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ABSTRACT: Detailed in this report is the enantioselec-
tive synthesis of 1,1-diarylalkanes, a structure found in a 
range of pharmaceutical drug agents and natural prod-
ucts, through the employment of copper(I) hydride 
(CuH) and palladium (Pd) catalysis. Judicious choice of 
ligand for both copper and palladium enabled this hy-
droarylation protocol to work for an extensive array of 
aryl bromides and styrenes, including β-substituted vi-
nylarenes and six-membered heterocycles, under rela-
tively mild conditions.  

Palladium-catalyzed cross coupling has proven to be a 
successful and reliable method for carbon−carbon bond 
construction. Among the many substrate classes em-
ployed in this field, stoichiometric organometallic rea-
gents (e.g., Mg, Zn, Sn reagents) are traditionally used as 
coupling partners in palladium chemistry due to their 
propensity for facile transmetalation, and much success-
ful work has been realized with the use of these reagents 
to generate functionalized arenes.1 Drawbacks associated 
with the use of stoichiometric organometallic reagents, 
including their possible sensitivity toward air/water, 
promiscuity towards undesired pathways of reactivity, 
and necessity to preform them before their use in cross 
coupling, has inspired methods avoiding their interme-
diacy.2 
Recent advances in copper chemistry have demonstrat-
ed that nucleophilic alkylcopper(I) species can be gener-
ated catalytically via olefin insertion and successfully 
intercepted with a range of electrophiles.3,4 As an alter-
native to stoichiometric organometallic reagents, we 
questioned whether an copper(I) alkyl intermediate of 
this nature could be generated catalytically and exploited 
in a palladium-catalyzed cross-coupling process to yield 
the corresponding sp2−sp3 cross-coupled product 
(Scheme 1). Importantly, we sought a chiral CuH cata-
lyst that would effect an enantioselective olefin hydrocu-
pration to form a stereodefined copper(I) intermediate, 
which would undergo transmetalation with palladium 

with high stereospecificity, ultimately leading to an enan-
tioenriched coupling product. Using this approach, we 
anticipated that a suitable combination of Cu and Pd 
catalysts would allow for the enantioselective coupling of 
styrenes with aryl bromides to form 1,1-diarylalkanes, a 
biologically active structure  
Scheme 1. A) Enantioselective access to 1,1-
diarylalkanes via Pd and Cu catalysis; B) Pro-
posed catalytic cycle for enantioselective hy-
droarylation of styrenes. 
 

 
common in both pharmaceuticals and natural products.5  
Enantioenriched 1,1-diarylalkanes have previously been 
prepared through the stereospecific cross coupling of 
enantioenriched benzylic electrophiles.6,7 A nickel-
catalyzed stereoconvergent coupling of racemic benzylic 
alcohols with arylzinc reagents has also been reported.8 
Methods that employ prochiral substrates include 
asymmetric hydrogenation of 1,1-diarylalkenes9 and 
conjugate addition of arylmetal nucleophiles to cin-
namaldehyde derivatives.10 Our approach represents a 
highly modular alternative for the enantioselective syn-
thesis of this class of compounds. Moreover, aryl bro-

Ph Me

L*Cu

Ph

R3SiH,

R3SiOR,

L*CuH

styrene
Y

X

Me

Y

enantioenriched
1,1-diaryl alkane

LPd

A)

catalytic
cycle

copper
catalytic

cycle

palladium

L*CuBr (IX)

L*CuH (I) LPd (IV)

MOR

MBr

ArBr (V)
LPd

Ar
Br

Ar Ph

MePd
L

Ar

Me

Ph

1,1-diaryl alkane

VIII

VI

VII

III

II

B)

Ar Me

L*Cu

Page 1 of 6

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 2 

mides and vinylarenes are widely available reagents or 
feedstock chemicals and are therefore nearly ideal cou-
pling partners.11 
Pioneering efforts by several researchers have demon-
strated the synergistic potential of Cu and Pd catalysis.12 
More recently, Nakao13 and Brown14 have both reported 
the diastereoselective borylarylation of styrene deriva-
tives using both Cu and Pd in catalytic quantities, while 
Liao15 demonstrated the enantioselective boroallylation 
of vinylarenes using a similar system. At the outset of this 
project, the use of CuH and Pd catalysis in a cooperative 
manner for hydrofunctionalization was unknown.  How-
ever, a report detailing the Pd/Cu-catalyzed hydroaryla-
tion of styrenes to furnish racemic 1,1-diaryl alkanes was 
recently published.16 
Scheme 1.B details our proposed dual catalytic cycle for 
enabling the described transformation. Formation of 
active CuH catalyst I would occur through the use of a 
Cu(I) or Cu(II) salt, chiral ligand, and silane. Enantiose-
lective hydrocupration of olefin II would form stereode-
fined Cu(I) benzylic intermediate III.17,18 In the second 
catalytic cycle, ligated palladium(0) 
Table 1. Optimization of the Pd/Cu-catalyzed enanti-
oselective hydroarylation of styrene.a 

