Reactivity of MgB2 with common substrate and electronic materials

T. He, R. J. Cava, and John M. Rowell

Δ

Citation: Appl. Phys. Lett. **80**, 291 (2002); doi: 10.1063/1.1433915 View online: http://dx.doi.org/10.1063/1.1433915 View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v80/i2 Published by the American Institute of Physics.

Applied Physics

Letters

Additional information on Appl. Phys. Lett.

Journal Homepage: http://apl.aip.org/ Journal Information: http://apl.aip.org/about/about_the_journal Top downloads: http://apl.aip.org/features/most_downloaded Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT

Reactivity of MgB₂ with common substrate and electronic materials

T. He^{a)} and R. J. Cava

Department of Chemistry and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544

John M. Rowell

Materials Research Institute, Northwestern University, Evanston, Illinois 60208

(Received 24 September 2001; accepted for publication 15 November 2001)

The reactivity of MgB₂ with powdered forms of common substrate and electronic materials is reported. Reaction temperatures between 600 and 800 °C, encompassing the range commonly employed in thin-film fabrication, were studied. The materials tested for reactivity were ZrO₂, yttria stabilized zirconia, MgO, Al₂O₃, SiO₂, SrTiO₃, TiN, TaN, AlN, Si, and SiC. At 600 °C, MgB₂ reacted only with SiO₂ and Si. At 800 °C, however, reactions were observed for MgB₂ with Al₂O₃, SiO₂, Si, SiC, and SrTiO₃. The T_c of MgB₂ decreased in the reactions with SiC and Al₂O₃. © 2002 American Institute of Physics. [DOI: 10.1063/1.1433915]

MgB₂, with a T_c of 39 K,¹ may offer higher operating temperatures and device speeds than today's Nb-based technologies for potential applications in thin-film electronic devices, and may have a simpler multilayer film fabrication process than high temperature superconductors. An extensive review of the progress in thin-film fabrication of MgB₂ has been presented.² For electronics applications, it is desirable that films with T_c s close to 39 K be made by a "single-step in situ" process, in which MgB₂ is formed directly on substrates. The majority of films to date have been made by a two-step process, in which a precursor film of either B or Mg+B is annealed, typically either in Mg vapor at 900 °C, or in inert gas at about 600 °C, though some single-step processes have also been reported. In all cases, the reactivity of MgB₂ with substrate materials or insulating or metallic layers in multilayer circuits is an important factor in determining both the conditions of film fabrication and the operating characteristics of the resulting device. Here we describe the results of experiments in which fine powders of different materials were reacted with Mg+B in the 600-800 °C temperature range relevant to device fabrication. It was found that MgB₂ is inert toward many common electronic and substrate materials at 600 °C (with the notable exceptions of SiO_2 and Si), but is highly reactive toward some of the most common substrate materials (i.e., Al_2O_3 and $SrTiO_3$) by 800 °C, suggesting their limited usefulness if high fabrication temperatures must ultimately be used during film deposition.

Polycrystalline samples of MgB₂ plus various materials commonly used in thin-film devices were made by solid state reaction. Starting materials were bright Mg flakes, submicron amorphous B powder, and prereacted electronic materials obtained commercially. They were ZrO₂, yttria stabilized zirconia (YSZ), MgO, Al₂O₃, SrTiO₃, TiN, TaN, AlN, SiO₂ (crystalline), Si, and SiC. Elemental Mg+B were employed in the reactions, rather than preformed MgB₂, to better model film fabrication processes. The ratio of MgB₂ to reactant material was set to a 9:1 mole ratio. Starting materials were mixed thoroughly in quarter-gram batches and pressed into pellets to enhance reaction rates. The pellets were placed on Ta foil, which was in turn placed on a dense Al_2O_3 boat, and heated in a quartz tube furnace under a mixed gas of 95% Ar 5% H₂. Each set of pellets was heated for 24 h at one of three temperatures: 600, 700, or 800 °C. Due to Mg volatility and the relatively long heating time, 20% excess Mg was employed in these reactions. To get a clear test of the reactivity at 800 °C, where the volatility of Mg in open systems at long heating times is significant,³ those tests were repeated by sealing the starting materials in stoichiometric proportions in Ta tubes backfilled with Ar. Those tubes were then sealed in evacuated quartz tubes and heated in a box furnace at 800 °C for 10 h. Reported results for stability at 800 °C are taken from those samples.

