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Abstract—A class of flavanoids exhibiting a high degree of selectivity for ERa over ERb has been discovered. The most active
analogue 6 was found to be 66-fold ERa-selective and demonstrated uterine estradiol antagonism.
# 2004 Elsevier Ltd. All rights reserved.
Owing to a heightened awareness of the adverse effects
of hormone replacement therapy, prompted by the
Women’s Health Initiative study,1 the search for alter-
native treatments has intensified. Much of the spotlight
has rested on a class of compounds, exemplified by
tamoxifen and raloxifene, known as selective estrogen
receptor modulators (SERMs).2 These agents have the
potential ability to antagonize the proliferative effects of
estrogen on uterine and breast tissue while mimicking
estrogen’s effects on the bone and cardiovascular sys-
tem. The recent discovery of a second estrogen receptor
isoform (ERb) raises the possibility that receptor sub-
type selective ligands may offer key advantages. As part
of a medicinal chemistry program targeting selective
estrogen receptor subtype modulators (SERSMs),2c we
became interested in three naturally occurring leads:
genistein, daidzein, and coumestrol, all of which exhibit
a moderate selectivity for ERb (20X at best) and con-
tain a common benzopyran motif (Fig. 1). WS-7528
(Fig. 1), another structurally similar flavanone, isolated
from a strain of Streptomyces, was reported to have
estrogen-like characteristics.3

Based on these findings, we sought to identify a novel
series of SERSMs centered on the flavanone core
structure.4 Herein, we wish to describe the synthesis and
SAR of compounds shown in Table 1.

Initially, flavanones 1–8 were prepared according to lit-
erature procedures with minor modifications (Scheme 1,
Method A).5 Thus, Knoevenagel condensation of piper-
idinylethoxy–benzaldehyde with the appropriate ketones6

23 yielded a mixture of cis and trans flavanones. The
titer of the cis isomer could be increased to 50% simply
by epimerization of the 1:4 cis/trans mixture of TBS-
protected flavanones 24 with LiHMDS at �78 �C.
Although the two isomers could be separated on silica
gel with great care, it became apparent early on that a
stereoselective synthesis of cis flavanones was needed.
Although many synthetic methods for the construction
of flavanones are known in the literature, only a few
stereospecific syntheses of cis flavanones exist.7

We therefore decided to pursue a stereospecific synthesis
of cis-2,3-disubstituted flavanones based on Donnelly’s
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Figure 1. Structures of naturally occurring leads.
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work,8 wherein 3-phenylthio-chroman-4-ones would not
only allow for the requisite arylation reaction but the
phenylthio group would also serve as our stereocontrol
element upon reductive removal. To that end, the
flavanone intermediate 26 was prepared via the
Knoevenagel condensation of ketones9 25 with the
TBDPS-protected benzaldehyde according to Scheme 2
(Method B). Stereospecific introduction of the aryl
group at C-310 was performed by addition of organo-
lead reagents prepared according to literature proce-
dures.11 Subsequent TBS-deprotection and elaboration
to the basic side chain was accomplished with chlor-
oethyl–piperidine and cesium carbonate in refluxing
acetone. Treatment with 2N HCl successfully removed
the MOM groups to give the penultimate substrate 27 in
good yields. At this time, we explored the reductive
removal of the SPh group under a variety of conditions.
Following the literature precedent,8 Ni2B afforded a
mixture of the isomers varying from 2:1 cis/trans to 10:1
cis/trans depending on the freshness of the catalyst.
Interestingly, with SmI2, a reverse stereochemical out-
come of 2:1 trans/cis ratio was obtained. Success was
finally achieved using excess RaNi as the reductant to
give 49–88% yield of the desired cis isomer. In the case
where X=Cl, F (16 and 15), some dehalogenation was
observed (66% and 10%, respectively).

With the cis flavanone 6 in hand, compounds of Type
III were readily accessible. Following modified literature
procedures,5b reduction of the ketone using lithium
Table 1. Flavanones and their derivatives

