Biologically active ionic liquids. New analogs of acetylcholine

S. N. Adamovich, A. N. Mirskova, R. G. Mirskov,* and M. G. Voronkov

A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 ul. Favorskogo, 664033 Irkutsk, Russian Federation. E-mail: mir@irioch.irk.ru

Acetylcholine, an endogenous neurotransmitter, performs one of the most vital functions in a living organism by promoting neuromuscular transmission from its brain and central nervous system to effector organs. This compound has ionic liquid structure and is commonly used as the chloride (MeCOOCH₂CH₂N⁺Me₃) · Cl⁻, which is the first representative of so-called cholinomimetics. The drugs of this group include succinic (succinylcholine, Quelicin) and carbamic acid esters (carbacholine).¹ Another group of drugs that block cholinergic transmission is constituted by cholinolytics containing aryl substituents in the ester group. They include [2-(2-hydroxy-2,2-diphenylacetoxy)ethyl]trimethylammonium iodide [Ph₂C(OH)COOCH₂CH₂N⁺Me₃] · I⁻ (metacin), spasmolytin, arpenal, and thiphen.¹

In the present work, starting from (2-hydroxyethy)dimethylamine (1) and various acyl chlorides RC(O)Cl (R = 2-methylphenoxymethyl (2), 4-chlorophenylsulfanylmethyl (3), 4-chlorophenylsulfonylmethyl (4), indol-3-ylsulfanylmethyl (5), and 1-benzylindol-3-ylsulfanylmethyl $(6)^{2-4}$), we synthesized new analogs of acetylcholine with potential biological activity. The products obtained contain either protonated cations and the Cl⁻ anion (ionic liquids 7–11, m.p. 75–100 °C) or alkylated cations and the I⁻ anion (salts 12–16, m.p. 160–193 °C) (Scheme 1).

The structures of compounds **2**–**16** were confirmed using ¹H and ¹³C NMR spectroscopy, IR spectroscopy, and elemental analysis. IR spectra were recorded on a Varian 3100 FT-IR75 spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a DPX 400 spectrometer (400.13 (¹H) and 101.62 MHz (¹³C)) in CDCl₃ with HMDS as the internal standard. The starting arylheteroacetic acids were prepared as described earlier.^{2–4}

2-Methylphenoxyacetyl chloride (2). Thionyl chloride (1.31 g, 0.011 mol) was added to a stirred solution of 2-methylphenoxyacetic acid (1.66 g, 0.01 mol) in benzene (15 mL). The reaction mixture was heated at 80 °C for 3 h until SO₂ ceased to evolve. The solvent was removed and the residue was dried *in vacuo*. Yield 2.51 g (79%), a colorless powder soluble in diethyl ether and benzene, m.p. 135 °C. ¹H NMR, δ : 7.09–6.71 (m, 4 H, C₆H₄); 4.63 (s, 2 H, OCH₂); 2.20 (s, 3 H, Me). ¹³C NMR,

Scheme 1

i. H₂O, 10% NaOH.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2175–2176, November, 2012.

1066-5285/12/6111-2192 © 2012 Springer Science+Business Media, Inc.

δ: 170.90 (C=O); 154.38–111.86 (C₆H₄); 64.55 (OCH₂); 14.52 (Me). IR, ν/cm^{-1} : 1760 (C=O). Found (%): C, 58.64; H, 4.70; Cl, 19.49. C₉H₉ClO₂. Calculated (%): C, 58.55; H, 4.91; Cl, 19.20.

Acid chlorides 3-6 were obtained from appropriate acids as described for compound 2.

4-Chlorophenylsulfanylacetyl chloride (3). Yield 71%, colorless liquid, b.p. 113–115 °C (1 mmHg). ¹H NMR, δ : 7.19–6.67 (m, 4 H, C₆H₄); 3.70 (s, 2 H, SCH₂). ¹³C NMR, δ : 175.12 (C=O); 156.07–111.75 (C₆H₄); 49.50 (SCH₂). IR, v/cm⁻¹: 1780 (C=O). Found (%): S, 14.25; Cl, 32.20. C₈H₆Cl₂OS. Calculated (%): S, 14.50; Cl, 32.06.

4-Chlorophenylsulfonylacetyl chloride (4). Yield 90%, powder, m.p. 75–76 °C. ¹H NMR, δ : 7.21–6.66 (m, 4 H, C₆H₄); 4.44 (s, 2 H, SO₂CH₂). ¹³C NMR, δ : 177.00 (C=O); 160.07–111.11 (C₆H₄); 64.00 (SO₂CH₂). IR, v/cm⁻¹: 1135 (v_s(SO₂)); 1362 (v_{as}(SO₂)); 1777 (C=O). Found (%): S, 12.70; Cl, 28.25. C₈H₆Cl₂O₃S. Calculated (%): S, 12.66; Cl, 28.01.

Indol-3-ylsulfanylacetyl chloride (5). Yield 76%, pink powder, m.p. 69–70 °C. ¹H NMR, δ : 7.77–7.10 (m, 5 H, Ind); 3.45 (s, 2 H, SCH₂). ¹³C NMR, δ : 176.11 (C=O); 137.18–104.35 (Ind); 44.79 (SCH₂). IR, v/cm⁻¹: 1778 (C=O).

