Synthesis of Some Novel Heteroannulated Pyrano[3,2-c]quinoline-2,5(6H)-diones

Hany Mohamed Hassanin and Dalia Abdel-Kader* 🕩

Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Heliopolis, Cairo 11757, Egypt

*E-mail: hmm8807@hotmail.com

Received February 4, 2018 DOI 10.1002/ihet.3205

Published online 00 Month 2018 in Wiley Online Library (wileyonlinelibrary.com).

6-Butyl-3-((dimethylamino)methylene)pyrano[3,2-c]quinolinone and 6-butyl pyrano[3,2-c]quinolone-3carbonitrile were efficiently synthesized in good yield. These two new precursors were used to obtain some novel heteroannulated pyrano[3,2-c]quinolone derivatives from heterocyclization reactions with various binucleophiles. These heteroannulation reactions afforded novel heterocyclic systems fused to the pyranoquinolinone at face c, such as pyrazole, pyrimidine, pyridine, and pyrazolopyranone.

J. Heterocyclic Chem., 00, 00 (2018).

INTRODUCTION

Pyrano[3,2-c]quinolinones consider great synthons for many quinolinone derivatives [1-3]. Moreover, they exist in naturally occurring alkaloids [4-6], which are known to display different biological activities [7,8]. pyranoquinolinones Heteroannulated exhibit many important medicinal properties such as antibacterial [9], anticoagulant [10], antitumor [11], and antihypertensive agents [12]. Despite the widespread of published work on the synthesis of these types of compounds with various substituents [13–19], there is a scarcity of literature reports on the preparation of heteroannulated pyrano[3,2-c]quinolone derivatives. Moreover, the combination of a pyrazole, pyridine or pyrimidine nucleus with the pyran or quinolinone moiety in one molecular framework is reported to confer biological activity [20-25]. In continuation of our research work directed on the synthesis of heteroannulated pyrano [3,2-c] quinolinedione derivatives [26], herein, we disclose the preparation of synthetically valuable 6-butyl-3-((dimethylamino) methylene)pyrano[3,2-*c*]quinolinone **2** and 3-cyanopyrano [3,2-c] quinoline 12. A study of their chemical behavior towards some binucleophiles was investigated. A new series of pyranoquinolinones incorporating a pyrazole, pyrimidine, pyridine, or pyrazolopyranone ring at face cwas obtained with the hope that these compounds turn out to be biologically active.

RESULTS AND DISCUSSION

A reaction of *N*-butylaniline with two equivalents of diethyl malonate, under solvent-free conditions gave

4-hydroxypyrano[3,2-c]quinoline-2,5(6H)-dione (1)(Fig. 1) [27]. The desired 3-((dimethylamino)methylene) pyrano[3,2-c]quinolinone derivative 2 was prepared in yield thermal condensation good via of pyranoquinolinone 1 with dimethylformamide dimethylacetal (DMF-DMA). The structure of enamine 2 was confirmed on the basis of ¹H NMR spectral data that displays a singlet signal due to the olefinic proton at 8.16 ppm. Moreover, the ¹H NMR spectrum reveals two different N-methyl groups, one at 3.05 ppm and the other at 3.14 ppm, attributed to Me₂N group. These two methyl groups are observed at 35.25 and 38.36 ppm in the ¹³C NMR spectrum. In addition, the mass spectrum of compound 2 displays a molecular ion peak at m/z 340 that is consistent with the formula weight (340.38).

The structure of enamine 2 contains several electrondeficient centers, and it is expected to be quite reactive towards nucleophilic reagents. Therefore, the reaction of enamine 2 with 1,2-binucleophiles such as, hydrazine hydrate and phenylhydrazine in ethanol at room temperature was studied. It is thought that the reaction takes place initially via Michael addition to the olefinic carbon of compound 2 followed by elimination of dimethylamine, leading to products 3a,b that were present as interconverting hydrazine and hydrazone tautomers (Fig. 2). The ¹H NMR spectra of products **3a**,**b** suggest that they exist predominantly as the hydrazone forms in deuterodimethyl sulfoxide solution. The ¹H NMR spectrum of compound 3a shows two deuteriumexchangeable singlet signals at 5.64 ppm characteristic for NH₂ group and 13.38 ppm due to OH group; while the corresponding signals NH and OH of compound 3b are observed at 9.41 and 12.37 ppm, respectively. The mass spectra of the compounds 3a,b display molecular

Figure 1. Synthesis of enamine 2.

ion peaks $[M^+]$ at m/z 327 and 403, respectively. The hydrazones 3a,b underwent cyclization in acetic acid at reflux to afford the pyrazolopyranoquinolinone derivatives 4a,b, which are obtained directly by refluxing enamine 2 with hydrazine hydrate or phenylhydrazine, respectively, in boiling ethanol (Fig. 2). The ¹H NMR spectra of compounds 4a,b exhibit a new characteristic singlet signal at 8.67 and 8.94 ppm, respectively, assigned to pyrazole CH. Also, compound 4a reveals a deuterium-exchangeable singlet signal at 9.94 ppm ascribed to the NH of the pyrazole ring. The mass spectra of pyrazoles **4a.b** display molecular ion peaks $[M^+]$ at m/z309 and 385, respectively.

Similarly, treatment of compound **2** with guanidine, cyanoguanidine, and thiourea as 1,3-binucleophiles produced the corresponding pyrimidopyranoquinolinones **5a–c** (Fig. 3). The ¹H NMR spectra of compounds **5a–c** show five aromatic protons, at 7.33–8.76 ppm. In the mass spectra, the molecular ion peaks $[M^+]$ of these compounds appear at m/z 336, 361, and 353, respectively.

Reaction of enamine 2 with malononitrile as *C*-nucleophile was carried out in boiling ethanol containing small amount of anhydrous potassium carbonate giving rise to pyridopyranoquinoline derivative **8** (Fig. 3). The probable products were pyranopyranoquinolinone **7** or pyridopyranoquinolinone **8**. The IR spectrum of the product exhibited absorption bands at 1725, 1676, and

1648 cm⁻¹ attributed to the C=O groups of pyrone, pyridine, and quinolone, respectively. The same compound was obtained from the reaction of compound 2 with cyanoacetamide under the same reaction conditions, thus confirming its structure as that of 8. The proposed pathway for the formation of compound 8 involves initial nucleophilic addition of the active malononitrile methylene group to the enamine carbon of the side chain and subsequent loss of a molecule of dimethylamine to give the corresponding malononitrile intermediate 6. Intramolecular 6-*exo-dig* cyclization of the intermediate 6, followed by rearrangement, leads to the final product 8.

The reactivity of compound 2 towards a variety of cyclic active methylene compounds: various five- and sixmembered heterocycles was studied. Consequently, compound 2 was treated with 3-methyl-2-pyrazolin-5one, in glacial acetic acid containing freshly fused sodium acetate, to produce pyrazolopyranopyranone 9 (Fig. 4). ¹H NMR spectrum of compound **9** shows a peak, at 2.07 ppm due to the methyl group of pyrazole ring, and a singlet signal at 9.20 ppm due to the pyran proton. The mass spectrum of compound 9 reveals a molecular ion peak $[M^+]$ at m/z 375 that is in agreement with its formula weight (375.39). A pentaheterocyclic system, pyrimidopyranopyranone, was obtained by cyclocondensation of enamine 2 with barbituric acid and thiobarbituric acid, under the same conditions affording derivatives 10a and 10b of this ring system (Fig. 4). The IR spectra of 10a and 10b show the presence of absorption band due to NH bond at $3280-3105 \text{ cm}^{-1}$. ¹H NMR spectra show singlet signals due to the pyran CH that appears at 8.95 ppm for compound 10a and 8.88 ppm for compound 10b. In addition, there is a deuterium-exchangeable singlet signal at 13.38 ppm (NH) for compound 10a and 13.53 ppm (NH) for compound

Figure 2. Reaction of enamine 2 with some hydrazines.

Figure 3. Synthesis of pyrimidopyranoquinolinones 5a-c and pyridopyranoquinoline 8.

Figure 4. Reaction of compound 2 with some cyclic active methylene compounds.

10b. The mass spectra of compounds **10a**,**b** reveal the correct molecular ion peaks $[M^+]$ at m/z 405 and 421, respectively.

