

Note

Synthesis of 2-Aryl and 3-Aryl Benzo[b]furan Thioethers Using Aryl Sulfonyl Hydrazides as Sulfenylation Reagents

Xia Zhao, Lipeng Zhang, Xiaoyu Lu, Tianjiao Li, and Kui Lu

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.5b00146 • Publication Date (Web): 12 Feb 2015

Downloaded from http://pubs.acs.org on February 18, 2015

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Synthesis of 2-Aryl and 3-Aryl Benzo[b]furan Thioethers Using Aryl Sulfonyl Hydrazides as Sulfenylation Reagents

Xia Zhao,^{†,*} Lipeng Zhang, [†] Xiaoyu Lu, [†] Tianjiao Li [†] and Kui Lu^{$\ddagger,*$}

[†]College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China

[‡]College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China

*E-mail: <u>hxxyzhx@mail.tjnu.edu.cn; lukui@tust.edu.cn</u>

Abstracts: An efficient, metal-free protocol used to synthesize aryl benzo[*b*]furan thioethers based on the I₂-catalysed cross-coupling of benzo[*b*]furans as well as the electrophilic cyclization of 2-alkynylphenol derivatives with aryl sulfonyl hydrazides was developed. Various 2-aryl and 3-aryl benzo[*b*]furan thioethers were obtained in moderate to good yields.

Benzofurans constitute basic units that frequently occur in natural products and represent the most important type of heterocycles in drug discovery,¹ as they have been reported to exhibit anticancer,² antiviral,³ antifungal,⁴ antiinflammatory⁵ and immunosuppressive activities.⁶ Therefore, significant efforts have been put forth towards the efficient construction of benzofuran scaffolds. To the best of our knowledge, only a few methods have been reported to prepare 2-sulfenyl or 3-sulfenyl benzo[b]furans including (i) electrophilic cyclisation of 2-(phenylethynyl)anisole with 4-nitrophenyl hypochlorothioite (Scheme 1, Eq 1),⁷ (ii) electrophilic cyclisation of 2-sulfenyl-alkynylanisoles with electrophiles sources such as I2, ICl, Br2 and PhSeBr (Scheme 1, Eq 2),⁸ (iii) PdCl₂-catalysed annulation of 2-alkynylphenol derivatives with disulfides in the presence of 2 equivalents of I_2 (Scheme 1, Eq 3),⁹ (iv) FeCl₃-promoted annulation of 2-alkynylanisoles with disulfides (Scheme 1, Eq 4),¹⁰ and (v) I₂-mediated cyclisation of 2-alkynylanisoles with diaryl disulfides (Scheme 1, Eq 5).¹¹ However, these methods require either expensive and air-sensitive metal catalysts or foul-smelling, toxic and unstable sulfur sources such as sulfenyl halides and disulfides. Hence, a direct and concise method to synthesize 2-sulferyl or 3-sulfenyl benzo[b]furans using stable and environmentally friendly reagents remains a significant challenge for organic chemists.

Scheme 1. Synthesis 2- or 3-sulfenyl benzo[b] furans via different methods

The Journal of Organic Chemistry

In the past two years, sulfonyl hydrazides, which are readily accessible, non-odorous, and stable solids, have emerged as novel sulfenylation reagents. Specifically, they have been used in the sulfenylation of iodoles,¹² alkanes, ¹³ ethers, ¹³ naphthols and naphthylamines,¹⁴ as well as in the oxysulfenylation of alkenes,¹⁵ hydrothiolation of alkynes,¹⁶ and in the synthesis of unsymmetrical sulfides.¹⁷ Recently, we reported the I₂-catalysed sulfenylation of pyrazolones with aryl sulfonyl hydrazides promoted by *p*-toluenesulfonic acid (PTSA).¹⁸ Inspired by the aforementioned background and our interest in the chemistry of sulfonyl hydrazides, we envisaged that sulfenyl benzo[*b*]furans could be produced via the direct sulfenylation of benzofuran by sulfonyl hydrazides. Herein, we disclose concise and convenient methods to synthesize 2-aryl and 3-aryl benzo[*b*]furan thioethers using aryl sulfonyl hydrazides as sulfenylation reagents via catalysis with iodine.

To begin our investigation, benzofuran reacted with was 3-chlorobenzenesulfonohydrazide 2a using Tian's protocol (I₂ 10 mol%, ethanol, 70 ^oC). Unfortunately, the sulfenylation reaction did not occur at all, and benzofuran decomposed at higher temperatures (120 °C). To circumvent this issue, a more stable benzofuran derivative, 2-phenylbenzofuran 1a, was reacted with 2a at 120 °C in ethanol (EtOH). To our delight, the desired sulferight product **3aa** was obtained in 75% yield in the presence of 0.1 equivalent of I₂ as the catalyst at 120 °C (Table 1, Entry 1). To identify the optimal reaction conditions, various solvents such as EtOH, 1,4-dioxane, toluene, 1,2-dichloroethane (DCE), N,N-dimethylformamide (DMF), and water were tested (Table 1, Entry 2-6). 1,4-Dioxane gave the best result, in that 83% yield was obtained. Next, a few reaction temperatures and concentration were screened. Increasing the reaction temperature to 130 °C led to a slightly diminished yield (Table 1, Entry 7). However, when the reaction was carried out at 100 °C and 80 °C, the yield decreased to 71% and 58%, respectively (Table 1, Entries 8 and 9). It was noteworthy that decreasing the concentration led to a decrease of the yield (Table 1, Entry 10). Finally, the effects of catalyst loading and equivalents of 2a were investigated (Table 1, Entry 11-14). The results suggested that 0.1 equivalent of the I₂

catalyst was required to obtain a suitable product yield. When the catalyst loading was decreased to 1%, only a trace amount of the desired product was obtained (Table 1, Entry 12). For sulfonyl hydrazide, 1.8 equivalents of **2a** were sufficient to produce a suitable yield (Table 1, Entry 13). Further decrease in the amount of **2a** led to a decrease in the yield (Table 1, Entry 14). Notably, unlike in the sulfenylation of naphthols, naphthylamines, and pyrazolones, the addition of an acid did not facilitate the transformation.^{14, 18} In contrast, the presence of PTSA could accelerate the decomposition of 2-phenylbenzofuran (**1a**) which led to a diminished yield (Table 1, Entry 15). Therefore, the optimized reaction conditions were determined to be as follows: **1a** (1.0 mmol), **2a** (1.8 mmol), I₂ (0.1 mmol), and 1,4-dioxane (0.5 mL), at 120 °C.