1-Benzylindol-3-ylsulfanylacetyl chloride (6). Yield 85%, powder, m.p. 72 °C. ¹H NMR, δ : 7.75–6.91 (m, 10 H, Ph, Ind); 5.22 (s, 2 H, PhC<u>H</u>₂); 3.41 (s, 2 H, SCH₂). ¹³C NMR, δ : 177.01 (C=O); 138.08–105.55 (Ph, Ind); 46.90 (SCH₂). IR, v/cm⁻¹: 1780 (C=O).

Dimethyl[2-(2-methylphenoxyacetoxy)ethyl]ammonium chloride (7). Solutions of compounds **2** (1.84 g, 0.01 mol) and **1** (0.89 g, 0.01 mol) in diethyl ether were mixed and stirred at 35 °C for 3 h. The precipitate that formed was filtered off, washed with diethyl ether, and dried *in vacuo*. Yield 1.99 g (72 %), a colorless powder soluble in water and EtOH, m.p. 100–104 °C. ¹H NMR, δ : 7.19–6.74 (m, 4 H, C₆H₄); 4.45 (s, 2 H, OCH₂COO); 3.82 (t, 2 H, OCH₂); 3.21 (t, 2 H, NCH₂); 2.85 (s, 6 H, N⁺Me₂); 2.19 (s, 6 H, Me). ¹³C NMR, δ : 177.90 (C=O); 150.30–111.10 (C₆H₄); 66.37 (O<u>C</u>H₂COO); 58.16 (OCH₂); 54.58 (NCH₂); 42.15 (N⁺Me₂); 14.52 (<u>C</u>H₃C₆H₄). IR, v/cm⁻¹: 1757 (C=O); 2475–2690 (N⁺H). Found (%): C, 57.30; H, 7.08; Cl, 13.19. C₁₃H₂₀ClNO₃. Calculated (%): C, 57.03; H, 7.36; Cl, 12.95.

Chlorides 8-11 were obtained from alcohol 1 and appropriate acid chlorides 3-6 as described for compound 7.

 $\label{eq:linear} \begin{array}{l} \mbox{[2-(4-Chlorophenylsulfanylacetoxy)ethyl]dimethylammonium} \\ \mbox{chloride (8). Yield 64\%, colorless powder, m.p. 98 °C. IR, v/cm^{-1}: 1760 (C=O); 2500-2710 (N^+H). Found (\%): Cl, 22.56; N, 4.38; \\ \mbox{S}, 10.19. C_{12}H_{17}Cl_2NO_2S. Calculated (\%): Cl, 22.85; N, 4.51; \\ \mbox{S}, 10.33. \end{array}$

[2-(4-Chlorophenylsulfonylacetoxy)ethyl]dimethylammonium chloride (9). Yield 51%, m.p. 80-82 °C. IR, ν/cm^{-1} : 1180 ($\nu_s(SO_2)$); 1330 ($\nu_{as}(SO_2)$); 1740 (C=O); 2450–2680 (N⁺H). Found (%): Cl, 22.56; N, 4.38; S, 10.19. C₁₂H₁₇Cl₂NO₂S. Calculated (%): Cl, 22.85; N, 4.51; S, 10.33.

[2-(Indol-3-ylsulfanylacetoxy)ethyl]dimethylammonium chloride (10). Yield 52%, a pink hygroscopic powder with no definite melting point. ¹H NMR, δ : 7.70–7.12 (m, 5 H, Ind); 3.70 (t, 2 H, OCH₂); 3.39 (s, 2 H, SCH₂); 3.49 (t, 2 H, NCH₂); 2.88 (s, 6 H, N⁺Me₂). ¹³C NMR, δ : 178.19 (C=O); 137.07–105.05 (Ind); 57.46 (OCH₂); 55.55 (NCH₂); 43.09 (SCH₂); 41.19 (N⁺Me₂). IR, v/cm⁻¹: 1749 (C=O); 2505–2800 (N⁺H).

[2-(1-Benzylindol-3-ylsulfanylacetoxy)ethyl]dimethylammonium chloride (11). Yield 51%, reddish powder, m.p. 75–79 °C. ¹H NMR, δ: 7.76–6.08 (m, 10 H, Ph, Ind); 5.20 (s, 2 H, PhCH₂); 3.77 (t, 2 H, OCH₂); 3.45 (s, 2 H, SCH₂); 3.27 (t, 2 H, NCH₂); 2.88 (s, 6 H, N⁺Me₂). 13 C NMR, δ : 177.79 (C=O); 138.00–104.95 (Ph, Ind); 58.16 (OCH₂); 54.58 (NCH₂); 44.00 (SCH₂); 42.15 (N⁺Me₂). IR, v/cm⁻¹: 1756 (C=O); 2510–2785 (N⁺H).

