
This article was downloaded by: [The University of Texas at El Paso] On: 31 December 2014, At: 05:59 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

ONE-POT AND SIMPLE REACTION FOR THE SYNTHESIS OF ALKYL p-TOLUENESULFINATE ESTERS UNDER SOLID-PHASE CONDITIONS

A. M. Hajipour^a, S. E. Mallakpour^a & A. Afrousheh^a ^a College of Chemistry, Isfahan University of Technology, Isfahan, IR, 84156, Iran Published online: 04 Oct 2006.

To cite this article: A. M. Hajipour , S. E. Mallakpour & A. Afrousheh (2000) ONE-POT AND SIMPLE REACTION FOR THE SYNTHESIS OF ALKYL p-TOLUENESULFINATE ESTERS UNDER SOLID-PHASE CONDITIONS, Phosphorus, Sulfur, and Silicon and the Related Elements, 160:1, 67-75, DOI: <u>10.1080/10426500008043672</u>

To link to this article: http://dx.doi.org/10.1080/10426500008043672

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any

losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u> Phosphorus, Sulfur and Silicon, 2000, Vol. 160, pp. 67-75 Reprints available directly from the publisher Photocopying permitted by license only © 2000 OPA (Overseas Publishers Association) Amsterdam N.V. Published under license by the Gordon and Breach Publishers imprint. Printed in Malaysia

ONE-POT AND SIMPLE REACTION FOR THE SYNTHESIS OF ALKYL *p*-TOLUENESULFINATE ESTERS UNDER SOLID-PHASE CONDITIONS

A.R. HAJIPOUR^{*}, S.E. MALLAKPOUR^{*} and A. AFROUSHEH

College of Chemistry, Isfahan University of Technology, Isfahan, 84156, IR, Iran

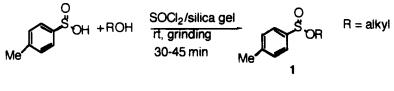
(Received July 20, 1999; In final form October 07, 1999)

A manipulatively one-pot and rapid method for the synthesis of alkyl p-toluenesulfinate esters 1 from p-toluenesulfinic acid, supported thionyl chloride on silica gel and aliphatic alcohols in solid phase conditions is described.

Keywords: Sulfinate esters; p-Toluenesulfinic acid; Thionyl chloride; Solid-phase conditions; Silica gel; Chiral synthesis

INTRODUCTION

The reaction of the organometallic reagent with a diastereomerically pure sulfinate ester of menthol continues to be the method most often employed for the preparation of optically active sulfoxides,¹ despite recent advancement in the asymmetric oxidation of sulfides to sulfoxides². The requisite sulfinate esters are generally prepared from the corresponding sulfinic acids either directly³ or via the sulfinyl chlorides⁴. Alternatively, the sulfinyl chloride may be directly prepared from a more available precursor, the disulfide, by reaction with chlorine⁵ or sulfuryl chloride in the presence of acetic acid.⁶ The most commonly used methods are the reaction of sulfinyl chlorides with alcohols⁷ and sodium sulfinates with chlorocarbonates in alcohols.⁸ Other methods including alkylation of sulfinic acids also


^{*} Correspondence Author.

known⁹⁻¹¹, a useful one-step synthesis of alkyl *t*-alkansulfinates was reported.¹²

Heterogeneous reaction that are facilitated by supported reagents on various solid inorganic surfaces have received attention in recent years¹³⁻¹⁵ The advantage of these methods over conventional homogenous reactions is that they provide greater selectivity, enhanced reaction rates, cleaner products and manipulative simplicity. We now wish to report a convenient one-step method for the preparation of sulfinate esters, starting from supported thionyl chloride on silica gel (33 %) with sulfinic acid and aliphatic alcohols under solvent-free conditions. This method would be widely applicable as general method for synthesis of alkyl sulfinate esters. In continuation of our ongoing program to develop environmentally benign methods using solid supports,¹⁶ we now wish to report an extremely convenient one-step synthesis of sulfinate ester **1** from *p*-toluenesulfinic acid, supported thionyl chloride on silica gel and aliphatic alcohols under solid phase conditions (Scheme 1).