Table 1. Optimization of I₂-catalysed reaction of 1a with 2a.^a

			IHNH ₂ —	l2 polvent	s ()		
1a		2a		Ť	3aa		
Entry	I ₂ (equiv)	t (h)	T (°C)	Solvent	Yield (%)		
1	0.1	24	120	EtOH	75		
2	0.1	24	120	H_2O	35		
3	0.1	24	120	DCE	79		
4	0.1	24	120	Toluene	61		
5	0.1	24	120	DMF	0		
6	0.1	24	120	1,4-Dioxane	83		
7	0.1	24	130	1,4-Dioxane	81		
8	0.1	24	100	1,4-Dioxane	71		
9	0.1	24	80	1,4-Dioxane	58		
10	0.1	24	120	1,4-Dioxane	72 ^b		
11	0.05	48	120	1,4-Dioxane	69		
12	0.01	48	120	1,4-Dioxane	trace		
13	0.1	24	120	1,4-Dioxane	84 ^c		
14	0.1	24	120	1,4-Dioxane	75 ^d		
15	0.1	24	120	1,4-Dioxane	25 ^e		
a Reaction conditions: 1a (1.0 mmol), 2a (2.0 mmol), solvent (0.5 mL). b 1a							
(1.0 mmol), 2a (2.0 mmol), solvent (1.0 mL). ^c 1a (1.0 mmol), 2a (1.8							
mmol), solvent (0.5 mL). d 1a (1.0 mmol), 2a (1.5 mmol), solvent (0.5 mL).							
^e 1a (1.0 mmol), 2a (1.8 mmol), PTSA (1.0 mol), solvent (0.5 mL).							

With the optimized reaction conditions in hand, the generality and substrate scope of 2-substituted benzofurans and sulfonyl hydrazides were examined in the sulfenylation reaction. The results are illustrated in Table 2. A variety of substituted

aryl sulfonyl hydrazides could be coupled with various 2-substituted benzofurans to afford the corresponding benzofuran thioethers in moderate to excellent yields. However, when aliphatic sulfonyl hydrazides such as methanesulfonohydrazide and butane-1-sulfonohydrazide were employed as substrates, the desired coupling products were not detected under the optimized reaction conditions.

Table 2. I_2 -catalysed cross coupling with a series of 2-substituted benzofurans and aryl sulfonyl hydrazides.^{*a*}

^a Reaction conditions: **1a-i** (1.0 mmol), **2a-d** (1.8 mmol), I_2 (10 mol%), 1,4-dioxane (0.5 mL), 120 C, 24 h. ^b I_2 (20 mol%) was used

For aromatic sulforyl hydrazides, both electron-withdrawing and electron-donating groups, as well as *meta-*, *ortho-*, and *para-*substitutions (2a-2f) were tolerated under the optimized conditions. Notably, the identity of the substituent on the benzofuran had a significant effect on the sulfenylation reaction. In regard to substituents in the 2-position, alkyl-substituted benzofuran (1d) resulted in lower yields compared with the corresponding phenyl substrate (1a)when using 4-methylbenzenesulfonohydrazide (2b) or 4-methoxybenzenesulfonohydrazide (2d) as the sulfenylation reagent. Moreover, electron-withdrawing groups in the 2-position of the aryl substituent (1c) and 5-position of benzofuran (1f and 1i) resulted in lower yields as compared to that with substrates containing electron-donating groups.

Interestingly, when benzofuran-2-yltrimethylsilane (**1j**) was utilized as a substrate, the di-sulfenylation product (**3jb**) was obtained in 40% yield (Scheme 2).

Scheme 2. Sulfenylation of benzofuran-2-yltrimethylsilane.

Notably, when 2-phenylbenzo[b]thiophene (1k) was coupled with 4-methylbenzenesulfonohydrazide (2b) under the optimized condition, the desired product 2-phenyl-3-(p-tolylthio)benzo[b]thiophene (3kb) was obtained in 24% yield.

Table 3. I₂-catalysed cross coupling with a series of 3-substituted benzofurans and aryl sulfonyl hydrazides.^{*a*}

 a Reaction conditions: 1a-i (1.0 mmol), 2a-d (1.8 mmol), I_2 (10 mol%), 1,4-dioxane (0.5 mL), 120 C, 24 h.

In order to extend the scope of this transformation, 3-substituted benzofurans were tested under the optimized conditions. The results are summarized in Table 3. Both 3-phenyl and 3-methyl substituted benzofurans reacted with various aryl sulfonyl hydrazides (**2b**, **2d**, and **2e**) smoothly and were converted to the sulfenylation products in moderate to good yields. Notably, when 5-methoxy-3-phenylbenzofuran (**4b**) was treated with 4-methylbenzenesulfonohydrazide (**2b**) under the catalysis of I₂, di-sulfenylation product (**5bb**) was obtained in 54% yield.

As mentioned previously, 2-sulfenyl or 3-sulfenyl benzo[b]furans can be derivatives.⁷⁻¹¹ synthesised by the annulation of 2-alkynylphenol Hence, 2-(phenylethynyl)phenol evaluated the reaction was in with 4-methylbenzenesulfonohydrazide (2b). As expected, the desired product 3ab was formed in 30% yield (Table 4, Entry 1) under the standard conditions (I₂ 10 mol%, 1,4-dioxane, 120 °C). To improve the yield, various conditions were screened; addition of 0.5 equivalents of PTSA greatly increased the yield (Table 4, Entry 2). Other 2-alkynylphenol derivatives and aryl sulfonyl hydrazides were subjected to this tandem reaction, and fortunately provided the desired products in poor to good yields (Table 4, Entry 3-6).

Table 4. I₂-catalysed electrophilic cyclization of 2-alkynylphenols with aryl sulfonyl hydrazides.^{*a*}

		I ₂ (0.1 equiv) PTSA (0.5 equiv)	S-Ar ₂		
ССОН	+ $A_{12} = S = NHNH_2$ O	1,4-dioxane 120 °C	Ar ₁		
6	2		3		
Entry	6 , $Ar_1 =$	2 , Ar ₂ =	Yield (%)		
1	6a ,Ph	2b , <i>p</i> -MeC ₆ H ₄	3ab , 30 ^b		
2	6a ,Ph	2b , <i>p</i> -MeC ₆ H ₄	3ab , 80		
3	6a ,Ph	2c , <i>o</i> -MeC ₆ H ₄	3ac , 66		
4	6a ,Ph	2d , <i>p</i> -MeOC ₆ H ₄	3ad , 35		
5	6a ,Ph	2g, <i>p</i> -BrC ₆ H ₄	3ag , 39		
6	6b , <i>p</i> -MeOC ₆ H ₄	2b , <i>p</i> -MeC ₆ H ₄	3bb , 78		
^a Reaction cond	itions: 6 (1.0 mmol), 6	6 (2.0 mmol), I ₂ (0.1	mmol), PTSA (0.5		
mmol), 1,4-dioxane (0.5 mL), 120 °C, 24 h. ^b PTSA was not added.					