Continuing the synthesis of new heteoannulated pyrano[3,2-*c*]quinolone derivatives, we planned to prepare the carbonitrile **12** as a new precursor for further functionalized heteroannulated pyranoquinolone derivatives. To approach this target, the reaction of compound **2** with hydroxylamine hydrochloride in boiling ethanol was carried out yielding the oxime **11**. This compound underwent dehydration in boiling glacial acetic acid to give the desired carbonitrile **12** (Fig. 5). Its IR spectrum exhibits the characteristic vibrational absorption band at 2200 cm⁻¹ due to (C=N). Furthermore, the ¹H NMR spectrum of compound **12** displays a deuterium-exchangeable singlet signal at 12.38 ppm assignable to OH. The structure of compound

12 was further confirmed from its mass spectrum, which revealed a molecular ion peak at m/z 310.

Heterocyclization at face *c* of the pyran moiety can take place when compound **12** is treated with binucleophiles. Because the active cyano group at position-3 is susceptible to nucleophilic addition and OH function at position-4 participates in heterocyclization through nucleophilic substitution. Hence, compound **12** was reacted with hydrazine hydrate, phenyl hydrazine, and hydroxylamine hydrochloride in boiling glacial acetic acid to give pyrazolopyranones **13a,b** and isoxazolopyranone **13c**, respectively (Fig. 6). Evidence for the formation of the pyrazole derivatives **13a–c** is from their IR spectra where there is an absence of the OH absorption band and the appearance of two characteristic absorption bands at 3526-3368 cm⁻¹ that corresponds to the amine functionality. Furthermore, the ¹H NMR

Figure 5. Preparation of carbonitrile 12.

Figure 6. Reaction of carbonitrile 12 with some 1,2-, 1,3-binucleophiles, and malononitrile.

spectra display a deuterium-exchangeable singlet signal in the range of 6.98–7.20 ppm assigned to NH_2 . Mass spectra show the correct molecular ion peaks at m/z 324, 400, and 325, respectively.

The carbonitrile 12, as a bifunctional electrophile, represents a good building unit for the synthesis of a series pyrimidopyrano[3,2-c]quinolinones, of via its cyclocondensation reactions with a variety of 1,3bifiunctional nucleophiles. Thus, condensation of carbonitrile 12 with guanidine hydrochloride, acetamidine, or thiourea in boiling DMF produced the suggested pyrimidine derivatives 14a-c (Fig. 6). The ¹H NMR spectra of these compounds show an exchangeable signal at 6.97–7.37 ppm characteristic for NH₂ protons. Further evidence is from their mass spectra that reveal the correct molecular ion peaks $[M^+]$ at m/z 351, 350, and 368 respectively. The elemental analyses of the products are in agreement with their proposed formulae. The predominance of the amino tautomer of compounds 14a-c (Fig. 6) is expected because there is a literature report that supports that the amino form is more predominant than the imino form [28].

Reaction of the carbonitriles with malononitrile was previously studied [29,30]. Thus, compound **12** was treated with malononitrile, in boiling ethanol containing

few drops of triethylamine, affording pyridopyranone derivative 16 via the non-isolable intermediate 15 (Fig. 6). The IR spectrum exhibited absorption bands at 3473 and 3335 cm^{-1} due to amino group and 2189 cm^{-1} attributed to the nitrile function. Three carbonyl groups are observed, at 1752 cm⁻¹ (α -pyrone), 1669 cm⁻¹ (pyridone), and 1636 cm^{-1} (quinolone), respectively. The $^{1}\mathrm{H}$ spectrum of compound 16 showed NMR exchangeable singlet signals attributed to NH₂ and NH proton at 7.72 and 13.15 ppm, respectively. In the ¹³C NMR spectrum, there are three characteristic downfield signals at 170.61, 164.49, and 158.89 ppm that attributed the carbonyl carbon atoms of α -pyrone, pyridine, and quinolone, respectively. Also, the structure of compound 16 was further confirmed from its mass spectrum that revealed the molecular ion peak at m/z 376 that agreed well with its suggested molecular formula.

Pyrano[3,2-*c*]quinolinones undergo ring opening at C-2 and ring reclosure at C-4 when reacted with binucleophiles [2,31]. However, we introduce the more highly reactive enamine or nitrile function at the 3position of pyranoquinolinone, use mild condition, and avoid using a strong basic media, in order to direct the binucleophiles to heterocyclization at face [c] with retention of 2-pyranone nucleus. Notable in the IR spectra of the desired compounds is the presence of a band at $1720-1750 \text{ cm}^{-1}$ due to the carbonyl group of the 2-pyranone moiety.

CONCLUSION

In the present work, the novel enamine 2 and carbonitrile 12 were efficiently synthesized and utilized as good precursors to obtain a series of novel annulated heterocyclic systems containing the pyrano[3,2-c]quinolinedione skeleton.

EXPERIMENTAL

Melting points were determined on a digital Stuart SMP3 apparatus. IR spectra were measured on a Perkin-Elmer 293 spectrophotometer (cm^{-1}), using KBr disks. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) measurements were performed using a Mercury-400BB, and Varian-400 spectrometers, and chemical shifts were expressed in δ (ppm) relative to tetramethylsilane (in $CDCl_3$ or DMSO- d_6 as solvent) as the internal standard. Mass spectra were obtained using the GC-2010 Shimadzu gas chromatography mass spectrometer (70 eV). Elemental microanalyses were performed on a Perkin-Elmer CHN-2400II analyzer at the Chemical War department, Ministry of Defense, Cairo, Egypt. Thin-layer chromatography (TLC) was carried out on aluminum sheets covered with silica gel 60 F₂₅₄, 0.2 mm layer (Merck). Column flash chromatography was performed on Fluka analytical silica gel 60 0.063-0.2 mm (70-230 mesh ASTM) using UV light (254 and 366 nm) for detection.

6-Butyl-3H-pyrano[3,2-c]quinoline-2,4,5(6H)-trione (1). This compound was prepared according to the published method [27], mp 227–229°C.

6-Butyl-3-((dimethylamino)methylene)-3H-pyrano[3,2-c] quinoline-2,4,5(6H)-trione А mixture of (2). pyranoquinolinone 1 (2.85 g, 10 mmol) and dimethyl formamide dimethylacetal (4 mL, 30 mmol) was refluxed for 4 h under free-solvent condition at 100°C. The course of the reaction was monitored by TLC until the starting material had completely disappeared. The crude product was filtered off, purified by flash chromatography and compound 2 was eluted with nhexane: EtOAc (4:6). After evaporation of the solvent, compound 2 was obtained as yellow crystals (2.66 g, 78%) mp 190–192°C. TLC (silica gel, n-hexane: EtOAc (4:6)): R_f 0.79. IR (KBr, cm⁻¹) v_{max} : 3042 (CH_{arom}), 2971, 2936, 2860 (CH_{aliph}), 1720 (C=O_{α-pyrone}), 1674 $(C=O_{\gamma-pyrone})$, 1627 $(C=O_{quinolone})$, 1592 (C=C). ¹H NMR (DMSO- d_6) δ_H : 0.91 (t, 3H, J = 8.0 Hz,

 CH_2CH_3), 1.39–1.41 (m, 2H, CH_2CH_3), 1.57–1.62 (m, 2H, CH₂CH₂), 3.05 (s, 3H, NCH₃), 3.14 (s, 3H, NCH₃), 4.19 (t, 2H, J = 8.0 Hz, NCH₂), 7.34 (t, 1H, J = 8.4 Hz, H-9), 7.60 (d, 1H, J = 8.4 Hz, H-7), 7.70 (t, 1H, J = 8.2 Hz, H-8), 8.04 (d, 1H, J = 8.4 Hz, H-10), 8.16 (s, 1H, CH_{olefinic}). ¹³C NMR (125 MHz, DMSO- d_6) δ_C : 13.81 (CH₃), 20.16 (CH₂), 29.52 (CH₂), 35.25 (NCH₃), 38.36 (NCH₃), 42.60 (NCH₂), 102.53, 107.34, 113.04, 114.93, 123.02, 124.24, 126.33, 133.89, 139.65, 141.10, 156.84, 158.89, 164.51. MS: m/z (relative intensity): 341 [M⁺+ 1; 6], 340 [M⁺; 25], 312 (6), 311 (7), 297 (10), 296 (25), 284 (6), 283 (26), 268 (4), 254 (5), 253 (8), 241 (15), 240 (18), 215 (10), 213 (7), 212 (9), 201 (15), 187 (14), 172 (4), 161 (11), 159 (3), 158 (3), 133 (13), 132 (100), 119 (22), 104 (17), 77 (56). Anal. Calcd for C₁₉H₂₀N₂O₄ (340.38): C, 67.05; H, 5.92; N, 8.23. Found: C, 67.08; H, 5.89; N, 8.33%.