Results and Discussion

The process in its entirety involves a simple mixing of *p*-toluenesulfinic acid, supported thionyl chloride on silica gel (33 %) and aliphatic alcohols in a mortar and grinding the mixture for the time specified in the Table at room temperature. In our best of knowledge this methodology for preparation of chiral sulfinate esters in solid phase conditions has not been reported in literature. This method does not require additional step and excess of thionyl chloride for preparation of sulfinyl chlorides, which are thermally unstable and sensitive to moisture during the reaction, work-up and evaporation of excess thionyl chloride. This method also does not need any catalysts which can be relatively expensive and can cause problems during purification.⁹⁻¹¹

The compounds 1 have been identified by ¹H NMR analysis. Because of the low reactivity of aromatic alcohols only aliphatic alcohols could be converted into the desired products, the results of these efforts are presented in table I. The desired product was usually isolated in good to excellent yield, and excellent diastereoselectivity (Table I).

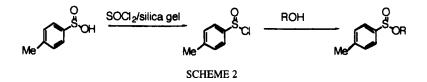

Entry	R	Reaction Time (min)	Yield (%)
1	CH ₃	30	85
2	CH ₃ CH ₂	40	95
3	CH ₃ (CH ₂) ₂	40	75
4	CH ₃ (CH ₂) ₃	40	70
5	CH ₃ CH(CH ₃)CH ₂	40	75
6	CH ₃ (CH ₂) ₂ CH(CH ₃)	40	78
7	cyclohexyl	45	60
8	C ₆ H ₅ CH ₂	35	85
9	C ₆ H ₅ CH ₂ CH ₂	40	79
10	l-menthyl	45	95
11	CICH ₂ CH ₂	40	75
12	CH ₃ (CH ₂) ₆ CH ₂	40	68
13	CH ₃ CH ₂ CH(CH ₃)	40	70
14	(CH ₃) ₂ CH	35	75

TABLE I Preparation of p-Toluenesulfinate Esters 2

The diastereoselectivity of product formation when we used 1-menthol, as determined by ¹H NMR analysis on the crude reaction products, was 90:10 (Table I, entry 10); the major diastereomer proved to have a negative sign. Literature precedent suggests that this compound has (S) configuration at sulfur.¹⁷

We believe that the effect of silica gel is to absorb the thionyl chloride on its surface. The supported thionyl chloride then reacts with sulfinic acid to produce sulfinyl chloride. The alcohol then reacts with sulfinyl chloride to produce alkanesulfinates, the probably mechanism is shown in Scheme 2.

In order to evaluate the effect of silica gel in this reaction, several experiments were demonstrated. As shown in Table II, when *p*-toluenesulfinic acid with thionyl chloride and ethanol was used in the absence of silica

gel, the *p*-toluenesulfinic acid was converted to the corresponding ester in 10 % yield after 60 min grinding in a mortar at room temperature (Table II, entry 2). The reaction of supported thionyl chloride on silica gel in dichloromethane (2 h, reflux) was unsuccessful and the *p*-toluenesulfinic acid remained unchanged (entry 3). The reaction of *p*-toluenesulfinic acid and ethanol in the presence of silica gel without thionyl chloride was unsuccessful and the yield of corresponding *p*-toluenesulfinic ester after 80 min grinding in a mortar at 70°C was only 10 % (entry 4). Similarly when we used thionyl chloride without silica gel for 40 min the condensation proceeded in 25 % yield (entry 5). Only in the case of reaction of supported thionyl chloride on silica gel with *p*-toluenesulfinic acid and ethanol *p*-toluenesulfinic ester produced in excellent yield (entry 1).

Entry	Catalyst	Temp (°C)	Time (min)	Solvent	Sulfinate Ester ^a (%)
1	silica gel	rt.	40	none	95
2	none	rt.	60	none	10
3	silica gel	40	120	CH ₂ Cl ₂	0
4	silica gel	70	80	none	10 ^b
5	none	rt.	40	none	25

TABLE II Preparation of Ethyl p-Toluenesulfinate Ester

a. Evaluated by TLC ((silica gel using a mixture of ethyl acetate and hexane as eluent (90:10)) analysis.

b. Without thionyl chloride.