On the basis of the experimental and previously reported results,^{12, 15} a plausible mechanism for these transformations is proposed in Scheme 3. Initially, aryl sulfonyl hydrazide 2 is converted to thiodiazonium iodide 7, which is attacked by benzofuran 1 and 4 to give sulfenylation products 3 and 5, respectively. For the tandem reaction, electrophilic addition of thiodiazonium iodide 7 to alkyne 6 gives thiirenium ion 8. Subsequently, intramolecular ring-opening of the thiirenium ion with the phenol moiety affords compound 3.

Scheme 3. Possible reaction pathways

In conclusion, we developed concise and efficient methods for the synthesis of 2-aryl and 3-aryl benzofuran thioethers by the I₂-catalysed cross-coupling reaction of 3- and 2-substituted benzo[*b*]furans with aryl sulfonyl hydrazides via direct C–H functionalization, as well as the electrophilic cyclization of 2-alkynylphenol derivatives with aryl sulfonyl hydrazides. This study not only broadened the substrate

scope of sulfonyl hydrazides as novel and environmentally friendly reagents with sulfenylate electron-rich heterocycles, but also facilitated the synthesis of benzofuran thioethers via the oxysulfenylation of alkynes.

EXPERIMENTAL SECTION

General experimental methods.

All solvents were distilled prior to use. Aryl benzo[*b*]furans were prepared according to the literature procedure.¹⁹ 2-Alkynylphenol derivatives were prepared according to the literature procedure.²⁰ Unless otherwise noted, chemicals were used as received without further purification. For chromatography, 200–300 mesh silica gel was employed. ¹H and ¹³C{¹H} NMR spectra were recorded at 400 MHz and 100 MHz respectively. Chemical shifts are reported in ppm using tetramethylsilane as internal standard. IR spectra were recorded in wave numbers (cm⁻¹) with a FT-IR spectrometer. HRMS was performed on an FTMS mass instrument. Melting points are reported as uncorrected.

General Procedure I: The I₂-catalyzed reactions between aryl benzo[*b*]furans 1a-g; 5a-c and aryl sulfonyl hydrazides 2a-f (Table 2, 3; Schemes 2). Aryl benzo[*b*]furan (1.0 mmol), aryl sulfonyl hydrazides (1.8 mmol) and I₂ (25.4 mg, 0.1 mmol) and 1,4-dioxane (0.5 mL) were mixed in a sealed tube. The mixture was stirred at 120 °C until the aryl benzo[*b*]furan disappeared detected by TLC. Then, the solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography to afford the pure product.

General Procedure II: The I₂-catalyzed reactions between 2-alkynylphenol derivatives 6a, 6b and aryl sulfonyl hydrazides 2b, 2d, 2c, 2f (Table 4). 2-Alkynylphenol derivatives (1.0 mmol), aryl sulfonyl hydrazides (2.0 mmol), I₂ (25.4 mg, 0.1 mmol), 4-methylbenzenesulfonic acid (86 mg, 0.5 mmol) and 1,4-dioxane (0.5 mL) were mixed in a sealed tube. The mixture was stirred at 120 $^{\circ}$ C for 24 hours. Then, the solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography to afford the pure product.

3-(3-chlorophenylthio)-2-phenylbenzofuran (3aa): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE, PE = petroleum ether), compound **3aa** was isolated as a white solid (281 mg, 84%): mp (melting point) = 60-61 °C; R_f (PE) = 0.3; IR (film): 1576, 1460, 1442, 1086, 1069, 772, 744, 688 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.0 Hz, 1H), 7.34-7.49 (m, 5H), 7.24-7.27 (m, 1H), 7.17 (d, J = 1.6 Hz, 1H), 7.02-7.12 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.8, 153.9, 138.4, 134.9, 130.4, 130.0, 129.5, 129.4, 128.6, 127.3, 125.9, 125.6, 125.4, 124.3, 123.6, 120.1, 111.4, 103.5,; HRMS (ESI, m/z): calcd for C₂₀H₁₄ClOS [M + H]⁺ 337.0448, found 337.0453.

2-phenyl-3-(p-tolylthio)benzofuran (3ab):⁹ The crude compound was prepared through the general procedure I or procedure II. After purification by silica gel column chromatography (PE), compound **3ab** was isolated as a pale yellow solid (281 mg, 89% for procedure I) (253 mg, 80% for procedure II): R_f (PE) = 0.5; ¹H NMR (400 MHz, CDCl₃): δ 8.24 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.4 Hz, 1H), 7.44-7.49 (m, 3H), 7.38-7.41 (m, 1H), 7.31-7.35 (m, 1H), 7.20-7.24 (m, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 2.26 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 157.1, 153.8, 135.3, 132.4, 130.8, 129.8, 129.2, 128.5, 127.3, 126.8, 125.1, 123.3, 120.4, 111.2, 105.2, 20.8.

2-phenyl-3-(o-tolylthio)benzofuran (*3ac*): The crude compound was prepared through the general procedure I or procedure II. After purification by silica gel column chromatography (PE), compound **3ac** was isolated as a white solid (225 mg, 71% for procedure I), (209 mg, 66% for procedure II): mp (melting point) = 67-68 °C; R_f (PE) = 0.5; IR (film): 2932, 1590, 1453, 1442, 1067, 742, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.19 (d, *J* = 7.2 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.38-7.45 (m, 4H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.01 (t, *J* = 7.2 Hz, 1H), 6.92 (t, *J* = 7.2 Hz, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 2.50 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 157.5, 154.0, 135.2, 135.1, 130.8, 130.2, 129.8, 129.3,

128.5, 127.3, 126.6, 125.8, 125.3, 125.2, 123.4, 120.4, 111.3, 104.4, 20.0; HRMS (ESI, m/z): calcd for $C_{21}H_{17}OS [M + H]^+$ 317.0995, found 317.0999.

3-(4-methoxyphenylthio)-2-phenylbenzofuran (3ad):⁹ The crude compound was prepared through the general procedure I or procedure II. After purification by silica gel column chromatography (PE : EA = 30 :1, PE = petroleum ether, EA = ethyl acetate), compound **3ad** was isolated as a pale yellow oil (226 mg, 68% for procedure I), (116 mg, 35% for procedure II): R_f (PE : EA = 30 :1) = 0.3; ¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, *J* = 8.8 Hz, 2H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.45-7.48 (m, 3H), 7.38-7.41 (m, 1H), 7.31 (t, *J* = 8.0 Hz, 1H), 7.18-7.24 (m, 3H), 6.76 (d, *J* = 8.8 Hz, 2H), 3.73 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.3, 156.6, 153.8, 130.8, 129.9, 129.24, 129.19, 128.5, 127.3, 126.4, 125.1, 123.3, 120.4, 114.7, 111.2, 106.4, 55.2.