General procedure for formation of 3-(hydrazonomethylene) pyrano quinolinediones (3a,b). A mixture of enamine 2 (3.40 g, 10 mmol) and hydrazine hydrate (0.50 mL, 10 mmol), or phenylhydrazine (1.1 mL, 10 mmol), in ethanol (25 mL) was stirred at room temperature for 8 h. After partial evaporation of the solvent, the solid deposited after cooling was isolated by filtration, air dried, and crystallized from the proper solvent to give compounds 3a,b.

6-Butyl-4-hydroxy-3-(hydrazonomethylene)pyrano[3,2-c] quinoline-2,5(6H)-dione (3a). Crystallized from EtOH to give orange crystals, (2.65 g, 81%), mp 254-255°C. IR (KBr, cm^{-1}) v_{max} : 3526, 3357 3234 (NH₂ and OH), 3049 (CH_{arom}), 2953, 2942, 2860 (CH_{aliph}), 1709 (C= O_{α -pyrone}), 1679 (C= O_{γ -pyrone}), 1636 (C= $O_{quinolone}),$ 1574 (C=C). ¹H NMR (CDCl₃, δ) δ_{H} : 0.97 (t, 3H, J = 8.0 Hz, CH₂CH₃), 1.45–1.50 (m, 2H, CH₂CH₃), 1.71-1.75 (m, 2H, CH₂CH₂), 4.29 (t, 2H, J = 8.1 Hz, NCH_2), 5.64 (s, 2H, NH₂), 7.33 (t, 1H, J = 8.0 Hz, H-9), 7.46 (d, 1H, J = 8.0 Hz, H-7), 7.70 (t, 1H, J = 8.0 Hz, H-8), 8.17 (d, 1H, J = 8.0 Hz, H-10), 8.94 (s, 1H, CH_{enamine}), 13.38 (s, 1H, OH). ¹³C NMR (125 MHz, DMSO-d₆) δ_C: 14.12 (CH₃), 19.93 (CH₂), 29.91 (CH₂), 42.07 (NCH₂), 101.69, 114.0 0, 114.88, 116.37, 122.70, 124.37, 132.20, 136.08, 137.99, 145.92, 148.44, 158.98, 162.80. MS: *m/z* (relative intensity): $327 [M^+; 3], 326 [M^+ - 1; 1], 310 (1), 309 (3), 298 (1),$ 285 (4), 284 (2), 270 (1), 254 (1), 253 (5), 240 (3), 239 (2), 215 (7), 201 (8), 187 (5), 161 (35), 132 (100), 119 (32), 105 (19), 104 (14), 91 (10), 77 (53). Anal. Calcd for C₁₇H₁₇N₃O₄ (327.34): C, 62.38; H, 5.23; N, 12.84. Found: C, 62.40; H, 5.28; N, 12.81%.

6-Butyl-4-hydroxy-3-(N'-phenylhydrazonomethylene)pyrano [3,2-c]quinoline-2,5(6H)-dione (3b). Crystallized from EtOH as yellow crystals, (3.12 g, 77%), mp 242–243°C. IR (KBr, cm⁻¹) v_{max} : 3266 (NH), 3049 (CH_{arom}), 2954, 2930, 2855 (CH_{aliph}), 1752 (C=O_{α-pyrone}), 1677 (C=O_{γ-pyrone}), 1639 (C=O_{quinolone}), 1615 (C=N), 1573 (C=C). ¹H NMR (DMSO- d_6) δ_H : 1.02 (t, 3H, J = 8.0 Hz, CH₂CH₃), 1.52–1.55 (m, 2H, CH₂CH₃), 1.77–1.83 (m, 2H, CH₂CH₂), 4.35 (t, 2H, J = 8.1 Hz, NCH₂), 7.12-7.16 (m, 2H, Ar-H), 7.25 (s, 1H, CH_{enamine}), 7.48-7.56 (m, 3H, Ar-H), 7.76 (t, 1H, J = 8.2 Hz, Ar-H), 7.94-8.23 (m, 2H, Ar–H), 8.33 (d, 1H, J = 7.2 Hz, Ar–H), 9.41 (s, 1H, NH), 12.37 (s, 1H, OH). ¹³C NMR (125 MHz, DMSO-d₆) δ_C : 13.77 (CH₃), 20.18 (CH₂), 29.58 (CH₂), 42.50 (NCH₂), 100.57, 113.70, 113.84, 115.11, 115.61, 115.83, 124.12, 124.81, 130.73, 133.62, 133.77, 137.89, 156.02, 157.82, 160.25, 161.89, 163.17, 163.39, 165.89. MS: m/z (relative intensity): 404 [M⁺+ 1; 10], 403 [M⁺; 38], 402 [M⁺- 1; 1], 347 (1), 310 (1), 297 (23), 296(100), 285 (1), 268 (3), 254 (2), 241 (41), 240 (30), 228 (1), 226 (1), 212 (18), 185 (5), 158 (2), 156 (37), 146 (9), 141 (11), 140 (10), 132 (19), 118 (1), 114 (7), 104 (5), 92 (10), 77 (69). Anal. Calcd for C₂₃H₂₁N₃O₄ (403.44): C, 68.47; H, 5.25; N, 10.42. Found: C, 68.50; H, 5.21; N, 10.40%.

General procedures for preparation of pyrazolo[3',4':4,5] pyrano[3,2-c]quinolineones (4a,b). Procedure a: A mixture of enamine 2 (3.40 g, 10 mmol) and hydrazine hydrate (0.50 mL, 10 mmol), or phenylhydrazine (1.1 mL, 10 mmol), in absolute ethanol (25 mL) was refluxed for 8 h. The solid deposited during heating was separated by filtration, air dried, and crystallized from the proper solvent to give compounds 4a and 4b, respectively.

5-Butyl-3H-pyrazolo[3',4':4,5]pyrano[3,2-c]quinoline-4,11 Crystallized from DMF/H₂O afforded (5H)-dione (4a). compound 4a as brown crystals (2.45 g, 79%), mp 200–201°C. IR (KBr, cm^{-1}) v_{max} : 3292 (NH), 3035 2876 (CH_{arom}), 2958, 2932, (CH_{aliph}), 1728 (C=O_{α-pyrone}), 1679 (C=O_{quinoline}), 1613 (C=N), 1576 (C=C). ¹H NMR (DMSO- d_6) δ_H : 0.89 (t, 3H, J = 8.1 Hz, CH₂CH₃), 1.35–1.40 (m, 2H, CH₂CH₃), 1.46–1.52 (m, 2H, CH_2CH_2), 4.16 (t, 2H, J = 8.1 Hz, NCH_2), 7.34 (t, 1H, J = 8.0 Hz, H-8), 7.57 (d, 1H, J = 8.0 Hz, H-6), 7.73 (t, 1H, J = 8.0 Hz, H-7), 8.07 (d, 1H, J = 8.0 Hz, H-9), 8.67 (s, 1H, CH_{pyrazole}), 9.94 (s, 1H, NH). ¹³C NMR (125 MHz, DMSO- d_6) δ_C : 14.10 (CH₃), 19.90 (CH₂), 29.62 (CH₂), 42.24 (NCH₂), 99.70, 102.46, 113.51, 116.6, 123.86, 124.66, 134.44, 137.90, 139.27, 157.21, 160.08, 163.14, 163.83. MS: m/z (relative intensity): 309 [M⁺; 2], 308 [M⁺- 1; 3], 295 (1), 268 (14), 253 (4), 240 (43), 239 (12), 228 (13), 226 (6), 215 (56), 201 (94), 188 (14), 187 (34), 172 (19), 160 (3), 159 (19), 132 (100), 119 (30), 104 (22), 105 (16), 90 (15), 77 (64). Anal. Calcd for $C_{17}H_{15}N_{3}O_{3}$ (309.33): C, 66.01; H, 4.89; N, 13.58. Found: C, 66.00; H, 4.91; N, 13.60%.