In conclusion a simple and one-pot method for synthesis of p-toluenesulfinate ester has been developed. The discovery of the method promises to find widespread application in the preparation of chiral sulfinate esters. This method should allow a more rapid and complete screening of sulfur substituent effects in chiral sulfoxide chemistry than has previously been possible. This methodology is superior from point of view of yield, short reaction time and the easier work-up to the reported methods.

Experimental

General

All products were identified by spectroscopy data (IR, NMR, mass and CHN analysis). All mps. were taken on a Gallenkamp melting apparatus and are uncorrected. Elemental analysis was performed by Research Institute of Petroleum Industry, Tehran, I.R. Iran. ¹H NMR spectra were recorded on a Varian EM-390 NMR Spectrometer operating at 90 MHz. The spectra were measured in CDCl₃ unless otherwise stated, relative to TMS (0.00 ppm). Optical rotations were recorded with a JASCO, DIP-370, Digital Polarimeter. Mass spectra were recorded on a Shimadzu GC-MS-QP 1000PX. Supported thionyl chloride (33 %) on silica gel was prepared from mixing thionyl chloride (13 mmol, 1.5 g), silica gel (3 g) in a mortar and grinding the mixture for one min. The mixture can be kept in a sealed tube in freezer for week without loosing its activity.

General Procedure

A mortar was charged with 33% supported thionyl chloride on silica gel (0.45 g, 1.3 mmol thionyl chloride on 0.90 g silica gel), *p*-toluenesulfinic acid (0.16 g, 1 mmol), and the mixture was ground with a pestle for 1 min, then alcohol (1 mmol) was added to the mixture. The reaction mixture was ground for the time specified in table I. When TLC ((silica gel using a mixture of ethyl acetate and hexane as eluent (90:10)) showed no remaining *p*-toluenesulfinic acid, the reaction mixture was poured into a mixture of ether (20 ml) and H₂O (5 ml). The ethereal layer was washed with saturated NaHCO₃ (15 ml), dried (CaCl₂), and evaporated to dryness using a rotary evaporator to give pure product.

Methyl p-toluenesulfinate 2a

(0.14 g, 0.85, 85 %) oil bp 110–112°C/16 mm Hg (lit., ¹⁸129–100 °C/16 mm Hg); 1128 cm⁻¹ (S=O); ¹H NMR (CDCl₃) δ 7.80 (d, J=8 Hz, 2 H), 7.60 (d, J=8 Hz, 2 H), 3.60 (s, 3 H, Me), 2.46 (s, 3 H, Me). MS (CI) m/z 170 (60, M⁺). Anal calcd for C₈H₁₀O₂S: C, 56.45; H, 5.92; S, 18.83 %. Found: C, 56.30; H, 6.10; S 18.80 %.

Ethyl p-toluenesulfinate 2b

(0.17 g, 0.95, 95 %) oil bp 139–140°C/16 mm Hg (lit., $^{19}92^{\circ}C/2.0$ mm Hg); 1128 cm⁻¹ (S=O); ¹H NMR (CDCl₃) δ 7.90 (d, J=8 Hz, 2 H), 7.40 (d, J=8 Hz, 2 H), 4.40–4.00 (m, 1 H), 3.90–3.50 (m, 1 H), 2.60 (s, 3 H, Me), 1.30 (t, J=6 Hz, 3 H). MS (CI) m/z 184 (64, M⁺). Anal calcd for C₉H₁₂O₂S: C, 58.68; H, 6.57; S, 17.37 %. Found: C, 58.60; H, 6.60; S 17.30 %.

N-Propyl p-toluenesulfinate 2c

(0.15 g, 0.75, 75 %) oil bp 146–147°C/16 mm Hg; 1130 cm⁻¹ (S=O); ¹H NMR (CDCl₃) δ 7.80 (d, J=8 Hz, 2 H), 7.50 (d, J=8 Hz, 2 H), 4.40–4.00 (m, 1 H), 4.20–3.80 (m, 1 H), 3.70–3.30 (m, 1 H), 2.50 (s, 3 H, Me), 1.80–1.40 (m, 2 H), 1.00 (t, J=6 Hz, 3 H). MS (CI) m/z 198 (55, M⁺). Anal calcd for C₁₀H₁₄O₂S: C, 60.58; H, 7.12; S, 16.17 %. Found: C, 60.60; H, 7.30; S 16.20 %.