3-(3-methoxyphenylthio)-2-phenylbenzofuran (3ae): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE : EA = 30 :1), compound **3ae** was isolated as a pale yellow solid (183 mg, 55% for procedure I): mp (melting point) = 83-84 °C; R_f (PE : EA = 30 :1) = 0.5; IR (film): 2927, 1590, 1477, 1248, 1043, 768, 745, 687 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.38-7.48 (m, 3H), 7.34 (dt, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.24 (t, *J* = 7.2 Hz, 1H), 7.12 (t, *J* = 8.0 Hz, 1H) 6.77 (d, *J* = 8.0 Hz, 1H), 6.75 (t, *J* = 2.0 Hz, 1H), 6.66 (dd, *J* = 8.0 Hz, 2.0 Hz, 1H) 3.68 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.0, 157.6, 153.9, 137.6, 130.8, 129.9, 129.7, 129.4, 128.5, 127.4, 125.3, 123.5, 120.4, 118.7, 112.1, 111.3, 111.0, 104.4, 55.1; HRMS (ESI, m/z): calcd for C₂₁H₁₇O₂S [M+H]⁺ 333.0944, found 333.0949.

2-phenyl-3-(4-(trifluoromethyl)phenylthio)benzofuran (3af): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE), compound **3af** was isolated as a white solid (265 mg, 72%): mp (melting point) = 77-79 °C; R_f (PE) = 0.6; IR (film): 1606, 1325, 1166, 1123,

1107, 1087, 1063, 1012, 827, 746, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.19 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 1H), 7.41-7.47 (m, 6H), 7.35-7.39 (m, 1H), 7.23-7.26 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.2, 154.0, 141.5, 130.3, 129.7, 129.4, 128.7, 127.5 (q, J = 32 Hz, 1C), 127.4, 125.90 (q, J = 3.8 Hz, 1C), 125.85, 125.6, 124.1 (q, J = 270 Hz, 1C), 123.8, 120.1, 111.5, 102.9; HRMS (ESI, m/z): calcd for C₂₁H₁₃F₃OS [M]⁺ 370.0634, found 370.0632.

3-(4-bromophenylthio)-2-phenylbenzofuran (3ag):^{11b} The crude compound was prepared through the general procedure II. After purification by silica gel column chromatography (PE : EA = 50 : 1), compound **3ag** was isolated as a pale yellow oil (147 mg, 39%): R_f (PE : EA = 20 : 1) = 0.5; ¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.41-7.49 (m, 4H), 7.29-7.38 (m, 3H), 7.25 (t, *J* = 7.2 Hz, 1H), 7.05 (d, *J* = 8.8 Hz,2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.7, 153.9, 135.4, 132.0, 130.4, 129.6, 129.5, 128.6, 127.9, 127.3, 125.4, 123.6, 120.2, 119.2, 111.4, 103.9.

3-(3-chlorophenylthio)-2-(4-methoxyphenyl)benzofuran (3ba): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE : EA = 40 :1), compound **3ba** was isolated as a pale yellow solid (283 mg, 77%): mp (melting point) = 84-85 °C; R_f (PE : EA = 30 :1) = 0.6; IR (film): 1609, 1576, 1499, 1460, 1452, 1256, 1177, 1081, 1033, 833, 774, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.13-8.17 (m, 2H), 7.55 (d, *J* = 8.4 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.33 (dt, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.24 (t, *J* = 8.0 Hz, 1H), 7.16 (t, *J* = 1.6 Hz, 1H), 7.05-7.12 (m, 2H), 7.02 (dt, *J* = 7.6 Hz, 1.6 Hz, 1H), 6.95-6.99 (m, 2H), 3.84 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.7, 158.2, 153.7, 138.7, 134.9, 130.7, 130.1, 130.0, 125.8, 125.6, 125.0, 124.2, 123.6, 122.2, 119.8, 114.1, 111.3, 101.5, 55.3; HRMS (ESI, m/z): calcd for C₂₁H₁₆ClO₂S [M+H]⁺ 367.0554, found 367.0563.

2-(4-methoxyphenyl)-3-(p-tolylthio)benzofuran (3bb): The crude compound was prepared through the general procedure I or procedure II. After purification by silica gel column chromatography (PE), compound **3bb** was isolated as a pale yellow solid

(288 mg, 83% for procedure I), (269 mg, 78% for procedure II): mp (melting point) = 72-74 °C; R_f (PE) = 0.3; IR (film): 1609, 1499, 1451, 1255, 1177, 1079, 1034, 833, 804, 745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.19 (dd, *J* = 8.8 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.45-7.47 (m, 1H), 7.28-7.32 (m, 1H), 7.19-7.22 (m, 1H), 7.01 (d, *J* = 8.4 Hz, 2H), 6.96-7.02 (m, 4H), 3.85 (s, 3H), 2.26 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.4, 157.5, 153.7, 135.3, 132.7, 131.1, 129.8, 128.9, 126.7, 124.7, 123.3, 122.5, 120.1, 114.0, 103.2, 55.3, 20.9; HRMS (ESI, m/z): calcd for C₂₂H₁₉O₂S [M+H]⁺ 347.1100, found 347.1107.

3-(3-(p-tolylthio)benzofuran-2-yl)benzonitrile (3cb): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE : EA = 30 :1), compound **3cb** was isolated as a pale yellow solid (153 mg, 45%): mp (melting point) = 116-118 °C; R_f (PE : EA = 30 :1) = 0.3; IR (film): 2231, 1491, 1450, 1255, 1172, 1078, 1016, 865, 802, 747 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.56 (s, 1H), 8.52 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.53-7.57 (m, 2H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.38 (t, *J* = 8.0 Hz, 1H), 7.25 (t, *J* = 8.0 Hz, 1H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 2.27 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.0, 153.9, 136.1, 132.1, 131.4, 131.2, 131.1, 130.6, 130.5, 130.0, 129.4, 127.3, 126.1, 123.8, 120.8, 118.5, 113.0, 111.5, 108.0, 20.9; HRMS (ESI, m/z): calcd for C₂₂H₁₆NOS [M+H]⁺ 342.0947, found 342.0952.

2-butyl-3-(p-tolylthio)benzofuran (3db): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE), compound **3db** was isolated as a pale yellow oil (186 mg, 63%): R_f (PE) = 0.3; IR (film): 2963, 2954, 1489, 1452, 1033, 1016, 803, 747 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.22-7.26 (m, 1H), 7.15-7.19 (m, 1H), 7.03 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 2.94 (t, J = 7.6Hz, 2H), 2.25 (s, 3H), 1,72 (dt, J = 7.6 Hz, 7.6 Hz, 2H), 1,37 (dt, J = 7.6 Hz, 7.4 Hz, 2H), 0.91 (t, J = 7.4 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 163.7, 154.3, 135.2, 132.2, 129.6, 128.5, 126.7, 124.0, 123.0, 119.7, 111.0, 104.9, 30.2, 26.3, 22.3, 20.9, 13.7; HRMS (ESI, m/z): calcd for $C_{19}H_{21}OS$ [M+H]⁺ 297.1308, found 297.1312.