c b
Compd
 Type
 X
 R1
 R2
 R3
 R4
 R5
 Method
1
 I
 —
 —
 Me
 —
 —
 —
 A

2
 I
 —
 —
 iPr
 —
 —
 —
 A

3
 I
 —
 —
 4-Hydroxyphenyl
 —
 —
 —
 A

4
 II
 H
 OH
 Me
 Pipa
 —
 —
 A

5
 II
 H
 OH
 iPr
 Pip
 —
 —
 A

6
 II
 H
 OH
 4-Hydroxyphenyl
 Pip
 —
 —
 A or B

7
 II
 H
 OH
 4-Hydroxyphenyl
 H
 —
 —
 Ad
8
 II
 OH
 OH
 Me
 Pip
 —
 —
 A

9
 II
 H
 OH
 Phenyl
 Pip
 —
 —
 Be,f
10
 II
 H
 H
 4-Hydroxyphenyl
 Pip
 —
 —
 B

11
 II
 Me
 OH
 4-Hydroxyphenyl
 Pip
 —
 —
 B

12
 II
 Et
 OH
 4-Hydroxyphenyl
 Pip
 —
 —
 B

13
 II
 Pr
 OH
 4-Hydroxyphenyl
 Pip
 —
 —
 B

14
 II
 Pentyl
 OH
 4-Hydroxyphenyl
 Pip
 —
 —
 B

15
 II
 F
 OH
 4-Hydroxyphenyl
 Pip
 —
 —
 Bf
16
 II
 Cl
 OH
 4-Hydroxyphenyl
 Pip
 —
 —
 Bf
17
 II
 H
 OH
 2-Methoxy-4-hydroxyphenyl
 Pip
 —
 —
 B

18
 II
 H
 OH
 3-Methoxy-4-hydroxyphenyl
 Pip
 —
 —
 B

19
 II
 H
 OH
 3,5-Dimethyl-4-hydroxyphenyl
 Pip
 —
 —
 B

20
 III
 —
 —
 —
 —
 H
 OH
 —

21
 III
 —
 —
 —
 —
 H
 H
 —

22
 III
 —
 —
 —
 —
 —
 =NOH
 —
a Pip, piperidinoethyl.
bScheme 1 and 2.
c Racemic, abs. configuration unknown.
dUsed 4-hydroxybenzaldehyde in step a.
e Used Ni2B as the reductant in step h.
f Used mono-MOM-protected 25 in step a.
Scheme 1. Method A, reagents and conditions: (a) piperidine, toluene,
120 �C, overnight; (b) NaOAc, MeOH, 80 �C, 3 h, 41–95% from 23;
(c) 2N HCl, EtOH, rt, 66–100%; (d) TBSCl, Et3N, CH2Cl2, 78–100%;
(e) LiHMDS, THF, �78 �C, 39–42%; (f) TBAF, AcOH, THF, 0 �C,
62–87%.
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triethyl borohydride in THF at 0 �C afforded 20 in 76%
yield. Compound 20 could be further reduced upon
careful treatment with TFA and triethylsilane in meth-
ylene chloride to give flavan 21 in 68% yield along with
its corresponding chromene. As reported by Donnelly,12

oximation of flavanone 3 or 6 with hydroxylamine HCl
and piperidine in pyridine cleanly gave the cis oxime 22
in 61% yield.

Compounds 1–22 were tested for potency and selectivity
in an ER competitive binding assay with tritiated 17-b
estradiol.13 Agonist and antagonist activities of select
compounds were evaluated in vivo using an immature
rat uterine weight assay.14 The results are shown in
Table 2.

When we derivatized racemic, synthetic WS-7528 to
generate flavanone 8, we observed a slight shift towards
ERa selectivity rather than the anticipated selectivity for
ERb. As the size of the substituent at C-3 was increased
to isopropyl (5), not only was binding to the ERa receptor
enhanced, but selectivity over ERb was also improved.
We found optimal binding and almost 70-fold selectivity
with the introduction of a 4-hydroxyphenyl group (6).

Although the binding data would suggest that the trans
isomer differed only slightly from the cis isomer, further
evaluation in the immature rat uterine assay clearly
identified the cis isomer as the more pharmacodynamically
active antagonist. For instance, at 1 mpk sc, the trans
flavanone 3 exhibited a 17% inhibition of the estradiol
effect in contrast to 50% inhibition with its cis isomer 6.
It was thus established early in the project that the cis
stereochemistry was critical for the development of a
SERM.