N-Butyl p-toluenesulfinate 2d

(0.15 g, 0.70, 70 %) oil bp 110–111°C/8 mm Hg (lit., ${}^{19}104$ °C/1.5 mm Hg); 1132 cm⁻¹ (S=O); 1 H NMR (CDCl₃) δ 7.75 (d, J=8 Hz, 2 H), 7.25 (d, J=8 Hz, 2 H), 4.20–3.80 (m, 1 H), 3.60–3.30 (m, 1 H), 2.55 (s, 3 H, Me), 1.70–1.1 (m, 4 H), 0.80 (t, J=6 Hz, 3 H). MS (CI) m/z 212 (52, M⁺). Anal calcd for C₁₁H₁₆O₂S: C, 62.23; H, 7.60; S, 15.10 %. Found: C, 62.20; H, 7.50; S 15.10 %.

Iso-Butyl p-toluenesulfinate 2e

(0.17 g, 0.75, 75 %) oil bp 114–116°C/10 mm Hg; 1132 cm⁻¹ (S=O); ¹H NMR (CDCl₃) δ 7.90 (d, J=8 Hz, 2 H), 7.30 (d, J=8 Hz, 2 H), 4.00–3.80 (dd, J=4.5, 6.8 Hz, 1 H), 3.50–3.10 (dd, 4.5, 6.8 Hz, 1 H), 2.55 (s, 3 H, Me), 2.20–1.7 (m, 1 H), 1.00 (d, J=9 Hz, 6 H). MS (CI) m/z 212 (52, M⁺). Anal calcd for C₁₁H₁₆O₂S: C, 62.23; H, 7.60; S, 15.10 %. Found: C, 62.20; H, 7.50; S 15.10 %.

Sec-Pentyl p-toluenesulfinate 2f

(0.17 g, 0.78, 78 %) oil bp 112–115°C/10 mm Hg; 1128 cm⁻¹ (S=O); ¹H NMR (CDCl₃) δ 7.80 (d, J=8 Hz, 2 H), 7.45 (d, J=8 Hz, 2 H), 4.70–3.80 (m, 1 H), 3.60–3.30 (m, 1 H), 2.55 (s, 3 H, Me), 1.70–1.1 (m, 4 H), 0.80 (t,

J=6 Hz, 3 H). MS (CI) m/z 226 (52, M⁺). Anal calcd for $C_{12}H_{18}O_2S$: C, 63.28; H, 8.02; S, 14.16 %. Found: C, 63.20; H, 8.20; S 14.10 %.

Cyclohexyl p-toluene sulfinate 2g

(0.13 g, 0.60, 68 %), as a solid; mp 73°C 1130 cm⁻¹ (S=O); ¹H NMR (CDCl₃) δ 7.80 (d, J=8 Hz, 2 H), 7.50 (d, J=8 Hz, 2 H), 4.50–4.20 (m, 1 H), 2.50 (s, 3 H, Me), 2.10–1.20 (m, 7 H), 1.90–1.40 (m, 10 H). MS (CI) m/z 238 (60, M⁺). Anal calcd for C₁₃H₁₈O₂S: C, 65.51; H, 7.61; S. 13.45 %. Found: C, 65.30; H, 7.50; S 13.30 %.

Benzyl p-toluene sulfinate 2h

(0.20 g, 0.85, 85 %) oil bp $181-183^{\circ}C/10 \text{ mm Hg}$ (lit., ${}^{19}161^{\circ}C/2.5 \text{ mm}$ Hg); 1132 cm^{-1} (S=O); ${}^{1}\text{H}$ NMR (CDCl₃) δ 7.80 (d, J=8 Hz, 2 H), 7.50-7.20 (m, 7 H), 4.70 (AB q, J=13.8 Hz, 2 H), 2.55 (s, 3 H, Me), 1.70-1.1 (m, 4 H), 0.80 (t, J=6 Hz, 3 H). MS (CI) m/z 246 (80, M⁺), 91 (100). Anal calcd for C₁₄H₁₄O₂S: C, 68.27; H, 5.73; S, 13.02 %. Found: C, 68.30; H, 5.80; S 13.10 %.