2-butyl-3-(4-methoxyphenylthio)benzofuran (3dd): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE : EA = 30 :1), compound **3dd** was isolated as a pale yellow oil (128 mg, 41%): R_f (PE : EA = 30 :1) = 0.3; IR (film): 2955, 2924, 1591, 1493, 1452, 1244, 1173, 1032, 822, 747 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 8.0 Hz, 1H), 7.40 (dd, *J* = 8.0 Hz, 0.8 Hz, 1H), 7.22-7.26 (m, 1H), 7.18 (dd, *J* = 8.0 Hz, 0.8 Hz, 1H), 7.14 (d, *J* = 8.8 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 3.74 (s, 3H), 2.96 (t, *J* = 7.6 Hz, 2H), 1,72 (dt, *J* = 7.6 Hz, 7.6 Hz, 2H), 1,38 (dt, *J* = 7.6 Hz, 7.6 Hz, 2H), 0.93 (t, *J* = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 163.2, 158.1, 154.2, 129.6, 129.2, 127.2, 124.0, 123.0, 119.7, 114.6, 111.0, 106.0, 55.3, 30.2, 26.3, 22.3, 13.7; HRMS (ESI, m/z): calcd for C₁₉H₂₁O₂S [M+H]⁺ 313.1257, found 313.1263.

5-chloro-2-phenyl-3-(p-tolylthio)benzofuran (3eb):^{11a} The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE), compound **3eb** was isolated as a pale yellow solid (249 mg, 71%): $R_f(PE) = 0.4$; ¹H NMR (400 MHz, CDCl₃): δ 8.23 (dd, J = 8.0 Hz, 1.2 Hz, 2H), 7.41-7.47 (m, 5H), 7.22 (dd, J = 8.8 Hz, 2.0 Hz, 1H), 7.09 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 2.27 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.7, 152.2, 135.8, 132.5, 131.9, 130.0, 129.7, 129.4, 129.2, 128.6, 127.4, 126.9, 125.5, 120.0, 112.3, 105.0, 20.9.

5-chloro-2-phenyl-3-(o-tolylthio)benzofuran (3ec): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE), compound **3ec** was isolated as a pale yellow solid (213 mg, 61%): mp (melting point) = 119-120 °C; R_f (PE) = 0.4; IR (film): 1466, 1450, 1440, 1256, 1198, 1067, 804, 768, 744, 687 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.18 (dd, J = 8.0 Hz, 1.2 Hz, 2H), 7.39-7.49 (m, 5H), 7.29 (dd, J = 8.8 Hz, 2.0 Hz, 1H), 7.19 (d, J = 7.2 Hz, 1H), 7.03 (dt, J = 7.2 Hz, 1.2 Hz, 1H), 6.96 (t, 7.2 Hz, 1H), 6.82 (d, 7.6 Hz,

1H), 2.50 (s, 3H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 159.0, 152.3, 135.3, 134.6, 132.4, 130.4, 129.7, 129.3, 129.2, 128.6, 127.4, 126.7, 125.6, 125.5, 119.9, 112.3, 104.0, 20.4; HRMS (ESI, m/z): calcd for C₂₁H₁₅ClOS [M]⁺ 350.0527, found 350.0535.

5-chloro-3-(4-methoxyphenylthio)-2-phenylbenzofuran (3ed): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE : EA = 30 : 1), compound **3ed** was isolated as a pale yellow solid (255 mg, 70%): mp (melting point) = 99-101 °C; R_f (PE : EA = 30 : 1) = 0.5;IR (film):1596, 1493, 1450, 1440, 1246, 1067, 1032, 825, 804, 768, 717, 688 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, *J* = 8.8 Hz, 2H), 7.43-7.50 (m, 5H), 7.27 (dd, *J* = 8.8 Hz, 2.0 Hz, 1H), 7.19 (dd, *J* = 6.8 Hz, 2.0 Hz, 2H), 6.79 (dd, *J* = 6.8 Hz, 2.0 Hz, 2H), 3.75 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.4, 158.1, 152.2, 132.4, 129.7, 129.4, 129.3, 129.1, 128.6, 127.4, 125.8, 125.4, 120.0, 114.9, 112.3, 106.0, 55.3; HRMS (ESI, m/z): calcd for C₂₁H₁₅ClO₂S [M]⁺ 366.0476, found 366.0481.

5-fluoro-2-phenyl-3-(p-tolylthio)benzofuran (3fb): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE), compound **3fb** was isolated as a pale yellow solid (228 mg, 68%): mp (melting point) = 81-82 °C; R_f (PE : EA = 50 : 1) = 0.5; IR (film): 1491, 1468, 1443, 1158, 1085, 1069, 947, 855, 802, 767, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.21-8.24 (m, 2H), 7.40-7.47 (m, 4H), 7.09-7.13 (m, 3H), 7.00-7.04 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.6 (d, *J* = 238 Hz, 1C), 158.9, 150.0, 135.8, 132.1 (d, *J* = 11 Hz, 1C), 131.9, 129.9, 129.6, 129.5, 128.6, 127.3, 127.0, 112.9 (d, *J* = 26 Hz, 1C), 112.0 (d, *J* = 9.4 Hz, 1C), 106.0 (d, *J* = 25 Hz, 1C), 105.6 (d, *J* = 3.9 Hz, 1C), 20.9; HRMS (ESI, m/z): calcd for C₂₁H₁₆FOS [M+H]⁺ 335.0900, found 335.0908

5-methyl-2-phenyl-3-(p-tolylthio)benzofuran (3gb): The crude compound was prepared through the general procedure I. After purification by silica gel column

chromatography (PE), compound **3gb** was isolated as a pale yellow solid (282 mg, 85%): mp (melting point) = 96-98 °C; R_f (PE : EA = 50 : 1) = 0.4; IR (film): 2921, 1491, 1473, 1444, 1202, 1085, 1068, 1016, 827, 801, 766, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.21-8.23 (m, 2H), 7.35-7.46 (m, 4H), 7.29 (s, 1H), 7.13 (dd, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.09 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 8.0 Hz, 2H), 2.39 (s, 3H), 2.26 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.5, 152.3, 135.3, 133.0, 132.7, 131.0, 129.9, 129.8, 129.2, 128.5, 127.3, 126.5, 120.1, 110.8, 104.6, 21.4, 20.9; HRMS (ESI, m/z): calcd for C₂₂H₁₉OS [M+H]⁺ 331.1151, found 331.1156.