The phases present after annealing were determined by powder x-ray diffraction (XRD) with Cu $K\alpha$ radiation at room temperature. The results of all the reactivity studies are summarized in Table I and Figs. 1–3. MgB₂ was found to be inert with respect to ZrO₂, YSZ, MgO, TiN, and AlN up to 700 °C (only MgB₂ plus the reactant compound starting material was observed in the XRD patterns). In an earlier study⁴ it was shown that bulk MgB₂ prepared at temperatures as

TABLE I. Reactivity of MgB2 with various electronic materials.

Electronic material	600 °C anneal	800 °C anneal
ZrO ₂	No reaction	No reaction
YSZ ^a	No reaction	MgB ₂ , small amount of MgO
MgO	No reaction	No reaction
Al_2O_3	No reaction	MgB ₂ with altered cell size,
		MgO, unknown
SiO ₂	MgB ₂ , MgO, Si	MgB_2 , MgB_4
		MgO, Mg ₂ Si, Si
SrTiO ₃	No reaction	MgB ₂ , SrTiO ₃ , MgO
		SrB_6 , TiB_2
Si	MgB2, Mg2Si	MgB ₂ , Mg ₂ Si, MgB ₄
TiN	No reaction	No reaction
TaN ^b	No reaction	No reaction
AlN	No reaction	No reaction
SiC	No reaction	MgB ₂ with altered cell size

^aZrO₂ is present the YSZ before reaction.

 ${}^{b}TaN_{0.8}$ is present in the TaN before reaction.

^{a)}Electronic mail: taohe@princeton.edu

Downloaded 12 Apr 2013 to 152.3.102.242. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://apl.aip.org/about/rights_and_permissions

FIG. 1. Powder x-ray diffraction patterns (Cu $K\alpha$ radiation) of MgB₂ reacted for 10 h at 800 °C with finely divided powders of MgO, YSZ, and ZrO₂ showing good chemical compatibility. The YSZ powder contained ZrO₂ in its prereacted state.

low as 550 °C displayed a T_c equivalent to the bulk value of 38–39 K, and the same T_c was observed in the above cases. MgB₂ was found to be inert with respect to Al₂O₃ only at 600 °C. At higher temperatures, MgO was formed as a reaction product in the Mg+B+Al₂O₃ system, and the diffraction pattern for the MgB₂ showed a significant change in the unit cell parameters, consistent with the incorporation of significant quantities of Al into the MgB₂ structure. Al incorporation in MgB₂ is known to decrease T_c .⁵ MgB₂ was stable with respect to SrTiO₃ up to 700 °C. However, SrB₆, MgB₄, and several peaks due to unknown phases were found when MgB₂ and SrTiO₃ were reacted at 800 °C, indicating that SrTiO₃ and MgB₂ are not compatible at high temperatures.

FIG. 2. Powder x-ray diffraction patterns (Cu $K\alpha$ radiation) of MgB₂ reacted for 10 h at 800 °C with finely divided powders of SrTiO₃, Al₂O₃, crystalline SiO₂, and Si, showing extensive chemical reaction.

FIG. 3. Powder x-ray diffraction patterns (Cu $K\alpha$ radiation) of MgB₂ reacted for 10 h at 800 °C with finely divided powders of SiC, AlN, TaN, and TiN. The TaN_{0.8} was present in the "TaN" in its prereacted state.

The chemical compatibility problems of MgB_2 with Al_2O_3 and $SrTiO_3$, which are among the most commonly used substrates, are therefore serious. Clearly there were reactions between MgB_2 and those two oxides, and caution should be taken when fabricating thin films.

Figures 1 and 2 show the XRD data for the reaction of MgB_2 with six oxide substrate materials (ZrO_2 and YSZ are often employed as oxide buffer layers) at 800 °C. No reaction occurred when the substrates were ZrO₂ and MgO, suggesting them to be potentially good substrates for making thin films. A small amount of MgO was formed in the sample of MgB₂ reacted with YSZ, but it is also a good candidate substrate. SiO_2 is found to be highly reactive with MgB_2 even at 600 °C. This result implies that oxidized silica wafers should not be used for MgB₂ film devices unless a buffer layer, such as MgO, YSZ, or ZrO₂ is first deposited on the SiO₂. Figure 3 shows the XRD data for the reaction of MgB₂ with four nonoxide materials, TiN, TaN, AlN, and SiC. MgB₂ as found to be fully stable with respect to the nitrides TaN, TiN, and AlN up to 800 °C. The nitrides are not common substrates but are employed in thin-film devices such as bolometers. In the case of SiC, however, the peaks of MgB₂ were shifted, indicating that some reaction had occurred. MgB₂ was found to be highly reactive with Si at temperatures of 600 °C and higher (Fig. 2), suggesting that these materials are chemically incompatible. The study of the compatibility of MgB₂ with Mg₂Si (a cubic semiconductor), the decomposition product formed during the reaction, would be of interest to see whether a buffer layer of Mg₂Si might passivate the surface of Si in multilayer devices with MgB_2 .