5-Butyl-3-phenyl-3H-pyrazolo[3',4':4,5]pyrano[3,2-c]quinoline-4,11(5H)-dione (4b). Crystallized from DMF affording compound 4b as yellow crystals, (2.96 g, 77%), mp

212–213°C. IR (KBr, cm⁻¹) v_{max}: 3082 (CH_{arom}), 2957, 2929, 2868 (CH_{aliph}), 1713 (C=O_{α-pyrone}), 1673 (C=O_{quinolone}), 1614 (C=N), 1570 (C=C). ¹H NMR $(DMSO-d_6) \delta_H: 0.90$ (t, 3H, J = 7.6 Hz, CH_2CH_3), 1.40–1.45 (m, 2H, CH₂CH₃), 1.61–1.65 (m, 2H, CH_2CH_2), 4.31 (t, 2H, J = 8.0 Hz, NCH_2), 7.11 (t, 1H, J = 8.2 Hz, Ar–H), 7.29 (t, 1H, J = 8.2 Hz, Ar–H), 7.42 (t, 1H, J = 7.4 Hz, Ar–H), 7.50 (d, 1H, J = 8.4 Hz, Ar-H), 7.72-7.78 (m, 2H, Ar-H), 7.86 (t, 1H, J = 8.2 Hz, Ar-H), 8.05 (d, 1H, J = 8.2 Hz, Ar-H), 8.14 (d, 1H, J = 8.1 Hz, Ar–H), 8.94 (s, 1H, CH_{pyrazole}). ¹³C NMR (100.62 MHz, DMSO- d_6) δ_C : 14.01 (CH₃), 20.06 (CH₂), 29.71 (CH₂), 42.34 (NCH₂), 99.86, 102.64, 113.69, 115.16, 116.62, 118.70, 122.36, 123.03, 123.91, 124.62, 134.38, 134.80, 138.05, 157.32, 158.40, 160.08, 163.28, 163.41, 163.85. MS: m/z (relative intensity): 385 $[M^+; 55]$, 384 $[M^+-1; 88]$, 370 (63), 343 (65), 328 (75), 293 (100), 215 (63), 188 (60), 160 (55), 105 (58), 104 (97). Anal. Calcd for C₂₃H₁₉N₃O₃ (385.43): C, 71.68; H, 4.97; N, 10.90. Found: C, 71.70; H, 4.99; N, 10.30%.

Procedure b: A solution of hydrazone **3a** (3.27 g, 10 mmol) or **3b** (4.03 g, 10 mmol) in glacial acetic acid (50 mL) was heated under reflux for 6 h. The reaction mixture was concentrated in vacuum and the obtained solid was filtered and recrystallized from the proper solvent to give compounds **4a** (2.51 g, 81%) and **4b** (3.03 g, 79%).

General procedure for formation of pyrimido[4',5':4,5] pyrano[3,2-c]quinolinones (5a–c). A mixture of enamine 2 (3.40 g, 10 mmol) and 1,3-binucleophiles, *viz.* guanidine hydrochloride (0.95 g, 10 mmol), cyanoguanidine (0.84 gm, 10 mmol), thiourea (0.76 gm, 10 mmol) in DMF (50 mL) was refluxed for 8 h. The solid precipitated during heating was collected by filtration, air dried, and crystallized from the proper solvent to give compounds 5a, 5b, and 5c, respectively.

3-Amino-6-butyl-4H-pyrimido[4',5':4,5]pyrano[3,2-c]quinoline-5,12(6H)-dione (5a). Was crystallized from AcOH to afford compound 5a as brown crystals, (2.92 g, 87%), mp 176–177°C. IR (KBr, cm^{-1}) v_{max} : 3483, 3395 (NH₂), 2955, 2929, 2867 (CH_{aliph}), 1727 (C=O_{α-pyrone}), 1669 (C=O_{quinolone}), 1621 (C=N), 1585 (C=C). ¹H NMR (DMSO- d_6) δ_H : 0.91 (t, 3H, J = 8.0 Hz, CH₂CH₃), 1.41–1.46 (m, 2H, CH₂CH₃), 1.68–1.73 (m, 2H, CH_2CH_2), 4.29 (t, 2H, J = 8.0 Hz, NCH_2), 7.13 (s, 2H, NH₂), 7.52 (t, 1H, J = 8.2 Hz, H-9), 7.66–7.87 (m, 2H, H-7 and H-8), 8.17 (d, 1H, J = 8.1 Hz, H-10), 8.53 (s, 1H, H_{pyrimidine}). ¹³C NMR (125 MHz, DMSO- d_6) δ_C : 14.02 (CH₃), 19.92 (CH₂), 29.71 (CH₂), 42.34 (NCH₂), 99.87, 102.63, 113.71, 113.84, 116.65, 123.94, 124.63, 134.39, 138.08, 151.26, 157.34, 160.08, 163.30, 163.84. MS: m/z (relative intensity): 337 [M⁺+ 1; 7], 336 [M⁺; 50], 308 (22), 273 (13), 265 (17), 217 (100), 195 (41),

178 (28), 149 (25), 109 (13), 105 (25), 71 (27). Anal. Calcd for $C_{18}H_{16}N_4O_3$ (336.35): C, 64.28; H, 4.79; N, 16.66. Found: C, 64.08; H, 4.71; N, 16.55%.

N-(6-Butvl-5,12-dioxo-5H-pvrimido[4',5':4,5]pvrano[3,2-c] quinolin-3-yl)cyanamide (5b). Crystallized from AcOH to give compound **5b** as brown crystals, (3.00 g, 83%), mp 186–187°C. IR (KBr, cm^{-1}) v_{max} : 3304 (NH), 3053 (CH_{arom}), 2959, 2926, 2878 (CH_{aliph}), 2008 (CN), 1715 (C=O_{α-pyrone}), 1677 (C=O_{auinolone}), 1611(C=N), 1573 (C=C). ¹H NMR (DMSO- d_6) δ_H : 0.94 (t, 3H, J = 8.0 Hz, CH₂CH₃), 1.42–1.47 (m, 2H, CH₂CH₃), 1.67-1.73 (m, 2H, CH₂CH₂), 4.33 (t, 2H, J = 7.6 Hz, NCH_2), 6.48 (s, 1H, NH), 7.33 (t, 1H, J = 8.2 Hz, H-9), 7.53 (d, 1H, J = 8.2 Hz, H-7), 7.82 (t, 1H, J = 8.2 Hz, H-8), 8.14 (d, 1H, J = 8.2 Hz, H-10), 8.76 (s, 1H, CH_{pyrimidine}). ¹³C NMR (101 MHz, DMSO- d_6) δ_C : 14.10 (CH₃), 19.90 (CH₂), 29.82 (CH₂), 42.24 (NCH₂), 88.62 (C≡N), 99.70, 102.46, 112.78, 113.51, 116.65, 123.86, 124.66, 134.44, 137.90, 157.21, 160.08, 163.14, 163.83, 173.18. MS: m/z (relative intensity): 361 [M⁺; 3], 336 (12), 320 (6), 319 (3), 294 (7), 280 (17), 268 (21), 253 (18), 240 (64), 228 (14), 215 (58), 201 (95), 200 (8), 187 (10), 184 (9), 172 (9), 158 (12), 145 (15), 132 (100), 104 (45), 90 (51), 76 (41). Anal. Calcd for C₁₉H₁₅N₅O₃ (361.36): C, 63.15; H, 4.18; N, 19.38. Found: C, 63.20; H, 4.16; N, 19.33%.

6-Butyl-3-thioxo-5H-pyrimido[4',5':4,5]pyrano[3,2-c]quinoline-5,12(6H)-dione (5c). Formed brown crystals (2.90 g, 82%), mp 211-212°C, and crystallized from DMF. IR (KBr, cm^{-1}) v_{max} : 3166 (NH), 3080 (CH_{arom}), 2954, 2928, 2866 (CH_{aliph}), 1724 (C= O_{α -pyrone}), 1659 (C=O_{quinolone}), 1623 (C=N), 1600 (C=C). ¹H NMR (DMSO- d_6) δ_H : 0.99 (t, 3H, J = 8.1 Hz, CH₂CH₃), 1.47-1.54 (m, 2H, CH₂CH₃), 1.72-1.76 (m, 2H, CH_2CH_2), 4.30 (t, 2H, J = 7.8 Hz, NCH_2), 7.39–7.41 (m, 2H, H-9 and H-7), 7.69 (t, 1H, J = 8.2 Hz, H-8), 8.24 (d, 1H, J = 8.1 Hz, H-10), 8.35 (s, 1H, CH_{pvrimidine}), 13.36 (s, 1H, NH). ¹³C NMR (101 MHz, DMSO-*d*₆) δ_C: 14.13 (CH₃), 21.21 (CH₂), 29.59 (CH₂), 41.90 (NCH₂), 100.17, 112.93, 116.15, 123.60, 123.83, 125.89, 128.60, 130.33, 134.16, 138.42, 145.54, 156.36, 163.33, 165.98. MS: m/z (relative intensity): 354 [M⁺+ 1; 4], 353 [M⁺; 8], 310 (25), 270 (28), 267 (11), 239 (27), 170 (48), 160 (12), 132 (100), 105 (14), 77 (95). Anal. Calcd for C18H15N3O3S (353.40): C, 61.18; H, 4.28; N, 11.89; S, 9.07. Found: C, 61.20; H, 4.23; N, 11.90; S, 9.05%.