4,6-dichloro-2-phenyl-3-(p-tolylthio)benzofuran (3hb): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE), compound **3hb** was isolated as a white solid (116 mg, 30%): mp (melting point) = 147-148 °C; R_f (PE : EA = 50 : 1) = 0.4; IR (film): 2921, 2846, 1723, 1575, 1491, 1455, 1398, 1325, 1176, 1081, 1068, 965, 839, 799, 682 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.16-8.19 (m, 2H), 7.50 (d, *J* = 1.6 Hz, 1H), 7.44-7.47 (m, 3H), 7.23 (d, *J* = 1.6 Hz, 1H), 7.03-7.07 (m, 4H), 2.28 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.9, 154.6, 135.4, 134.0, 130.8, 130.1, 129.9, 128.8, 128.6, 127.9, 127.5, 126.2, 126.0, 125.5, 110.8, 104.8, 20.9; HRMS (ESI, m/z): calcd for C₂₁H₁₅Cl₂OS [M+H]⁺ 385.0215, found 385.0219.

methyl 2-phenyl-3-(p-tolylthio)benzofuran-5-carboxylate (3ib): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE), compound **3ib** was isolated as a pale yellow solid (85 mg, 30%): mp (melting point) = 116-117 °C; R_f (PE : EA = 30 : 1) = 0.4; IR (film): 2918, 2847, 1721, 1491, 1441, 1232, 1095, 767, 746, 690 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.23-8.26 (m, 3H); 8.07 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.40-7.49 (m, 3H), 7.10 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 3.90 (s, 3H), 2.27 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 167.0, 158.7, 156.4, 135.8, 132.1, 131.2, 129.9, 129.7, 129.3, 128.6, 127.4, 127.0, 126.9, 125.9, 122.7, 111.2,

The Journal of Organic Chemistry

105.9, 52.1, 20.9; HRMS (ESI, m/z): calcd for $C_{23}H_{19}O_3S$ [M+H]⁺ 375.1049, found 375.1057, calcd for $C_{23}H_{18}NaO_3S$ [M+Na]⁺ 397.0869, found 397.0875.

2,3-bis(p-tolythio)benzofuran (3jb): Benzofuran-2-yltrimethylsilane (190 mg, 1mmol), 4-methylbenzenesulfonohydrazide (335 mg, 1.8 mmol) and I₂ (23.0 mg, 0.09 mmol) and 1,4-dioxane (0.5 mL) were mixed in a sealed tube. The mixture was stirred at 120 °C for 24 hours. Then, the solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography (PE), compound **3jb** was isolated as a pale yellow solid (130 mg, 40%): mp (melting point) = 60-61 °C; R_f (PE : EA = 50 : 1) = 0.4; IR (film): 2920, 1597, 1491, 1443, 1083, 1029, 1016, 803, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.43 (m, 1H), 7.35-7.38 (m, 1H), 7.26-7.32 (m, 3H), 7.15-7.19 (m, 1H), 7.13 (dd, *J* = 6.4 Hz, 1.6 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 8.0 Hz, 2H), 2.31 (s, 3H), 2.27 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 155.9, 153.1, 137.9, 136.1, 131.6, 131.1, 130.0, 129.7, 129.2, 129.0, 128.4, 125.5, 123.4, 120.4, 116.4, 111.5, 21.1, 20.9; HRMS (ESI, m/z): calcd for C₂₂H₁₉OS₂ [M+H]⁺ 363.0872, found 363.0881.

2-phenyl-3-(p-tolylthio)benzo[b]thiophene (3kb): 2-phenylbenzo[b]thiophene (210 mg, 1mmol), 4-methylbenzenesulfonohydrazide (335 mg, 1.8 mmol) and I₂ (23.0 mg, 0.09 mmol) and 1,4-dioxane (0.5 mL) were mixed in a sealed tube. The mixture was stirred at 120 °C for 24 hours. Then, the solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography (PE), compound 3kb was isolated as a pale yellow solid (80 mg, 24%): mp (melting point) = 72-73 °C; R_f (PE) = 0.4; IR (film): 2949, 2918, 2846, 1738, 1491, 1430, 1082, 1015, 804, 752, 731, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.80-7.87 (m, 2H), 7.87 (dd, J = 8.0 Hz, 1.6Hz, 2H), 7.33-7.44 (m, 5H), 6.94-6.99 (m, 4H), 2.25 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 149.2, 141.0, 138.3, 135.0, 133.9, 133.4, 129.8, 129.7, 128.8, 128.4, 126.3, 125.1, 125.0, 123.9, 122.1, 111.8, 20.9; HRMS (ESI, m/z): calcd for C₂₁H₁₇S₂ [M+H]⁺ 333.0766, found 333.0771.

2-(3-chlorophenylthio)-3-phenylbenzofuran (5aa): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE), compound **5aa** was isolated as a pale yellow oil (282 mg, 84%): R_f (PE) = 0.4; IR (film): 2990, 2900, 1576, 1460, 1445, 1264, 1092, 1079, 965, 773, 739, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 7.6 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 2H), 7.45-7.52 (m, 3H), 7.36-7.41(m, 2H), 7.29 (t, *J* = 7.6 Hz, 1H), 7.21 (s, 1H), 7.13-7.15 (m, 2H), 7.06-7.09 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.1, 142.1, 137.0, 135.0, 131.1, 130.2, 129.2, 129.0, 128.7, 128.2, 127.8, 127.6, 126.8, 126.1, 126.0, 123.3, 120.7, 111.6; HRMS (ESI, m/z): calcd for C₂₀H₁₄ClOS [M+H]⁺ 337.0448, found 337.0452.

3-phenyl-2-(p-tolylthio)benzofuran (5ab): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE), compound **5ab** was isolated as a pale yellow solid (221 mg, 70%): mp (melting point) = 54-56 °C; R_f (PE) = 0.3; IR (film): 1491, 1444, 1119, 1078, 964, 804, 770, 749, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 8.0 Hz, 1H), 7.62-7.64 (m, 2H), 7.45-7.49 (m, 3H), 7.32-7.40 (m, 2H), 7.27 (dt, *J* = 8.0 Hz, 0.8Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 2.28 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.0, 144.1, 136.9, 131.5, 130.1, 130.0, 129.3, 128.9, 128.6, 128.1, 127.9, 127.5, 125.6, 123.1, 120.5, 111.5, 21.0; HRMS (ESI, m/z): calcd for C₂₁H₁₇OS [M+H]⁺ 317.0995, found 317.1002.

