n = 2 : Tetritols
n = 3 : Pentitols
n = 4 : Hexitols

S

OAc

nNa2S, 9H2O

DMSO
R.T.
20-45 min

1) AcBr
1,4-dioxane
R.T
2) Ac2O/pyridine

Br Br

OAc

n
HO OH

HO

n

TETRAHEDRON
LETTERS

Tetrahedron Letters 42 (2001) 3307–3310Pergamon

Short and efficient synthesis of polyhydroxylated
tetrahydrothiophene, tetrahydrothiopyrane and thiepane from
bielectrophilic erythro, threo, xylo, ribo, arabino, manno and

gluco �,�-dibromoalditol derivatives
Sami Halila, Mohammed Benazza* and Gilles Demailly*
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Abstract—Polyhydroxylated tetrahydrothiophene, tetrahydrothiopyrane and thiepane rings have been readily obtained in excellent
yields (78–95%) from thioheterocyclisation of the bielectrophilic peracetylated �,�-dibrominated derivatives of tetritols (erythritol
(1) and D,L-threitol (4)), pentitols (xylitol (7), ribitol (10) and D-arabinitol (14)) and hexitols (D-mannitol (17) and D-glucitol (20)),
respectively. With 2,3,4,5-tetra-O-acetyl-1,6-dibromo-1,6-dideoxy-D-glucitol (21) as substrate, the unexpected 2,6-anhydro deriva-
tive 25 was obtained. This could be attributed to previous S= regioselective nucleophilic attack at C-1 position followed by
1,2-transesterification and 2,6-O-heterocyclisation. The preferential attack at C-1 of the D-glucitol derivative 21 subsequently
allowed a facile direct synthesis in good yields of 2,3,4,5,6-penta-O-acetyl-1-bromo-1-deoxy-D-glucitol (26), 2,3,4,5-tetra-O-acetyl-
6-bromo-6-deoxy-1-thiobutyl-1-deoxy-D-glucitol (28) and 2,3,4,5-tetra-O-acetyl-6-bromo-6-deoxy-1-thiooctyl-1-deoxy-D-glucitol
(28). © 2001 Elsevier Science Ltd. All rights reserved.

Tetrahydrothiophene is an important building block of
a large number of compounds that are very interesting
from the point of view of biological activity. In particu-
lar it enters into the structures of nucleoside analogues1

and certain compounds where the sulfur atom in the
ring is in a trivalent state (spirobicyclic-like), such as
the sulfimides,2 salicinol3a and kotalanol,3b which are
excellent glycosidase inhibitors. Although analo-
gues with more than six- or seven-membered rings
(tetrahydrothiopyrane and thiepane) generally show
weak glycosidase4 inhibition activity, they are never-
theless excellent precursors for the thiacyclopen-
tane ring through contraction of the ring4,5 or for
conduritol derivatives (from thiepane)6 which are

glycosidase inhibitors and much used as intermediates
in the synthesis of inositol7 and aminocyclitol deriva-
tives.8

The use of alditols as bielectrophilic substrates in thio-
heterocyclisations has been reported in the literature. It
has been shown that the thiepane ring is obtained
mainly from bis-epoxyhexitol such as D-mannitol
always protected in the 3,4-positions.5b However, this
approach has limitations when applied to other aldi-
tols.9 In our laboratory we have recently used alditol
bis-cyclic-sulfates as bielectrophilic intermediates. Poly-
hydroxylated tetrahydrothiophene, tetrahydropyrane
and thiepane derivatives have been isolated in good

Scheme 1.
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yields.10 However, we have shown that this approach is
only applicable to free tetritols and other partially

protected alditols carrying only four free hydroxyl
groups.

Table 1. Regioselective thioheterocyclisation of �,�-dibromoalditols derivatives (1 mmol) using sodium sulfide nonahydrate
as binucleophilic reagent. Solvent effect on the isolated yields
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Herein, we report a general, short and efficient synthe-
sis affording polyhydroxylated tetrahydrothiophene,
tetrahydrothiopyrane and thiepane rings from peracety-
lated �,�-dibromoalditols with the erythro, threo, xylo,
ribo, arabino, manno and gluco configurations (Scheme
1). The latter are obtained directly by bromination of
the corresponding alditols.11

In the synthesis of thioheterocycles from bielectrophilic
alditols derivatives, solvents such as EtOH,4 MeOH12

or a mixture of acetone–H2O were used.10 In the latter
case, under mild conditions (rt, 15 min), cyclic tetritol
bis-sulfates reacting with Na2S, 9H2O lead to the corre-
sponding thiacyclopentane derivatives in good yields.
Initially, applying these conditions 2,3,4-tri-O-acetyl-
1,5-dibromo-1,5-dideoxyxylitol (8) (Table 1) led, after
flash chromatography, to the xylotetrahydrothiopyrane
derivative 9 in only 37% yield. When this reaction is
followed by acetylation of the reaction mixture, the
yield of compound 9 reaches 90% (entry 3). This is
explained by the concomitant deacetylation of the hete-
rocyclisation product.