2-Phenyl p-toluene sulfinate 2i

(0.20 g, 0.79, 79 %) oil bp 195–197°C/10 mm Hg; 1132 cm⁻¹ (S=O); ¹H NMR (CDCl₃) δ 7.60 (d, J=8 Hz, 2 H), 7.40–7.10 (m, 7 H), 4.40–4.00 (m, 1 H), 3.90–3.50 (m, 1 H), 2.80 (t, J=9 Hz, 2 H), 2.40 (s, 3 H, Me). MS (CI) m/z 260 (70, M⁺), 91 (100). Anal calcd for C₁₅H₁₆O₂S: C, 69.20; H, 6.19; S, 12.31 %. Found: C, 69.10; H, 6.30; S 12.20 %.

1-Menthyl p-toluene sulfinate 2j

(0.28 g, 0.95, 95 %), as a solid; mp 105–106°C 1132 cm⁻¹ (S=O); ¹H NMR (CDCl₃) δ 7.75 (d, J=8 Hz, 2 H), 7.45 (d, J=8 Hz, 2 H), 4.18 (m, 0.90 H, major diastereomer), 4.13 (m, 0.10 H, minor diastereomer), 2.22 (s, 2.70 H, Me, major diastereomer), 2.16 (s, 0.30 H, Me, minor diastereomer), 1.70–0.70 (m, 18 H). Recrystalization from acetone afforded pure (S)-(menthyl *p*-toluenesulfinate (0.20 g, 70 %); mp 103–105 °C (lit., ¹⁷mp 103 105°C); $[\alpha]^{25}{}_{\rm D}$ -200.7 (*c* 1.5, acetone) (lit., ¹⁵[$\alpha]^{25}{}_{\rm D}$ -200.3 (*c* 1.23, acetone).

2-Chloro ethyl p-toluene sulfinate 2k

(0.16 g, 0.75, 75 %), as a solid mp 59–61°C, 1132 cm⁻¹(S=O); ¹H NMR (CDCl₃) δ 7.90 (d, J=8 Hz, 2 H), 7.44 (d, J=8 Hz, 2 H), 4.30 (m, 1 H), 3.80

(m, 3 H), 2.50 (s, 3 H, Me. MS (CI) m/z 218 (80, M⁺). Anal calcd for $C_9H_{11}ClO_2S$: C, 49.43; H, 5.07; S, 14.66 %. Found: C, 49.30; H, 5.20; S 14.50 %.

N-Octyl p-toluene sulfinate 21

(0.20 g, 0.75, 75 %), oil bp 168–170°C/10 mm Hg (lit., ¹⁹152 °C/2.0 mm Hg); 1139 cm⁻¹ (S=O); ¹H NMR (CDCl₃) δ 7.90 (d, J=8 Hz, 2 H), 7.25 (d, J=8 Hz, 2 H), 4.00 (m, 1 H), 3.60 (m, 3 H), 2.55 (s, 3 H, Me, 1.50 (m, 4 H), 0.80 (t, 3 H). MS (CI) m/z 268 (52, M⁺). Anal calcd for C₁₅H₂₄O₂S: C, 67.13; H, 9.02; S, 11.92 %. Found: C, 67.00; H, 9.20; S 11.70 %.

Sec-Butyl p-toluene sulfinate 2m

(0.15 g, 0.70, 70 %) oil bp 104–106°C/15 mm Hg; 1130 cm⁻¹ (S=O); ¹H NMR (CDCl₃) δ 7.90 (d, J=8 Hz, 2 H), 7.40 (d, J=8 Hz, 2 H), 4.50 (m, 1 H), 2.50 (s, 3 H, Me), 1.5–0.7 (m, 8 H). MS (CI) m/z 212 (59, M⁺). Anal calcd for C₁₁H₁₆O₂S: C, 62.23; H, 7.60; S, 15.10 %. Found: C, 62.10; H, 7.80; S 15.20 %.