 
aYields determined by GC analysis of the crude reaction 
mixture using tetradecane as an internal standard; enan-

tioselectivity of the purified product was determined by 
chiral HPLC; ND = not determined; bCu(OAc)2 used as 
the Cu source; c CuOAc used as the Cu source. 
IV would oxidatively add to the aryl bromide V to form 
complex VI. As the key step in this process, the dual cat-
alytic cycle converges via a stereospecific transmetalation 
of organocopper III with palladium species VI to form 
chiral palladium(II) alkyl complex VII.19 Stereoretentive 
reductive elimination furnishes enantioenriched 1,1-
diarylalkane VIII and regenerates palladium(0) species 
IV. Considering previous reports with CuH catalysis, we 
reasoned that salt metathesis of Cu(I) halide IX with 
base would be required to regenerate CuH catalyst I.20 
We believed that the success of our strategy was predi-
cated on three issues: i) competitive reduction of aryl 
halide V via a metal hydride species would need to be 
suppressed; ii) choice in ligand would enable productive 
reactivity of each metal species while not deactivating 
the other; iii) the rate of each metal cycle would need to 
be matched so as to avoid unproductive side reactions.  
The optimization of an enantioselective hydroarylation 
process for styrene and 4-bromoanisole is detailed in 
Table 1. Examination of several silanes (entries 1−5) 
indicated that methyldiphenylsilane (MePh2SiH) was the 
optimal silane tested when combined with sodium trime-
thylsilanolate (NaOTMS), providing a moderate yield 
and high level of enantioselectivity for the desired prod-
uct (entry 4, 58% yield, 83% ee). NaOTMS was a 
uniquely effective base for this chemistry and little to no 
product was observed with LiOTMS and KOTMS.21 
Testing several biarylphosphine ligands (entries 4, 6, and 
7) showed that a modest increase in yield was observed 
when using BrettPhos as a secondary ligand (entry 6, 
66% yield, 85% ee). Employing [Pd(cinnamyl)Cl]2 as the 
source of palladium for this reaction resulted in im-
proved reactivity while not significantly affecting the 
enantioselectivity of the process (entry 10, 75% yield, 
88% ee). A range of Cu(I) and Cu(II) salts were exam-
ined, and a slight improvement was observed using 
CuOAc as the source of copper (entry 11, 84% yield, 
90% ee). Evaluation of a variety of chiral bisphosphines 
demonstrated that DTBM-SEGPHOS was an excellent 
ligand for this transformation with many other ligands 
giving significantly lower yield and enantioselectivity of 
the desired product.22 
With the optimized conditions in hand, we turned to-
ward examining the substrate scope of the aryl bromide 
coupling partner (Table 2 and Table 3).23 Electron-rich 
aryl bromides (2a and 2n) worked well in this reaction, 
while 4-bromobenzonitrile and aryl bromides with acidic 
protons were not compatible with the reactions condi-
tions. A range of functional groups, including ethers 
(such as 2a, 2i, 2h, 2k, and 2n), an ester (2c), a thi-
oether (2d), an amine (2h), a carbamate (2l), an aryl 
chloride (2l), and an amide (2l), were all tolerated in this 
protocol. Employing ortho-substituted aryl bromides as 
viable substrates required a slightly higher reaction tem-
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perature and longer reaction times to provide the prod-
uct (3n) in good yield and high enantiopurity. Im-
portantly, a variety of brominated heterocycles, such as 
pyridines (e.g., 2b and 2m), quinolines (2f and 2t), a 
pyrimidine (2h), a pyridazine (2i), and an azaindole (2j), 
were competent coupling partners. In addition, a five-
membered brominated heterocycle was effective (2o). 
Certain aryl bromides, such as 4-bromoisoquinoline (2e) 
and 5-bromo-1-methylindole (2g), resulted in moderate 
yields but poor to modest enantioselectivities (76% yield, 
27% ee and 68% yield, 56% ee, respectively).24 Charac-
terization of 3i via X-ray crystallography revealed the 
absolute configuration of the stereocenter. This data, 
combined with the sense of stereoinduction observed 
with our method for CuH-catalyzed hydroamination of 
styrenes,3d suggests that the proposed Cu-to-Pd 
transmetalation step occurs with retention of configura-
tion (see Supporting Information for details).25,26 
Table 2. Scope of the aryl bromide coupling partner.a 

 
aAll yields represent the average of  isolated yields from 
two runs performed with 1 mmol of styrene, enantiose-
lectivity determined by chiral SFC; bAverage of isolated 
yields from three runs. 
The scope of arylalkene coupling partner was then eval-
uated with a selection of aryl bromides (Table 3). Ortho-
substituted styrenes were well tolerated in this chemistry 
(1m and 1n). Electron-rich arylalkenes productively 
coupled with good levels of yield and enantioselectivity 
(for example entry 1o, 66% yield, 93% ee), while an 
electron-deficient styrene (entry 1p) produced a much 