As with raloxifene, the basic side chain proved to be
crucial for in vivo antagonist activity, since 7 displayed
no antagonist activity in an in vitro coactivation
assay.15 However, the presence of the basic side-chain
was not the only requirement for antagonism as evi-
denced by compound 5 (R2=i-Pr) which was totally
devoid of in vivo activity, and thus pointed toward the
need for the hydroxyphenyl substituent as well. Both
hydroxyls were required for optimal binding as shown
by the loss of binding to the receptor upon removal of
either hydroxyl at R1 or R2 (9, 10). Similarly, replace-
ment of the carbonyl by an oxime (22), diminished the
binding as well as the ERa selectivity. Reduction of
the carbonyl to the alcohol 20 was likewise detrimental
to the binding activity; however, further reduction of 20,
afforded a potent non-selective ligand 21. In general,
substitutions X (12–16), whether an extended aliphatic
chain or a halogen substituent, resulted in a loss of
receptor affinity and subtype selectivity, as compared
with 6. One exception to this trend occurred when
X=Me (11). Although not as selective as 6, 11 bound
with greater affinity to the alpha receptor and demon-
strated an equal level of antagonism in the uterine
weight assay. Further addition of substituents on the 4-
hydroxyphenyl group (17–19) offered no improvements.

As depicted in Figure 2, molecular modeling of 6, in
white against raloxifene in purple, docked in the ER
receptors, showed that although structurally quite dif-
ferent, 6 mapped fairly well with raloxifene and main-
tained the well established interactions in the ligand
binding domain.16,17
Scheme 2. Method B, reagents and conditions: (a) piperidine, toluene,
120 �C, overnight; (b) NaOAc, MeOH, 80 �C, 3 h, 30–85% from 25;
(c) MOMCl, DMF, Hunig’s base, 47–88%; (d) R2Pb(OAc)3, pyridine,
CHCl3, 40

�C, 52–81%; (e) TBAF, AcOH, THF, 0 �C, 60–96%; (f)
Cs2CO3, 1-(2-chloroethyl)piperidine monohydrochloride, acetone,
60 �C, 79–100%; (g) 2N HCl, MeOH, 80 �C, 56–100%; (h) RaNi,
EtOH, 49–88%.
Table 2. Binding affinities13 and in vivo data14
Compd
 Human
ERa

IC50 (nM)
Human
ERb

IC50 (nM)
Selectivity
[b]/[a]
Uterine
Wt. assay

(@1 mpk, sca)
1
 1415
 >10,000
 7
 NDb
2
 109
 930
 9
 15% Agonism

3
 49
 1947
 40
 17% Inhibition

4
 3563
 5645
 2
 ND

5
 89
 1200
 13
 0% Inhibition

6
 31
 2049
 66
 50% Inhibition

7
 490
 598
 1
 ND

8
 551
 1200
 2
 ND

9
 531
 >10,000
 19
 ND

10
 179
 510
 3
 ND

11
 14
 546
 39
 46% Inhibition

12
 68
 152
 2
 ND

13
 652
 207
 0.3
 ND

14
 71
 454
 6
 ND

15
 105
 5390
 51
 17% Agonism

16
 58
 1270
 22
 ND

17
 149
 1360
 9
 ND

18
 413
 >10,000
 24
 ND

19
 1050
 >10,000
 10
 ND

20
 929
 7000
 8
 ND

21
 6.7
 8.9
 1
 ND

22
 1040
 8610
 8
 ND

Raloxifene
 1.8
 12
 7
 96% Inhibitionc
b-Estradiol
 1.3
 1.1
 1
 100% Agonismd
Genistein
 92
 4
 0.04
 63% Agonism

Daidzein
 2160
 303
 0.1
 ND

Coumestrol
 11
 2
 0.2
 ND
a sc=subcutaneous.
bND=not determined.
c @ 0.6 mpk.
d@ 2 mg/kg.
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It is postulated that the crucial difference responsible for
the alpha-selectivity of 6 lies in the interaction of its
carbonyl with the two discriminating residues lining the
receptor pocket (Fig. 3). In ERb, there is both a steric
and electronic repulsion between the carbonyl oxygen
atom of the ligand with the Met 354 residue, which
would be expected to be absent in ERa, where the
corresponding residue is Leu 384.

In summary, we have created a series of cis flavanones
which exhibit a greater affinity for ERa over ERb and in
the process, have developed a stereoselective synthesis
to these compounds. With compound 6, we have gener-
ated an almost 70-fold ER alpha selective ligand with
demonstrated in vivo estradiol antagonism on the
uterus. We have determined from our SAR that a cis
relationship is preferred, and both hydroxyls at R1 and
R2 are required for optimal binding to the alpha recep-
tor. The basic side chain, as demonstrated in other
SERM platforms, is required for in vivo antagonism
and is optimal with a 4-hydroxyphenyl group at the C-3
position of the isoflavanone. Finally, the carbonyl
group of the flavanone is crucial for maintaining sub-
type selectivity. This work has led to the development of
more potent SERSMs2c or in this instance, selective
estrogen receptor alpha modulators (SERAMs) which
will be reported in future communications from this
laboratory.
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