Under the same conditions, thiocyclisation of �,�-
dibromoalditol derivatives 2, 5, 11, 15, 18 and 21
followed by acetylation leads to the tetra-
hydrothiophenes 3 and 6 (entries 1 and 2), tetra-
hydrothiopyranes 12 and 16 (entries 4 and 5) and
thiepanes 19 and 23 (entries 6 and 7) in yields from 70

to 95% for a reaction time of 18 h for complete
disappearance of substrate.

It is interesting to emphasise that with brominated
ribitol 11 and D-glucitol 21 (entries 4 and 7) non-negli-
gible amounts of anhydro compounds were isolated. In
both cases the formation of these O-heterocyclic com-
pounds could be explained by an initial attack at one of
the primary sites by S=, followed by transesterification
and O-heterocyclisation leading to anhydro derivatives
13 and 25 after acetylation.

For compound 13, 13C NMR shows both an intra-
cyclic secondary carbon atom at 70.82 ppm and
another extra-cyclic at 30.90 ppm, plus a signal at 190
ppm shift for the thioacetate group. In 1H NMR, the
coupling constant J2,3=5.4 Hz is in agreement with a
1,4-anhydroribitol structure.13

In the case of the derivative of anhydro-D-glucitol 25,
the sequence of coupling constants J2,3=3.48 Hz, J3,4=
10.96 Hz and J4,5=0 Hz favours a 2,6-anhydro-D-gluci-
tol structure. Mechanistically, this requires an initial
regioselective attack on the primary C-1 site of the
disymmetric dibrominated D-glucitol derivative 21
(Scheme 2) followed by competition between S-cyclisa-
tion (path-a) leading to thiepane 23 and a 1,2-trans-
esterification (path-b) leading to 2-hydroxy compound
24. A subsequent O-heterocyclisation at 2,6 leads to

Scheme 2. (i) Na2S, 9H2O, acetone–H2O (15:1), rt, 18 h.

Scheme 3. (i) AcONa (3 equiv.), 60°C, 5 h, DMSO; (ii) C4H9SH (1.2 equiv.), NaH (1.1 equiv.), DMSO, rt, 15 min; (iii) C4H9SH
(1.2 equiv.), NaH (1.1 equiv.), DMSO–THF (1:1), rt, 15 min; (iv) AcONa (3 equiv.), 60°C, 24 h, DMSO; (v) C8H17SH (1.2 equiv.),
NaH (1.1 equiv.), DMSO, T.A., 15 min; (vi) C4H9SH (2.2 equiv.), NaH (2.4 equiv.), DMSO–THF (1:1), rt, 15 min.
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2,6-anhydro-D-glucitol derivatives 25. To corroborate
this higher reactivity of C-1 compared with C-6 in the
derivative 1,6-dibromo-D-glucitol 21, we attempted
regioselective nucleophilic substitution using mononucleo-
philes such as the acetate ion (AcO−) and the alkylthio-
late anions (n-C4H9S− and n-C8H17S−) (Scheme 3). In
both cases we confirmed the high reactivity of C-1
leading, respectively, to 1,2,3,4,5-penta-O-acetyl-6-
bromo-6-deoxy-D-glucitol (26), 2,3,4,5-tetra-O-acetyl-6-
bromo-6-deoxy-1-thiobutyl-1-deoxy-D-glucitol (28) and
2,3,4,5-tetra-O-acetyl-6-bromo-6-deoxy-1-thiooctyl-1-
deoxy-D-glucitol (30) in reasonable yields (50%). Deriva-
tives 26, 28 and 30 were, respectively, transformed into
the derivatives 6-thiobutyl, 1-thiobutyl and 6-thiobutyl-
1-thiooctyl-D-glucitols 27, 29 and 31 in excellent yields.
This regioselective functional transformation then
enabled us to synthesise the 1,6-dithioalkyl derivative 31
with two alkyl chains of differing lengths. Note that with
an excess of thiolate in the DMSO–THF mixture, the
thioalkylation takes place indiscriminately at the two
sites C-1 and C-6 to give the disubstituted compound
32.11

Finally, while investigating the solvent effect on thiohete-
rocyclisation, we were able, using DMSO as solvent,
to isolate thioheterocyclic compounds in very good
yields without subsequent acetylation and in particu-
larly mild conditions (20–45 min, only 1.5 mmol of
Na2S–9H2O instead of 5 mmol in acetone–H2O). Fur-
thermore, in the case of ribitol (entry 4) and D-glucitol
(entry 7) any amounts of anhydro derivatives 13 and
25 were observed.

In conclusion, this work has led to the short and efficient
synthesis in excellent yields of polyhydroxylated tetra-
hydrothiophene, tetrahydrothiopyrane and thiepane
derivatives in various configurations via dibrominated
alditol derivatives that are readily prepared from the
corresponding alditols. In addition we have shown a
higher reaction rate at the primary C-1 compared with
the C-6 site of the 1,6-dibromo-D-glucitol derivative 21.
This opens the way to numerous derivatives of D-glucitol
with various functional groups, as well as to a rare sugar,
gulose.14
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