lower level of yield and stereoselectivity (23% yield, 61% 
ee). This might be indicative of the configurational sta-
bility of the RCu intermediate. Finally, β-substituted 
styrenes can be utilized in this transformation, affording 
good yields and reasonable levels of enantioselectivity 
(1s and 1t). Due to a more challenging hydrocupration 
step, a lower palladium catalyst loading (1 mol% Pd) was 
required for β-substituted styrenes, presumably to slow 
down competitive reduction of the aryl bromide and 
match the rate of the two productive catalytic cycles. In 
addition, a slightly elevated reaction temperature and 
use of dimethylphenylsilane (Me2PhSiH) as the reduct-
ant was required to achieve good results with this class of 
olefins.  
Table 3. Scope of the styrene coupling partner with 
various heteroaryl and aryl bromides.a 

 
aAll yields represent the average of  isolated yields from 
two runs performed with 1 mmol of alkene, enantioselec-
tivity determined by chiral SFC; b2 equiv of Me2PhSiH 
used as the silane, and the reaction was run at 45 °C; 
cReaction was run for 40 h; d0.5 mol% of 
[Pd(cinnamyl)Cl]2 used with 1.1 mol% BrettPhos L3, 2 
equiv of Me2PhSiH used as the silane, and the reaction 
was run at 45 °C. 

In conclusion, we report the enantioselective Pd/Cu-
catalyzed hydroarylation of styrenes to form 1,1-
diarylalkanes, a valuable structure in medicinal chemis-
try. This procedure performs well for a variety of aryl 
bromides, including six-membered heterocycles, to form 
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 4 

the respective products in generally good yields and with 
high levels of enantioselectivity. A range of vinylarenes, 
including ortho- and β-substituted styrenes, were also 
productively coupled in this hydroarylation reaction. 
Extending this chemistry to other substrates classes is 
currently being explored in our laboratory. 
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 (17) For computational studies exploring the regioselectivity of al-
kene insertion with analogous copper(I) boryl complexes, see: Dang, 
L.; Zhao, H.; Lin, Z.; Marder, T. B. Organometallics 2007, 26, 2824. 

(18) For a study regarding alkene insertion of stoichiometric cop-
per(I) boryl complexes, see: Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. 
Organometallics 2006, 25, 2405. 
(19)	
  For evidence of the transmetalation between an alkylcopper spe-
cies and palladium to be stereospecific, see: (a) ref. 14. (b) ref. 16. 
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1972, 94, 658. (b) Wang, Y.-M.; Bruno, N. C.; Placeres, Á. L.; Zhu, 
S.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 10524. 
(21)  Trimethylsilanoate bases have previously been found to be effi-
cient bases in palladium-catalyzed cross-coupling chemistry. For a 
representative example see: Denmark, S. E.; Tymonko, S. A. J. Org. 
Chem. 2003, 68, 9151. 

(22) Refer to the Supporting Information for an extensive list of lig-
ands, bases, and copper sources examined. 

(23) Running the reaction in an oil bath heated to 35 °C appeared to 
give a slight increase in enantioselectivity and yield and was used for 
subsequent hydroarylation reactions reported in this paper. 

(24) These two entries gave variable yield and enantioselectivity, 3e: 
69-81% yield, 19-34% ee, 3g: 52-82%, 49-65% ee. Studies with 4-

bromoisoquinoline (1e) have indicated that increasing the palladium 
catalyst loading increases the enantioselectivity of product 3e, a phe-
nomenon we generally observed with other substrates and that is 
consistent with a unimolecular epimerization event competing with 
bimolecular transmetalation. The hydroarylation of 4-
bromoisoquinoline (1e) and 3-bromoquinoline (1f) with styrene in one 
reaction vessel also resulted in diminished enantioselectivity of quino-
line product 3f (see Supporting Information for details and additional 
experiments).  

(25) Recent reports on the Pd/Cu-catalyzed boryl- and hydroarylation 
of styrene derivatives have indicated that retention or inversion of 
configuration can occur during the purported transmetalation step 
see: (a) ref. 14. (b) ref. 16. 
(26) Deuterium-labeling and computational studies for the CuH-
catalyzed hydroboration of styrene derivatives indicate that hydrocu-
pration occurs through cis-addition, and boryl transmetalation is ste-
reoretentive. The sense of stereoinduction with (R)-DTBM-
SEGPHOS for CuH-catalyzed hydroboration, hydroamination, and 
hydroarylation is the same see: Noh, D.; Yoon, S. K.; Won, J.; Lee, J. 
Y.; Yun, J. Chem. Asian J. 2011, 6, 1967 and red. 3d. 
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