To determine the effect of the reactions on the superconducting transition temperature, the low temperature magnetization was measured for all the samples made in Ta tubes at 800 °C. Samples were measured in the form of loose powders in a Quantum Design PPMS magnetometer with an applied dc field of 15 Oe. The zero-field cooled dc magnetic

Downloaded 12 Apr 2013 to 152.3.102.242. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://apl.aip.org/about/rights_and_permissions

FIG. 4. Magnetic characterization of the superconducting transitions for samples of MgB₂ reacted with the oxides Al_2O_3 , SiO_2 , MgO, ZrO_2 , YSZ, and $SrTiO_3$ at 800 °C.

susceptibility data for the MgB2 reacted with six oxide materials are presented in Fig. 4. Except for the case of Al₂O₃, the MgB₂ present in reactions with the other four oxide substrate materials had a superconducting T_c of about 38 K, which is just the T_c of pure MgB₂.¹ SrTiO₃ and SiO₂, although reacting with MgB2 and causing partial decomposition, had no effect on the T_c of any MgB₂ present. The sample reacted with Al2O3, however, showed a broad superconducting transition with a suppression of T_c of about 3 K, consistent with the partial substitution of Al for Mg in the MgB₂. The zero-field cooled dc magnetic susceptibility data for MgB₂ reacted with five nonoxide materials are presented in Fig. 5. MgB₂ heated in the presence of all three nitrides, TiN, TaN, and AlN, had a superconducting transition at 38 K, consistent with the lack of reaction seen in the XRD patterns. The reaction with Si did not decrease the T_c of any MgB₂ present. SiC, however, suppressed T_c . There have been no reports on SiC doping of MgB2. Carbon, however, has been doped into MgB₂, and was found to decrease T_c ,⁶ which may be the origin of the degradation observed here.

Surprisingly, MgB_2 has been found to be inert with respect to many electronic materials at 600 °C, suggesting that the chemical compatibility of MgB_2 with other electronic materials in low temperature fabrication processes will not generally be an important factor in determining device per-

FIG. 5. Magnetic characterization of the superconducting transitions for samples of MgB_2 reacted with Si, SiC, and the nitrides AlN, TaN, and TiN at 800 °C.

formance. Important exceptions to this overall character are SiO_2 and Si, where reactivity is observed even at 600 °C, and Al_2O_3 , where reaction was observed at 700 °C. At higher temperatures, MgB_2 is also quite reactive with $SrTiO_3$, but is stable against some oxides and all the nitrides tested, with MgO, ZrO_2 , and YSZ particularly promising as potential substrates and buffer layers. MgB_2 shows much more overall reactivity at 800 °C, however. This increased reactivity of MgB_2 at 800 °C illustrates the importance of pursuing efforts to reduce MgB_2 deposition temperatures to 600 °C or lower for thin film device fabrication.

This work was performed with the support of the Office of Naval Research, Grant No. N00014-01-1-0920.

- ¹J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London) **410**, 63 (2001).
- ²C. Buzea and T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001).
- ³ Binary Alloy Phase Diagrams, edited by T. B. Massalski (ASM International, Materials Park, OH, 1990), p. 498.
- ⁴N. Rogado, M. A. Hayward, K. A. Regan, Y. Wang, N. P. Ong, J. M. Rowell, and R. J. Cava, J. Appl. Phys. **91**, 274 (2002).
- ⁵J. S. Slusky, N. Rogado, K. A. Regan, M. A. Hayward, P. Khalifah, T. He, K. Inumaru, S. M. Loureiro, M. K. Haas, H. W. Zandbergen, and R. J. Cava, Nature (London) **410**, 343 (2001).
- ⁶T. Takenobu, T. Ito, D. H. Chi, K. Prassides, and Y. Iwasa, Phys. Rev. B **64**, 134513 (2001).