6-Butyl-3,5,12-trioxo-3H-pyrido[2',3':4,5]pyrano[3,2-c]quinoline-2-carbonitrile (8). Procedure a: Enamine 2 (3.40 g, 10 mmol) was heated under reflux for 4 h with malononitrile (0.66 g, 10 mmol) in ethanol containing a small amount of potassium carbonate. The solid deposited was then filtered and air dried. Crystallization from DMF afforded compound 8 as white crystals,

(3.00 g, 83%), mp 271–272°C. IR (KBr, cm⁻¹) v_{max} : 3223 (NH), 3083 (CH_{arom}), 2959, 2932, 2871 (CH_{aliph}), 2211 (C=N), 1725 (C=O_{pyrone}), 1676 (C=O_{pyridone}), 1648 (C=O_{auinoline}), 1617 (C=N), 1572 (C=C). ¹H NMR (DMSO- d_6) δ_{H} : 0.93 (t, 3H, J = 8.0 Hz, CH₂CH₃), 1.42–1.50 (m, 2H, CH₂CH₃), 1.64–1.67 (m, 2H, CH_2CH_2), 4.33 (t, 2H, J = 8.0 Hz, NCH_2), 7.54 (t, 1H, J = 7.8 Hz, H-9), 7.87–7.92 (m, 2H, H-7, and H-8), 8.16 (d, 1H, J = 7.8 Hz, H-10), 8.77 (s, 1H, CH_{pyridone}), 13.50 (s, 1H, NH). MS: m/z (relative intensity): 362 $[M^++1; 2], 361 [M^+; 6], 336 (1), 332 (1), 319 (2), 308$ (2), 305(4), 282 (2), 277 (7), 268 (6), 240 (25), 226 (4), 215 (33), 201 (51), 188 (11), 187 (16), 172 (13), 160 (2), 159 (16), 145 (44), 132 (92), 119 (36), 117 (35), 115 (11), 104 (33), 91 (14), 90 (23), 77 (100), 76 (26). Anal. Calcd for C₂₀H₁₅N₃O₄ (361.36): C, 66.48; H, 4.18; N, 11.63. Found: C, 66.50; H, 4.19; N, 11.60%.

Procedure b: A solution of enamine **2** (3.40 g, 10 mmol), in DMF (50 mL), was refluxed for 4 h with cyanoacetamide (0.84 g, 10 mmol). The solid deposited after cooling was collected by filtration and crystallized from DMF giving compound **8** as white crystals, (3.21 g, 89%), mp $273-275^{\circ}$ C.

13-Butyl-8-methyl-6H-pyrazolo[4",3":5',6']pyrano[2',3':4,5] pyrano[3,2-c]quinoline-6,12(13H)-dione (9). To a solution of enamine 2 (3.40 g, 10 mmol) in glacial acetic acid containing freshly fused sodium acetate, 3-methyl-2pyrazolin-5-one (0.98 g, 10 mmol) was added. Then, the reaction mixture was refluxed for 4 h. The crystals deposited were filtered and air dried. Crystallization from DMF afforded compound 9 as yellow crystals, (3.00 g, 80%), mp 193–194°C. IR (KBr, cm^{-1}) v_{max} : 3072 (CH_{arom}), 2958, 2925, 2869 (CH_{aliph}), 1718 (C=O_{pyrone}), 1670 (C=O_{auinolinone}), 1614 (C=N), 1570 (C=C). ¹H NMR (DMSO- d_6) δ_H : 0.98 (t, 3H, J = 8.1 Hz, CH₂CH₃), 1.45–1.51 (m, 2H, CH₂CH₃), 1.76–1.79 (m, 2H, CH_2CH_2), 2.07 (s, 3H, CH_3), 4.45 (t, 2H, J = 8.1 Hz, NCH_2 , 7.37 (t, 1H, J = 8.0 Hz, H-3), 7.65–7.68 (m, 2H, H-1 and H-2), 8.21 (d, 1H, J = 8.1 Hz, H-4), 9.20 (s, 1H, CH_{pyran}). MS: m/z (relative intensity): 376 [M⁺+ 1; 18], 375 [M⁺; 69], 360 (1), 319 (2), 284 (4), 283 (9), 268 (2), 241 (3), 240 (2), 239 (3), 217 (15), 216 (100), 201 (3), 189 (17), 188 (36), 187 (9), 172 (5), 161 (13), 158 (3), 133 (8), 132 (26), 120 (41), 119 (15), 105 (11), 104 (14), 77 (61). Anal. Calcd for C₂₁H₁₇N₃O₄ (375.39): C, 67.19; H, 4.56; N, 11.19. Found: C, 67.22; H, 4.60; N, 11.20%.

General procedure for formation of pyrimido[5",4":5', 6']pyrano[2',3':4,5]pyrano [3,2-c]quinolinones (10a,b). Compound 2 (3.40 g, 10 mmol) was heated under reflux with barbituric acid (1.28 g, 10 mmol) or thiobarbituric acid (1.44 g, 10 mmol), in glacial acetic acid containing freshly fused sodium acetate for 4 h. The course of the reaction was monitored by TLC until the starting material had completely disappeared. The solid obtained after cooling was filtered and crystallized from the proper solvent to give compounds **10a**,**b**.

14-Butyl-6H,8H-pyrimido[5",4":5',6']pyrano[2',3':4,5]pyrano [3,2-c]quinoline-6,8,10,13(14H)-tetraone (10a). This compound obtained as yellow crystals by crystallization from DMF, (3.50 g, 86%), mp 266–267°C. IR (KBr, cm^{-1}) v_{max} : 3162 (NH), 3072 (CH_{arom}), 2955. 2929, 2860 (CH_{aliph}) , 1716 $(C=O_{pyrone})$, 1666 (2C=O_{pyrimidone}), 1644 (C=O_{quinoline}), 1614 (C=N), 1569 (C=C). ¹H NMR (CDCl₃) δ_H : 0.98 (t, 3H, J = 8.0 Hz, CH₂CH₃), 1.47–1.52 (m, 2H, CH₂CH₃), 1.70-1.75 (m, 2H, CH_2CH_2), 4.31 (t, 2H, J = 8.0 Hz, NCH_2), 7.33 (t, 1H, J = 8.2 Hz, H-2), 7.57 (d, 1H, J = 8.2 Hz, H-1), 8.07 (t, 1H, J = 8.2 Hz, H-3), 8.23 (d, 1H, J = 8.2 Hz, H-4), 8.95 (s, 1H, CH_{pyran}), 13.38 (s, 1H, NH). MS: m/z (relative intensity): 405 [M⁺; 100], 387 (15), 319 (5), 283 (17), 282 (25), 228 (6), 156 (12), 105 (18). Anal. Calcd for $C_{21}H_{15}N_3O_6$ (405.37): C, 62.22; H, 3.73; N, 10.37. Found: C, 62.34; H, 3.70; N. 10.31%.

14-Butyl-10-thioxo-6H,8H-pyrimido[5",4":5',6']pyrano[2',3' :4,5]pyrano[3,2-c]quinoline-6,8,13(14H)-trione (10b). This compound produced yellow crystals (3.00 g, 71%), mp 174–175°C, and crystallized from DMF. IR (KBr, cm⁻¹) v_{max}: 3280, 3105 (NH), 3049 (CH_{arom}), 2954, 2864 (CH_{aliph}), 1715 (C=O_{pyrone}), 1672 (C=O_{pyrimidone}), 1639 (C=O_{quinoline}), 1582 (C=C). ¹H NMR (DMSO- d_6) δ_H : 1.01 (t, 3H, J = 8.0 Hz, CH_2CH_3), 1.49–1.54 (m, 2H, CH₂CH₃), 1.75–1.81 (m, 2H, CH₂CH₂), 4.33 (t, 2H, J = 8.0 Hz, NCH₂), 7.37–7.80 (m, 2H, H-2 and H-1), 7.96 (t, 1H, J = 8.0 Hz, H-3), 8.20 (d, 1H, J = 8.0 Hz, H-4), 8.88 (s, 1H, H_{nvran}), 13.53 (s, 1H, NH). ¹³C NMR (125 MHz, DMSO- d_6) δ_C : 13.84 (CH₃), 20.25 (CH₂), 29.68 (CH₂), 43.48 (NCH₂), 104.35, 114.15, 114.36, 116.21, 118.13, 122.29, 122.56, 124.54, 125.36, 132.35, 138.78, 148.78, 165.27, 166.47, 183.70, 188.13, 191.19. MS: m/z (relative intensity): 422 [M⁺+ 1; 3], 421 [M⁺; 9], 405 (14), 377 (6), 365 (3), 320 (11), 285 (7), 268 (12), 267 (69), 257 (100), 216 (11), 212 (58), 202 (21), 188 (4), 187 (12), 186 (24), 172 (19), 161 (9), 118 (8), 104 (10), 91(24), 77 (43). Anal. Calcd for $C_{21}H_{15}N_3O_5S$ (421.43): C, 59.85; H, 3.59; N, 9.97; S, 7.61. Found: C, 59.86; H, 3.60; N, 9.99; S, 7.55%.