Trimethyl[2-(2-methylphenoxyacetoxy)ethyl]ammonium iodide (12). A suspension of compound 7 in water was alkalified with 10% NaOH to pH 9 (NaCl remained dissolved). The precipitate that formed was filtered off, repeatedly washed with water, dissolved in acetone, and dried with Na₂SO₄. Then MeI (1.55 g, 0.011 mol) was added and the reaction mixture was stirred at 20 °C for 18 h. The precipitate that formed was filtered off, washed with acetone, and dried in vacuo. Yield 78%, a powder soluble in EtOH and water, m.p. 180-181 °C. ¹H NMR, δ: 7.12–6.77 (m, 4 H, C₆H₄); 4.43 (s, 2 H, OCH₂COO); 3.90 (t, 2 H, OCH₂); 3.39 (t, 2 H, NCH₂); 2.89 (s, 9 H, N⁺Me₃); 2.20 (s, 3 H, Me). ${}^{13}CNMR$, δ : 175.91 (C=O); 149.30–111.11 (C₆H₄); 65.31 (OCH_2COO) ; 58.20 (OCH_2) ; 55.58 (NCH_2) ; 53.15 (N^+Me_3) ; 14.39 (<u>CH</u>₃C₆H₄). IR, ν /cm⁻¹: 1760 (C=O). Found (%): C, 44.63; H, 5.58; N, 3.59. $C_{14}H_{22}INO_3$. Calculated (%): C, 44.34; H, 5.84; N, 3.69.

Iodides 13-16 were obtained from MeI and appropriate chlorides 8-11 as described for compound 12.

[2-(4-Chlorophenylsulfanylacetoxy)ethyl]trimethylammonium iodide (13). Yield 77%, powder, m.p. $160-163 \, ^{\circ}C. \, ^{1}H \, NMR$, $\delta: 7.42-6.70 \, (m, 4 \, H, \, C_6H_4); \, 3.18 \, (s, 2 \, H, \, SCH_2); \, 3.78 \, (t, 2 \, H, \, OCH_2); \, 3.29 \, (t, 2 \, H, \, NCH_2); \, 2.87 \, (s, 9 \, H, \, N^+Me_3). \, IR, \, v/cm^{-1}:$ $1760 \, (C=O).$

 $\label{eq:constraint} \begin{array}{l} \mbox{[2-(4-Chlorophenylsulfonylacetoxy)ethyl]trimethylammonium} \\ \mbox{iodide (14). Yield 75\%, m.p. 172-174 °C. $^1H NMR, $$: 7.42-6.70 \\ (m, 4 H, C_6H_4); 4.55 (s, 2 H, SO_2CH_2); 3.80 (t, 2 H, OCH_2); \\ \mbox{3.32 (t, 2 H, NCH_2); 2.87 (s, 9 H, N^+Me_3). IR, $$v/cm^{-1}$: 1185 \\ ($v_s(SO_2)$); 1333 ($v_{as}(SO_2)$); 1755 (C=O). \\ \end{array}$

[2-(Indol-3-ylsulfanylacetoxy)ethyl]trimethylammonium iodide (15). Yield 70%, pink powder, m.p. 190–193 °C. ¹H NMR, δ: 7.80–7.15 (m, 5 H, Ind); 3.73 (t, 2 H, OCH₂); 3.40 (s, 2 H, SCH₂); 3.25 (t, 2 H, NCH₂); 2.88 (s, 9 H, N⁺Me₃). IR, v/cm⁻¹: 1749 (C=O).

[2-(1-Benzylindol-3-ylsulfanylacetoxy)ethyl]trimethylammonium iodide (16). Yield 71%, red powder, m.p. 178–179 °C. ¹H NMR, δ : 7.70–7.01 (m, 10 H, Ph, Ind); 3.80 (t, 2 H, OCH₂); 3.44 (s, 2 H, SCH₂); 3.35 (t, 2 H, NCH₂); 2.88 (s, 9 H, N⁺Me₃). IR, v/cm⁻¹: 1741 (C=O).

References

- 1. M. D. Mashkovskii, *Lekarstvennye veshchestva* [*Drugs*], Novaya Volna, Moscow, 2000, 14th ed., Vols **1**, **2** (in Russian).
- A. N. Mirskova, G. G. Levkovskaya, O. P. Kolesnikova, O. M. Perminova, E. V. Rudyakova, S. N. Adamovich, *Russ. Chem. Bull. (Int. Ed.)*, 2010, **59**, 2236 [*Izv. Akad. Nauk, Ser. Khim.*, 2010, 2181].
- O. P. Kolesnikova, A. N. Mirskova, S. N. Adamovich, O. T. Kudaeva, R. G. Mirskov, M. G. Voronkov, *Byull. Sib. Otd. Russ. Akad. Med. Nauk* [Bulletin of the Siberian Branch of the Russian Academy of Medical Sciences], 2010, 12 (in Russian).
- 4. A. N. Mirskova, R. G. Mirskov, S. N. Adamovich, M. G. Voronkov, *Khim. v Interesakh Ustoich. Razvit.*, 2011, 467 [*Chem. Sustain. Dev.*, 2011, **19** (*Engl. Transl.*)].

Received June 13, 2012; in revised form November 2, 2012