2-(4-methoxyphenylthio)-3-phenylbenzofuran (5ad): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE : EA = 30 : 1), compound 5ad was isolated as a pale yellow solid (274 mg, 82%): mp (melting point) = 55-57 °C; R_f (PE : EA = 30 : 1) = 0.4; IR (film): 1592, 1493, 1444, 1290, 1246, 1173, 1031, 964, 825, 770, 749, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.63-7.66 (m, 3H), 7.46-7.51 (m, 3H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.34 (dt, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.27-7.31 (m, 2H), 7.24-7.26 (m, 1H), 6.81 (dd, *J* = 6.8 Hz, 2.0 Hz, 2H), 3.76 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.3,

155.8, 145.1, 131.9, 131.6, 129.4, 128.6, 128.1, 127.8, 126.3, 125.4, 124.4, 123.0, 120.4, 114.8, 111.4, 55.3; HRMS (ESI, m/z): calcd for $C_{21}H_{17}O_2S$ [M+H]⁺ 333.0944, found 333.0952.

2-(3-methoxyphenylthio)-3-phenylbenzofuran (5ae): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE : EA = 30 : 1), compound **5ae** was isolated as a pale yellow solid (198 mg, 60%): mp (melting point) = 77-79 °C; R_f (PE : EA = 30 : 1) = 0.5; IR (film): 1590, 1477, 1444, 1248, 1232, 1041, 964, 770, 749, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, *J* = 7.6 Hz, 1H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.45-7.52 (m, 3H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.28 (t, *J* = 7.6 Hz, 1H), 7.15 (t, *J* = 8.0 Hz, 1H), 6.79-6.82 (m, 2H), 6.71 (dd, *J* = 8.8 Hz, 1.2 Hz, 1H), 3.70 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 160.1, 156.1, 143.1, 136.2, 131.4, 130.0, 129.3, 128.6, 128.5, 128.0, 127.9, 125.8, 123.2, 120.6, 120.3, 113.6, 112.3, 111.6, 55.2; HRMS (ESI, m/z): calcd for C₂₁H₁₇O₂S [M+H]⁺ 333.0944, found 333.0948.

5-methoxy-3-phenyl-2,6-bis(p-tolylthio)benzofuran

(5bb):

5-methoxy-3-phenylbenzofuran (224 mg, 1mmol), 4-methylbenzenesulfonohydrazide (558 mg, 3 mmol) and I₂ (25.4 mg, 0.1 mmol) and 1,4-dioxane (0.5 mL) were mixed in a sealed tube. The mixture was stirred at 120 °C for 24 hours. Then, the solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography (PE : EA = 30 : 1), compound **5bb** was isolated as a pale yellow solid (252 mg, 54%): mp (melting point) = 120-122 °C; R_f (PE : EA = 30 : 1) = 0.3; IR (film): 1491, 1457, 1438, 1269, 1198, 1149, 955, 807, 765, 737, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, *J* = 8.4 Hz, 2H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.40-7.43 (m, 3H), 7.21 (d, *J* = 7.6 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 7.03-7.05 (m, 3H), 6.88 (s, 1H), 3.92 (s, 3H), 2.39 (s, 3H), 2.28 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 152.7, 151.1, 143.7, 138.8, 136.7, 134.3, 131.5, 131.0, 130.4, 129.9, 129.1, 128.63, 128.60, 128.3, 127.9, 127.7, 127.4, 125.9, 110.8, 100.5, 56.4, 21.2, 20.9; HRMS (ESI, m/z): calcd for C₂₉H₂₅O₂S₂ [M]⁺ 469.1290, found 469.1279.

5-methoxy-3-phenyl-2-(p-tolylthio)benzofuran (5cb): The crude compound was prepared through the general procedure I. After purification by silica gel column chromatography (PE), compound **5cb** was isolated as a pale yellow oil (137 mg, 54%): $R_f(PE) = 0.3$; IR (film): 1492, 1448, 1233, 1073, 803, 745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, *J* = 7.6 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.30 (dt, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.21- (t, *J* = 7.6 Hz, 1H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 2.35 (s, 3H), 2.26 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.7, 143.8, 136.6, 131.4, 129.9, 129.3, 128.4, 125.3, 123.4, 122.5, 119.7, 111.3, 20.9, 9.3; HRMS (ESI, m/z): calcd for C₁₆H₁₅OS [M+H]⁺ 255.0838, found 255.0842.

AUTHOR INFORMATION

Corresponding Author

*E-mail: <u>hxxyzhx@mail.tjnu.edu.cn; lukui@tust.edu.cn</u>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors sincerely thank the financial support from National Science Foundation

of China (Grants 21202119, 21202118).

ASSOCIATED CONTENT

Supporting Information

Spectroscopic for compounds 3aa-3kb and 5aa-5cb. This material is available free of

charge via the Internet at http://pubs.acs.org.

REFERENCES

The Journal of Organic Chemistry

(a) Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.;
 Scriven Eds. E. F. V.; Pergamon Press: Oxford, **1996**; Vol. 2, pp 59. (b) Carlsson, B.;
 Singh, B. N.; Temciuc, M.; Nilsson, S.; Li, Y. L.; Mellin, C.; Malm, J. J. Med. Chem.
 2002, 45, 623. (c) Flynn, B. L.; Hamel, E.; Jung, M. K. J. Med. Chem. **2002**, 45, 2670.
 (d) Ando, K.; Kawamura, Y.; Akai, Y.; Kunitomo, J. I.; Yokomizo, T.; Yamashita, M.;
 Ohta, S.; Ohishi, T.; Ohishi, Y. Org. Biomol. Chem. **2008**, 6, 296. (e) Hou, X. L.;
 Yang, Z.; Yeung, K. S.; Wong, H. N. C. Prog. Heterocycl. Chem. **2008**, 19, 176. (f)
 Yeung, K. S; Peng, X. S; Wu, J.; Fan, R.; Hou, X. L. Prog. Heterocycl. Chem. **2013**, 23, 183.

2 (a) Takasaki, M. T.; Komatsu, K.; Tokuda, H.; Nishino, H. *Cancer Lett.* 2000, *158*, 53. (b) Lambert, J. D.; Meyers, R. O.; Timmermann, B. N.; Dorr, R. T. *Cancer Lett.* 2001, *171*, 47. (c) Li, X. Y.; He, B. F.; Luo, H. J.; Huang, N. Y.; Deng, W. *Bioorg. Med. Chem. Lett.* 2013, *23*, 4617. (d) Hranjec, M.; Sovic, I.; Ratkaj, I.; Pavlovic, G.; Ilic, N.; Valjalo, L.; Pavelic, K.; Pavelic, S. K.; Zamola, G. K. *Eur. J. Med. Chem.* 2013, *59*, 111. (e) Bazin, M. A.; Bodero, L.; Tomasoni, C.; Rousseau, B.; Roussakis, C.; Marchand, P. *Eur. J. Med. Chem.* 2013, *69*, 823. (f) Xie, F.; Zhu, H.; Zhang, H.; Lang, Q.; Tang, L.; Huang, Q.; Yu, L. *Eur. J. Med. Chem.* 2015, *89*, 310.