6-Butyl-4-hydroxy-2,5-dioxo-2H-pyrano[3,2-c]quinoline-3 (6H)-carbaldehyde oxime (11). To a solution of enamine 2 (3.40 g, 10 mmol) in ethanol (25 mL), hydroxylamine hydrochloride (0.70 g, 10 mmol), was added. Then, the reaction mixture was refluxed for 8 h. The solid formed during heating was filtered off and crystallized from EtOH/H₂O to give compound **11** as yellow crystals (2.76 g, 84%), mp 214–215°C. IR (KBr, cm⁻¹) v_{max}: 3322 (OH), 3088 (CH_{arom}), 2957, 2931, 2869 (CH_{aliph}), 1725 (C=O_{α-pyrone}), 1690 (C=O_{quinolone}), 1627 (C=N).

1590 (C=C). ¹H NMR (DMSO- d_6) δ_H : 0.91 (t, 3H, J = 8.0 Hz, CH₂CH₃), 1.37–1.40 (m, 2H, CH₂CH₃), 1.55-1.57 (m, 2H, CH₂CH₂), 4.20 (t, 2H, J = 8.0 Hz, NCH_2), 7.41 (t, 1H, J = 7.6 Hz, H-9), 7.73 (d, 1H, J = 8.1 Hz, H-7), 7.96 (t, 1H, J = 7.6 Hz, H-8), 8.12 (d, 1H, J = 7.8 Hz, H-10), 9.63 (s, 1H, N=CH), 10.20 (s, 1H, OH), 11.58 (s, 1H, OH). ¹³C NMR (125 MHz, DMSO- d_6) δ_C : 14.12 (CH₃), 19.94 (CH₂), 29.65 (CH₂), 42.08 (NCH₂), 100.45, 116.15, 116.40, 123.84, 124.10, 124.50, 128.86, 134.93, 138.45, 149.05, 159.36, 163.04, 179.99. MS: m/z (relative intensity): 329 [M⁺+ 1; 2], 328 $[M^+; 11], 311 (4), 310 (20), 302 (18), 295 (5), 286 (10),$ 271 (19), 253 (12), 242 (24), 240 (7), 215 (55), 189 (37), 186 (23), 172 (10), 171 (30), 132 (41), 90 (5), 77 (100). Anal. Calcd for C₁₇H₁₆N₂O₅ (328.33): C, 62.19; H, 4.91: N, 8.53. Found: C, 62.23; H, 4.94; N, 8.54%.

6-Butyl-4-hydroxy-2,5-dioxo-2H-pyrano[3,2-c]quinoline-3 A mixture of oxime 11 (3.28 g, (6H)-carbonitrile (12). 10 mmol) in glacial acetic acid (25 mL) was refluxed for 4 h. The solid so obtained after cooling was filtered and crystallized from ethanol to give compound 12 as pale vellow crystals (2.55 g, 82%), mp 214-215°C. IR (KBr, cm^{-1}) v_{max} : 3415 (OH), 3043 (CH_{arom}), 2959, 2924, 2872 (CH_{aliph}), 2200 (C=N), 1720 (C=O_{α-pyrone}), 1674 (C=O_{quinolone}), 1605 (C=N), 1580 (C=C). ¹H NMR (DMSO- d_6) δ_H : 1.01 (t, 3H, J = 8.0 Hz, CH₂CH₃), 1.49– 1.52 (m, 2H, CH₂CH₃), 1.75–1.77 (m, 2H, CH₂CH₂), 4.33 (t, 2H, J = 8.0 Hz, NCH₂), 7.44–7.46 (m, 2H, H-9 and H-7), 7.65 (t, 1H, J = 8.2 Hz, H-8), 8.23 (d, 1H, J = 8.1 Hz, H-10), 12.38 (s, 1H, OH). ¹³C NMR (125 MHz, DMSO-*d*₆) δ_C: 14.09 (CH₃), 19.89 (CH₂), 29.58 (CH₂), 42.36 (NCH₂), 94.99 (C≡N), 105.45, 116.52, 116.74, 123.69, 124.90, 125.73, 127.23, 135.73, 146.17, 156.49, 162.97, 164.16. MS: m/z (relative intensity): 311 [M⁺+ 1; 11], 310 [M⁺; 31], 293 (23), 285 (16), 284 (47), 268 (36), 256 (16), 254 (48), 242 (41), 241 (17), 240 (39), 229 (17), 228 (74), 215 (44), 212 (2), 201 (88), 188 (97), 187 (34), 172 (16), 159 (11), 132 (100), 119 (30), 116 (12), 104 (26), 90 (16), 77 (68). Anal. Calcd for C₁₇H₁₄N₂O₄ (310.31): C, 65.80; H, 4.55; N, 9.03. Found: C, 65.77; H, 4.52; N, 9.04%.

General procedure for formation of amino(pyrazolo- and isoxazolo-) [3',4':4,5]pyrano[3,2-c]quinolinones (13a–c). A mixture of compound 12 (3.10 g, 10 mmol) and 1,2-binucleophiles, *viz.* hydrazine hydrate (0.50 mL, 10 mmol), phenyl hydrazine (1.0 mL, 10 mmol), hydroxylamine hydrochloride (0.70 g, 10 mmol) in glacial acetic acid (50 mL) was heated under reflux for 4 h. After cooling to room temperature, the precipitate so formed was filtered off and crystallized from the proper solvent to give compounds 13a–c.

1-Amino-5-butyl-3H-pyrazolo[3',4':4,5]pyrano[3,2-c]quinoline-4,11(5H)-dione (13a). Crystallized from AcOH to give compound **13a** as yellow crystals (2.75 g, 85%), mp

188–189°C. IR (KBr, cm^{-1}) v_{max} : 3526, 3368 (NH₂), 3228, 3170 (NH), 3018 (CH_{arom}), 2965, 2872, 2837 (CH_{aliph}), 1726 (C=O_{α-pyrone}), 1679 (C=O_{quinolone}), 1568 (C=C). ¹H NMR (DMSO- d_6) δ_H : 0.90 (t, 3H, J = 8.0 Hz, CH₂CH₃), 1.36–1.39 (m, 2H, CH₂CH₃), 1.55-1.57 (m, 2H, CH₂CH₂), 4.19 (t, 2H, J = 8.0 Hz, NCH_2), 7.19 (s, 2H, NH₂), 7.35 (t, 1H, J = 8.4 Hz, H-8), 7.67 (d, 1H, J = 8.2 Hz, H-6), 7.96 (t, 1H, J = 8.4 Hz, H-7), 8.11 (d, 1H, J = 8.4 Hz, H-9), 10.24 (s, 1H, NH). ¹³C NMR (125 MHz, DMSO- d_6) δ_C : 13.73 (CH₃), 20.12 (CH₂), 29.55 (CH₂), 42.42 (NCH₂), 100.09, 101.65, 113.69, 115.17, 124.21, 124.81, 134.07, 137.99, 156.99, 159.79, 162.70, 162.89, 169.11. MS: m/ z (relative intensity): $324 [M^+; 1]$, 308 (1), 296 (1), 295(2), 284 (1), 283 (1), 282 (1), 269 (2), 268 (1), 267 (1), 256 (2), 252 (1), 228 (2), 215 (100), 201 (4), 160 (11), 159 (95), 158 (12), 132 (15), 131 (53), 119 (4), 116 (10), 105 (26), 104 (35), 77 (55). Anal. Calcd for C₁₇H₁₆N₄O₃ (324.34): C, 62.95; H, 4.97; N, 17.27. Found: C, 62.92; H, 5.00; N, 17.30%.