Iso-Proyl p-toluene sulfinate 2n

(0.15 g, 0.75, 75 %) oil bp 100–102°C/2 mm Hg; 1133 cm⁻¹ (S=O); ¹H NMR (CDCl₃) δ 7.90 (d, J=8 Hz, 2 H), 7.40 (d, J=8 Hz, 2 H), 4.70 (m, 1 H), 2.50 (s, 3 H, Me), 2.20 (d, J=6.8 Hz, 3 H), 2.00 (d, J=6.8 Hz, 3 H). MS (CI) m/z 198 (50, M⁺). Anal calcd for C₁₀H₁₄O₂S: C, 60.58; H, 7.60; S, 15.10 %. Found: C, 62.10; H, 7.80; S 15.20 %.

Acknowledgements

The authors (A.R. Hajipour) grateful of the National Research Council of IR, Iran (NRCI), as a National Research Project for financial support.

References

 a) K.K. Andersen, W.Gaffield, N. E. Papanikolau, J. W. and R.I. Foleg, Perkins, J. Am. Chem. Soc., 86, 5637 (1964);

b) J. Drabowicz, B. Bujnicki and M. Mikaasezyk, J. Org. Chem., 47, 3352 (1982).

- a) P. Pitchene and B. Kaganh, *Tetrahedron Lett.*, 23, 1049 (1984);
 b) P. Petchene, E. Dunach, M.N. Deshmulch and H.D. Laynn, *J. Am. Chem. Soc.*, 106, 8188 (1984).
- 3. R.B. Boar and A.C. Puter, Synthesis, 1982, 584.
- D.N. Harpp, B.T. Friedlander, C. Larsen, K. Steliou and A. Stockton, J. Org. Chem., 43, 348 (1987).
- 5. I.B. Douglass and R.V. Nuton, J. Org. Chem., 33, 2104 (1968).
- J.H. Youn and R. Herrmann, Synthesis, 1987, 72.

SULFINATE ESTERS

- 7. H. Phillipe, J. Chem. Soc. 1925, 2552.
- 8. A. Yamamoto and M. Kobayshi, Bull. Chem. Soc. JPN., 39, 1292 (1966).
- 9. J.W. Wilt, R.G. Stein and W.J. Wagner, J. Org. Chem., 32, 2097 (1967).
- 10. R. Ott and A. Rossing, Ber. Dtsch. Chem. Ges., 18, 2493 (1885).
- 11. M. Kobayshi, Bull. Chem. Soc. JPN., 39, 1296 (1966).
- 12. M. Mikolajczyk and J. Darbowicz, Synthesis, 1974, 124.
- a) R.J. Gedye, K. Westaway, H. Ali, L. Baldisera, L. Laberge and J. Rousell, *Tetrahedron Lett.*, 27, 279 (1986);
 b) R.J. Giguere, T. L. Bray, S.M. Duncan and G. Majetich, *Tetrahedron Lett.*, 27, 4945 (1986).
- 14. a) A. Abramovitch, Org. Prep. Proc. Int., 23, 685 (1991);
 b) D.M. P. Migos and D.R. Baghurst, Chem. Soc. Rev., 20, 1, (1991);
 c) S. Caddick, Tetrahedron, 51, 10403 (1995).
- A. Loupy, A. Petit, M. Ramdiani, C. Yvanaeff, M. Majdoub, B. Labiad and D. Villemin, Can. J. Chem., 71, 90 (1993).
- a) A.R. Hajipour, S.E. Mallakpour and G. Imanzadeh, J. Chem., 1999, 228;
 b) A.R. Hajipour, S.E. Mallakpour and G Imanzadeh, Chemistry Lett., 1999, 99;
 c) A.R. Hajipour, Indian. J. Chem., 36B, 1069 (1997);
 d) A.R. Hajipour, S.E. Mallakpour and A. Afrusheh, Tetrahedron, 55, 2311 (1999);
 e) A.R. Hajipour, B.I. Mohammadpoor, K. Nikbaghat and G. Imanzadeh, Synth. Commun, 29, 1697 (1999);
 f) A.R. Hajipour and F. Islami, Indian. J. Chem., in press.
- M. Axelrod, P. Bickar, J. Jacobus, M.M. Green and K. Mislow, J. Am. Chem. Soc., 90, 4835 (1964).
- 18. J.M. Klunder and K.B. Sharpless, J. Org. Chem., 52, 2598 (1987).
- 19. M. Fururawa, T. Okawara and Y. Noguchi, Synthesis, 1978, 441.