3 (a) Craigo, J.; Callahan, M.; Huang, R. C. C.; DeLucia, A. L. Antiviral Res. 2000,
47, 19. (b) Galal, S. A.; El-All, A. S.Abd.; Abdallah, M. M.; El-Diwani, H. I. Bioorg.
Med. Chem. Lett. 2009, 19, 2420.(c) Galal, S. A.; El-All, Hegab, K. H.; Magd-El-Din,
A. A.; Youssef, N. S.; El-Diwani, H. Eur. J. Med. Chem. 2010, 45, 3035. (d) Takaya,
D.; Yamashita, A.; Kamijo, K.; Gomi, J.; Ito, M.; Maekawa, S.; Enomoto, N.;
Sakamoto, N.; Watanabe, Y.; Arai, R.; Umeyama, H.; Honma, T.; Matsumoto, T.;.
Yokoyama, S. Bioorg. Med. Chem. 2011, 19, 6892. (e) Malpania, Y.; Acharya, R.;
Kim, S. Y.; Jeong, H. C.; Kim, P.; Han, S. B.; Kim, M.; Lee, C. K.; Kim, J. N.; Jung,
Y. S. Eur. J. Med. Chem. 2013, 62, 534.

4 (a) Masubuchi, M.; Ebiike, H.; Kawasaki, K. I.; Sogabe, S.; Morikami, K.; Shiratori, Y.; Tsujii, S.; Fujii, T.; Sakata, K.; Hayase, M.; Shindoh, H.; Aoki, Y.; Ohstuka, T.; Shimma, N. *Bioorg. Med. Chem.***2003**, *11*, 4463. (b) Aslam, S. N.; Stevenson, P. C.; Phythian, S. J.; Veitch, N. C.; Hall, D. R. *Tetrahedron* **2006**, *62*, 4214. (c) Gundogdu-Karaburun, N.; Benkli, K.; Tunali, Y.; Ucucu, U.; Demirayak, S. *Eur. J. Med. Chem.* 2006, *41*, 651. (d) Ryu, C. K.; Song, A. L.; Lee, J. Y.; Hong, J. A.; Yoon, J. H. A. *Med. Chem. Lett.* 2010, *20*, 6777. (e) Bandgar, B. P.; Patil, S. A.; Korbad, B. L.; Biradar, S. C.; Nile, S. N.; Khobragade, C. N. *Eur. J. Med. Chem.* 2010, *45*, 3223.

5 (a) Dawood, K. M.; Abdel-Gawad, H.; Rageb, E. A.; Ellithey, M.; Mohamed, H. A. *Bioorg. Med. Chem.* 2006, *14*, 3672. (b) Wu, S. F.; Chang, F. R.; Wang, S. Y.; Hwang, T. L.; Lee, C. L.; Chen, S. L.; Wu, C. C.; Wu, Y. C. *J. Nat. Prod.* 2011, *74*, 989. (c) Hu, Z. F.; Chen, L. L.; Qi, J.; Wang, Y. H.; Zhang, H.; Yu, B. Y. *Fitoterapia* 2011, *82*, 190. (d) Yadav, P.; Singh, P.; Tewari, A. K. *Bioorg. Med. Chem. Lett.* 2014, *24*, 2251. (e) Xiea, Y. S.; Kumar, D.; Bodduri, V. D. V.; Tarani, P. S.; Zhao, B. X.; Miao, J. Y.; Jang, K.; Shin, D. S. *Tetrahedron Lett.* 2014, *55*, 2796. (f) Hassan, G. S.; Abou-Seri, S. M.; Kamel, G.; Ali, M. M. *Eur. J. Med. Chem.* 2014, *76*, 482.

6 (a) Carter, G. A.; Chamberlain, K.; Wain, R. L. *Ann. Appl. Biol.* **1978**, *88*, 57. (b) Zacchino, S.; Rodriguez, G.; Pezzenati, G.; Orellana, G.; Enriz, R.; Gonzalez, S. M. J. Nat. Prod. **1997**, *60*, 659.

7 Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 10292.

8 Manarin, F.; Roehrs, J. A.; Gay, R. M.; Brandao, R. H.; Nogueira, C. W.; Zeni, G. J. Org. Chem. 2009, 74, 2153.

9 Du, H. A.; Zhang, X. G.; Tang, R. Y.; Li, J. H. J. Org. Chem. 2009, 74, 7844.

10 Gay, R. M.; Manarin, F.; Schneider, C. C.; Barancelli, D. A.; Costa, M. D.; Zeni,

G. J. Org. Chem. 2010, 75, 5701.

11 (a) Xu, M.; Zhang, X. H.; Zhong, P. Tetrahedron Lett. 2011, 52, 6800. (b) Han, J.

S.; Shao, Y. L.; Zhang, X. H.; Zhong, P. phosphorus sulphur 2013, 188, 1599.

12 Yang, F.-L.; Tian, S.-K. Angew. Chem. Int. Ed. 2013, 52, 4929.

13 Guo, S.; He, W.; Xiang J.; Yuan, Y. Chem. Commun. 2014, 50, 8578.

14 Kang, X.; Yan, R.; Yu, G.; Pang, X.; Liu, X.; Li, X.; Xiang, L.; Huang, G. J. Org. Chem. 2014, 79, 10605.

15 Yang, F. -L., Wang, F. -X.; Wang, T. -T.; Wang, Y. -J.; Tian, S.-K. *Chem. Coumm.* **2014**, *50*, 2111.

1	
2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
20	
<u></u> రి	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
12	
40	
44 15	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
55	
00	
5/	
58	
59	

16 Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 4202.

17 Singh, N.; Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 5874.

18 Zhao, X.; Zhang, L.; Li, T.; Liu, G.; Wang, H.; Lu, K. Chem. Commun. 2014, 50, 13121.

19 (a) Dai, W.; Lai, K. W. Tetrahedron Lett. 2002, 43, 9377. (b) Sun, S.; Wang, J.;

Xu, Z.; Cao, L.; Shi, Z.; Zhang, H. Tetrahedron 2014, 70, 3798. (c) Khan, M. W.;

Alam, M. J.; Rashid, M. A.; Chowdhury, R. Bioorg. Med. Chem. 2005, 13, 4796. (d)

Chang, C. W; Chein, R. J. J. Org. Chem. 2011, 76, 4154. (e) Brady, W. T.; Gu, Y. Q.

J. Heterocycl. Chem. **1988**, *25*, 969. (f) Habermann, J.; Ley, Steven V.; Smits, R. J. Chem. Soc. Perkin Trans 1. **1999**, *17*, 2421.

20 (a) Sen, S.; Kulkarni, P.; Borate, K.; Pai, N. R. Tetrahedron Lett. 2009, 50, 4128.

(b) Fischer, J.; Savage, G. P.; Coster, M. J. Org. Lett. 2011, 13, 3376.