1-Amino-5-butyl-3-phenylpyrazolo[3',4':4,5]pyrano[3,2-c] quinoline-4,11(5H)-dione (13b). Crystallization from DMF gave compound 13b as white crystals (3.12 g, 78%), mp 211–212°C. IR (KBr, cm⁻¹) v_{max} : 3487, 3398 (NH₂), 3049 (CH_{arom}), 2961, 2925, 2869 (CH_{aliph}), 1709 (C=O_{α-pyrone}), 1679 (C=O_{quinolone}), 1606 (C=N), 1560 (C=C). ¹H NMR (DMSO- d_6) δ_H : 0.92 (t, 3H, J = 8.1 Hz, CH₂CH₃), 1.41–1.44 (m, 2H, CH₂CH₃), 1.63–1.65 (m, 2H, CH_2CH_2), 4.33 (t, 2H, J = 8.1 Hz, NCH_2), 6.98 (s, 2H, NH₂), 7.45 (t, 1H, J = 7.4 Hz, Ar-H), 7.56 (d, 1H, J = 8.3 Hz, Ar-H), 7.75-7.77 (m, 2H, Ar-H), 7.84-7.88 (m, 2H, Ar-H), 8.05 (d, 1H, *J* = 8.1 Hz, Ar–H), 8.15 (t,1H, *J* = 8.4 Hz, Ar–H), 8.24 (d, 1H, J = 8.1 Hz, Ar–H). ¹³C NMR (125 MHz, DMSO-d₆) δ_C: 13.75 (CH₃), 20.17 (CH₂), 29.56 (CH₂), 42.49 (NCH₂), 100.47, 113.81, 114.12, 115.11, 115.84, 124.13, 124.51, 124.84, 127.67, 132.56, 133.83, 137.93, 154.94, 156.20, 157.60, 161.48, 161.55, 163.17, 164.08. MS: m/z (relative intensity): 401 [M⁺+ 1; 3], 400 [M⁺; 10], 371(18), 372 (66), 344 (24), 343 (100), 328 (5), 315 (48), 300 (7), 268 (2), 241 (4), 240 (5), 216 (44), 204(6), 189 (85), 188 (58), 187 (10), 172 (8), 161 (77), 159 (4), 133 (24), 132 (80), 104 (24), 77 (65). Anal. Calcd for C23H20N4O3 (400.44): C, 68.99; H, 5.03; N, 13.99. Found: C, 68.80; H, 5.11; N, 13.95%.

1-Amino-5-butyl-4H-isoxazolo[5',4':4,5]pyrano[3,2-c]quinoline-4,11(5H)-dione (13c). Recrystallized from DMF affording **13c** as yellow crystals (2.79 g, 86%), mp 245–246°C. IR (KBr, cm⁻¹) ν_{max} : 3492, 3394 (NH₂), 3045 (CH_{arom}), 2961, 2925, 2869 (CH_{aliph}), 1709 (C=O_{α-pyrone}), 1679 (C=O_{quinolone}), 1606 (C=N), 1560 (C=C). ¹H NMR (DMSO-*d*₆) δ_H : 1.01 (t, 3H, *J* = 8.0 Hz, CH₂CH₃), 1.47–1.49 (m, 2H, CH₂CH₃), 1.78–1.81 (m, 2H, CH₂CH₂), 4.33 (t, 2H, *J* = 8.0 Hz, NCH₂), 7.20 (s, 2H, NH₂), 7.46 (t, 1H, J = 8.1 Hz, H-8), 7.67 (d, 1H, J = 7.4 Hz, H-6), 7.78 (t, 1H, J = 8.1 Hz, H-7), 8.24 (d, 1H, J = 8.1 Hz, H-9). ¹³C NMR (100.6 MHz, DMSO- d_6) δ_C : 14.03 (CH₃), 19.92 (CH₂), 29.70 (CH₂), 42.35 (NCH₂), 99.87, 102.63, 113.72, 115.88, 116.67, 123.95, 124.64, 134.41, 138.09, 157.35, 160.08, 163.31, 163.85. MS: m/z (relative intensity): 326 [M⁺+ 1; 42], 325 [M⁺; 100], 299 (22), 283 (2), 282 (99), 280 (17), 255 (19), 254 (10), 228 (9), 99 (15). *Anal.* Calcd for C₁₇H₁₅N₃O₄ (325.33): C, 62.76; H, 4.65; N, 12.92. Found: C, 62.75; H, 4.55; N, 12.90%.

General procedure for formation of aminopyrimidopyrano[3,2-c]quinolinone (14a–c). A mixture of compound 12 (3.10 g, 10 mmol) and guanidine hydrochloride (0.95 g, 10 mmol), acetamidine hydrochloride (0.95 g, 10 mmol), or thiourea (0.76 g, 10 mmol) in DMF (50 mL) was refluxed for 4 h. The solid obtained after cooling was filtered and crystallized from the proper solvent to afford compounds 14a–c.

1,3-Diamino-6-butyl-5H-pyrimido[4',5':4,5]pyrano[3,2-c] quinoline-5,12(6H)-dione (14a). Crystallized from DMF to give 14a as yellow crystals (2.39 g, 68%), mp 190-191°C. IR (KBr, cm⁻¹) v_{max}: 3526, 3380 (NH₂), 3200, 3175 (NH), 3006 (CH_{arom}), 2959, 2918, 2848 (CH_{aliph}), 1722 (C=O_{α-pyrone}), 1666 (C=O_{quinolone}), 1613 (C=N), 1572 (C=C). ¹H NMR (DMSO- d_6) δ_H : 0.92 (t, 3H, J = 8.0 Hz, CH_2CH_3), 1.41–1.43 (m, 2H, CH_2CH_3), 1.63-1.65 (m, 2H, CH_2CH_2), 4.31 (t, 2H, J = 8.0 Hz, NCH_2), 6.97 (s, 2H, NH₂), 7.45 (t, 1H, J = 8.0 Hz, H-9), 7.74 (d, 1H, J = 8.0 Hz, H-7), 8.05 (t, 1H, J = 8.0 Hz, H-8), 8.10 (d, 1H, J = 8.0 Hz, H-10), 9.37 (s, 2H, NH₂). MS: m/z (relative intensity): 352 [M⁺+ 1; 2], 351 [M⁺; 4], 381 (23), 254 (52), 226 (48), 159 (40), 135 (39), 132 (100), 103 (58), 91 (87). Anal. Calcd for C₁₈H₁₇N₅O₃ (351.37): C, 61.53; H, 4.88; N, 19.93. Found: C, 61.51; H, 4.85; N, 19.63%.

1-Amino-6-butyl-3-methyl-5H-pyrimido[4',5':4,5]pyrano[3, 2-c]quinoline-5,12(6H)-dione (14b). This compound formed yellow crystals (2.66 g, 76%), mp $> 300^{\circ}$ C and crystallized from AcOH. IR (KBr, cm⁻¹) v_{max}: 3523, 3358 (NH₂), 3043 (CH_{arom}), 2958, 2932, 2872 (CH_{aliph}), 1705 (C= $O_{\alpha-\text{pyrone}}$), 1682 (C= $O_{\text{quinolone}}$), 1613(C=N), 1570 (C=C). ¹H NMR (DMSO- d_6) δ_H : 1.00 (t, 3H, J = 8.0 Hz, CH₂CH₃), 1.52–1.55 (m, 2H, CH₂CH₃), 1.76-1.78 (m, 2H, CH₂CH₂), 2.70 (s, 3H, CH₃), 4.36 (t, 2H, J = 8.0 Hz, NCH₂), 7.37 (bs, 2H, NH₂), 7.46–7.49 (m, 2H, H-9 and H-7), 7.71 (t, 1H, J = 8.2 Hz, H-8), 8.30 (d, 1H, J = 8.1 Hz, H-10). ¹³C NMR (125 MHz, DMSO-d₆) δ_C : 13.80 (CH₂CH₃), 14.43 (CH₃), 20.27 (CH₂), 29.57 (CH₂), 42.52 (NCH₂), 100.82, 113.51, 114.89, 122.91, 123.16, 124.67, 124.94, 133.47, 138.77, 154.53, 156.15, 156.96, 157.13, 164.72. MS: m/z (relative intensity): 351 [M⁺+ 1; 62], 350 [M⁺; 93], 322 (82), 279 (60), 278 (75), 268 (75), 263 (55), 250 (100), 237 (72), 211 (63), 183 (50), 160 (57), 159 (57), 158 (77), 132 (63), 118 (59), 104 (50), 91 (80), 77 (57). *Anal.* Calcd for C₁₉H₁₈N₄O₃ (350.38): C, 65.13; H, 5.18; N, 15.99. Found: C, 65.12; H, 5.20; N, 15.96%.

1-Amino-6-butyl-3-thioxo-3H,5H-pyrimido[4',5':4,5]pyrano [3,2-c]quinoline-5,12(6H)-dione (14c). Crystallized from DMF to afford 14c as yellow crystals, (2.70 g, 73%), mp > 300°C. IR (KBr, cm⁻¹) v_{max} : 3490, 3342 (NH₂), 3156 (NH), 2957, 2928, 2850 (CH_{aliph}), 1748 (C=O_{α -} pyrone), 1679 (C=Oquinolone), 1617 (C=N), 1576 (C=C). ¹H NMR (DMSO- d_6) δ_H : 0.93 (t, 3H, J = 8.0 Hz, CH₂CH₃), 1.44–1.46 (m, 2H, CH₂CH₃), 1.65–1.67 (m, 2H, CH_2CH_2), 4.32 (t, 2H, J = 8.0 Hz, NCH_2), 7.00 (s, 2H, NH₂), 7.52 (t, 1H, J = 8.0 Hz, H-9), 7.76–7.78 (m, 2H, H-7 and H-8), 8.22 (d, 1H, J = 8.1 Hz, H-10), 12.28 (s, 1H, NH). ¹³C NMR (125 MHz, DMSO- d_6) δ_C : 14.02 (CH₂CH₃), 19.92 (CH₂), 29.71 (CH₂), 42.34 (NCH₂), 99.89, 102.63, 113.71, 116.65, 123.94, 127.63, 134.39, 135.58, 138.08, 157.34, 160.08, 163.30, 163.83, 169.02. MS: m/z (relative intensity): 369 [M⁺+ 1; 3], 368 [M⁺; 9], 352 [M⁺- NH₂; 2], 236 (11), 279 (10), 147 (13), 124 (14), 113 (11), 95 (37), 57 (100). Anal. Calcd for C₁₈H₁₆N₄O₃S (368.42): C. 58.68: H. 4.38: N. 15.21: S. 8.70. Found: C, 58.70; H, 4.33; N, 15.22; S, 8.72%.

1-Amino-6-butyl-3,5,12-trioxo-3H-pyrido[2',3':4,5]pyrano[3, 2-c]quinoline-2(6H)-carbonitrile (16). A solution of carbonitrile 12 (3.10 g, 10 mmol) in ethanol (25 mL) containing few drops of triethyl amine was treated with malononitrile (0.66 g, 10 mmol) under reflux conditions for 4 h. The solid so obtained after cooling was filtered and crystallized from DMF to give compound 16 as pale brown crystals, (3.23 g, 86%), mp 169–170°C. IR (KBr, cm⁻¹) v_{max}: 3473, 3335 (NH₂), 3167 (NH), 2958, 2930, 2871 (CH_{aliph}), 2189 (CN), 1752 (C= $O_{\alpha-pyrone}$), 1669 (C=O_{pvridone}), 1636 (C=O_{auinolone}), 1612 (C=N), 1572 (C=C). ¹H NMR (DMSO- d_6) δ_H : 0.92 (t, 3H, J = 8.0 Hz, CH₂CH₃), 1.37–1.40 (m, 2H, CH₂CH₃), 1.61–1.63 (m, 2H, CH_2CH_2), 4.33 (t, 2H, J = 8.0 Hz, NCH_2), 7.32 (t, 1H, J = 8.1 Hz, H-9), 7.43 (d, 1H, J = 8.1 Hz, H-7), 7.56 (t, 1H, J = 8.1 Hz, H-8), 7.72 (s, 2H, NH₂), 8.03 (d, 1H, J = 8.1 Hz, H-10), 13.15 (s, 1H, NH). ¹³C NMR (125 MHz, DMSO- d_6) δ_C : 13.82 (CH₃), 20.18 (CH₂), 29.52 (CH₂), 42.61 (NCH₂), 89.38, 107.37, 113.09, 114.92, 122.74, 123.00, 124.29, 125.02, 133.84, 139.68, 141.12, 147.63, 156.86, 158.89, 164.49, 170.61. MS: m/z (relative intensity): 377 [M⁺+ 1; 5], 376 [M⁺; 32], 350 $[M^+ - CN; 15]$ (4), 334 (31), 269 (40), 188 (15), 160 (2), 158 (13), 132 (100), 119 (5), 91 (11), 77 (30). Anal. Calcd for C₂₀H₁₆N₄O₄ (376.37): C, 63.83; H, 4.28; N, 14.89. Found: C, 63.85; H, 4.30; N, 14.90%.

REFERENCES AND NOTES

- [1] Abass, M.; Mostafa, B. B. Bioorg Med Chem 2005, 13, 6133.
- [2] Hassanin, H. M. ARKIVOC 2012, vi, 384.
- [3] Hassanin, H. M.; Abdel-Kader, D. Heterocycles 2013, 87, 369.
- [4] Campbell, W. E.; Davidowitz, B.; Jackson, G. E. Phytochem-

istry 1990, 29, 1303.

[5] Wu, S.-J.; Chen, I.-S. Phytochemistry 1993, 34, 1659.

- [6] Duraipandiyan, V.; Ignacimuthu, S. J. Ethnopharm 2009, 123, 494.
- [7] Chen, I.-S.; Wu, S.-J.; Tsai, I. L.; Wu, T.-S.; Pezzuto, J. M.; Lu,
- M. C.; Chai, H.; Suh, N.; Teng, C.-M. J Nat Prod 1994, 57, 1206.

[8] Ravindranath, N.; Ramesh, C.; Reddy, M. R.; Das, B. Chem Lett 2003, 32, 222.

[9] Ramesh, E.; Manian, R. S.; Raghunathan, R.; Sainath, S.; Raghunathan, M. Bioorg Med Chem 2009, 17, 660.

[10] Anniyappan, M.; Muralidhran, D.; Perumal, P. T. Tetrahedron Lett 2003, 44, 3653.

[11] Sugimori, M.; Ejima, A.; Ohsuki, S.; Uoto, K.; Mitsui, I.; Matsumoto, K.; Kawato, Y.; Yasuoka, M.; Sato, K. J Med Chem 1994, 37, 3033.

[12] Jolivet, C.; Rivalle, C.; Bisagni, E. Heterocycles 1996, 43, 995.

[13] Lee, Y. R.; Kweon, H. I.; Koh, W. S.; Min, K. R.; Kim, Y.; Lee, S. H. Synthesis 2001, 12, 1851.

[14] Manikandan, S.; Shanmugasundaram, M.; Raghunathan, R. Tetrahedron 2002, 58, 8957.

[15] Sabitha, G.; Kumar Reddy, M. S.; Arundhathi, K.; Yadav, J. S. ARKIVOC 2006, vi, 153.

[16] >Jung, E. J.; Lee, Y. R.; Lee, H. Bull Korean Chem Soc 2009, 30, 2833.

[17] Singh, B.; Chandra, A.; Singh, S.; Singh, R. M. Tetrahedron 2011, 67, 505.

[18] Nadaraj, V.; Selvi, S. T.; Bai, H. P.; Mohan, S.; Thangadurai, T. D. Med Chem Res 2012, 21, 2902.

[19] Gunasekaran, P.; Prasanna, P.; Perumal, S.; Almansour, A. I. Tetrahedron Lett 2013, 54, 3248.

[20] Abass, M.; Khodairy, A. Chem Heterocycl Compd 2011, 47, 611.
[21] Ai, Y.; Liang, Y.-J.; Liu, J.-C.; He, H.-W.; Chen, Y.; Tang, C.;

Yang, G.-Z.; Fu, L.-W. Eur J Med Chem 2012, 47, 206.

[22] Jimenez, H. N.; Liu, K. G.; Hong, S.-P.; Reitman, M. S.; Uberti, M. A.; Bacolod, M. D.; Cajina, M.; Nattini, M.; Sabio, M.; Doller, D. Bioorg Med Chem Lett 2012, 22, 3235.

[23] Parmar, N. J.; Barad, H. A.; Pansuriya, B. R.; Teraiya, S. B.; Gupta, V. K.; Kant, R. Bioorg Med Chem Lett 2012, 22, 3816.

[24] Thumar, N. J.; Patel, M. P. Med Chem Res 2012, 21, 1751.

[25] Tomassoli, I.; Herlem, G.; Picaud, F.; Benchekroun, M.;

Bautista-Aguilera, O. M.; Luzet, V.; Jimeno, M.-L.; Gharbi, T.; Refouvelet, B.; Ismaili, L. Monatsh Chem 2016, 147, 1069.

[26] Ibrahim, M. A.; Hassanin, H. M. ARKIVOC 2013, iv, 217.

[27] Kappe, T.; Aigner, R.; Hohengassner, P.; Stadlbauer, W. J Prakt Chem 1994, 336, 596.

[28] Boulton, A. J.; Katritzky, A. R. Tetrahedron 1961, 12, 51.

[29] Ismail, M. M. J Serb Chem Soc 2006, 71, 721.

[30] Yadav, S.; Srivastava, M.; Rai, P.; Singh, J.; Tiwari, K. P.; Singh, J. New J Chem 2015, 39, 4556.

[31] Abass, M.; Othman, E. S.; Hassan, A. Synth Commun 2007, 37, 607.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.