Photoinduced Synthesis of *P*-Perfluoroalkylated Phosphines from Triarylphosphines and Their Application in the Copper-Free Cross-Coupling of Acid Chlorides and Terminal Alkynes

Shin-ichi Kawaguchi,^a Yoshiaki Minamida,^a Takumi Okuda,^a Yuki Sato,^a Tomokazu Saeki,^a Aya Yoshimura,^a Akihiro Nomoto,^a and Akiya Ogawa^{a,*}

 ^a Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1–1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
 Fax: (+81)-72-254-9910; phone: (+81)-72-254-9290; e-mail: ogawa@chem.osakafu-u.ac.jp

Received: March 25, 2015; Revised: May 11, 2015; Published online: August 3, 2015

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201500294.

Abstract: A practical synthesis yielding *P*-perfluoroalkylated phosphines from triarylphosphines and perfluoroalkyl iodides has been developed. The photoinduced reaction involves the substitution of aryl groups on the phosphorus atom with perfluoroalkyl groups to successfully afford *P*-perfluoroalkylated phosphines. In addition, the *P*-perfluoroalkylated

Introduction

Phosphines bearing fluorous tags are functional ligands that can aid in the recycling of metal catalysts via extraction with a fluorous biphasic system (FBS). This concept was first proposed by Horváth and Rábai in 1994,^[1] and numerous studies regarding FBS were subsequently reported.^[2] A number of ligands and metal catalysts suitable for FBS have been developed;^[3] however, *P*-perfluoroalkylated phosphines, in which a perfluoroalkyl group is directly bonded to the phosphine, have received little attention as ligands,^[4] because the electron-withdrawing perfluoroalkyl groups presumably influence the coordination of the phosphine ligands to metal catalysts. However, our research group recently revealed that P-perfluoroalkylated phosphine 1 (Figure 1) could form a complex with palladium; common coupling reactions such as Suzuki-Miyaura coupling, Sonogashira coupling, and the Heck reaction proceed successfully in the presence of the complex.^[5] Specifically, we found that,

 $\begin{array}{l} {Ar_{P}}^{R_{f}} \\ {}_{Ar}^{I} \\ \mathbf{1} \end{array} \quad Ar = Ph, \ 4-CF_{3}C_{6}H_{4}, \ 3-CF_{3}C_{6}H_{4}, \ 4-CIC_{6}H_{4} \\ \mathbf{1} \\ R_{f} = n-C_{12}F_{25}, \ n-C_{10}F_{21}, \ n-C_{8}F_{17} \end{array}$

Figure 1. Directly fluorinated phosphines.

phosphines were found to promote the Cu-free cross-coupling reaction of acid chlorides with terminal alkynes.

Keywords: cleavage reactions; cross-coupling; fluorinated ligands; palladium; phosphanes

when used as a ligand, phosphine **1** had a positive effect on Pd-catalyzed coupling reactions between acid chlorides and terminal alkynes, affording the corresponding ynones under Cu-free conditions.

Ynones serve as excellent electrophiles in Michael addition reactions,^[6] versatile components in the synthesis of heterocycles,^[7] and valuable intermediates in the total synthesis of natural products.^[8] The generation of ynones via the coupling reaction of acid chlorides with terminal alkynes is one of the most efficient routes towards ynones, and palladium catalysts in the presence of copper salts are typically employed in their synthesis.^[9] However, copper salts occasionally induce the Glaser reaction,^[10] and therefore, it is desirable to develop Cu-free coupling reactions.^[11,12] Moreover, the possibility of catalyst recycling is an advantage in the use of perfluoroalkylated phosphine ligands. Additionally, directly perfluoroalkylated phosphines can be synthesized relatively easily. Our research group previously reported that perfluoroalkylphosphines could be formed by a photoinduced reaction between diphosphines and perfluoroalkyl iodides.^[5] However, diphosphines are difficult to handle and synthesize their derivatives. We thus investigated readily available phosphorus sources in order to synthesize perfluoroalkylphosphines. Notably, when triphenylphosphine was used as a starting material,

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

a photoinduced perfluoroalkylation reaction was observed. Triphenylphosphine is one of the most commonly used phosphine compounds. Although substitution reactions on the phosphorus atom of triarylphosphines are synthetically useful, this type of reaction is still limited,^[13] except for the reaction of PAr₃ with alkali metals.^[14] Therefore, in this paper, we report a novel synthesis of *P*-perfluoroalkylated phosphines *via* the photoinduced reaction of triarylphosphines with perfluoroalkyl iodides and their application as ligands in the Cu-free Pd-catalyzed coupling reactions between acid chlorides and terminal alkynes.

Results and Discussion

Photoinduced Reaction of Triarylphosphines with Perfluoroalkyl Iodides

First, we examined the reaction between PPh₃ (0.1 mmol) and n-C₁₀F₂₁-I (0.2 mmol) under photoirradiation by a xenon lamp (500 W) in a sealed Pyrex NMR tube in CDCl₃ [Eq. (1)]. Interestingly, n-C₁₀F₂₁-PPh₂ (**1a**) was formed in a moderate yield after irradiation for 30 h.

$$\begin{array}{rcl} & PPh_3 + n - C_{10}F_{21}I & \xrightarrow{h \mathcal{V} (Xe \text{ lamp})} & n - C_{10}F_{21}PPh_2 & (1) \\ \hline & CDCI_3 (1.0 \text{ mL}), 30 \text{ h, r.t.} & \mathbf{1a} \\ & & 45\% \\ & & \mathbf{1}^{9}\text{F NMR vield} \end{array}$$

Based on this positive result, the reaction conditions were optimized (Table 1). First, we examined the molar ratio of PPh₃/*n*-C₁₀F₂₁-I (entries 1–5). Notably, 0.3/0.1 mmol afforded the highest yield (entry 3). When the solvent was varied, benzotrifluoride (BTF)^[15] (entries 6–8) gave the desired product in decent yields. However, when BTF was used, phenylated BTF and perfluoroalkylated BTF were also observed (~5% of both). Conducting the reaction in a sealed quartz tube and irradiation with a tungsten lamp or super-high pressure mercury lamp did not improve the yield (entries 10–12).

Next, the scope and limitations of the photoinduced reaction between triarylphosphines and perfluoroalkyl iodides were investigated (Table 2). Several triarylphosphines such as $(4-CF_3C_6H_4)_3P$, $(3-CF_3C_6H_4)_3P$, and $(4-CIC_6H_4)_3P$ gave the corresponding perfluoroalkylated phosphines in moderate to good yields (entries 2–4). On the other hand, the electron-deficient phosphine $(3,4,5-F_3C_6H_2)_3P$, and electron-rich phosphines $(4-CH_3C_6H_4)_3P$ and $(4-CH_3OC_6H_4)_3P$ did not afford the corresponding perfluoroalkylated phosphines (entries 5–7). The perfluoroalkylation reaction proceeded when both long-chain, $n-C_{12}F_{25}I$, and short chain, $n-C_8F_{17}I$, perfluoroalkyl iodides were employed,

Table 1. Optimization of the reaction	conditions	in the	reac-
tion between PPh ₃ and n -C ₁₀ F ₂₁ -I.			

PPh₂ +	n-CueFault —	hV (Xe lamp)	_ n	-CuoForPPha
	5 s	olvent (1 mL), r.t., 3	80 h ''	1a
Entry	PPh ₃ (mmol)	<i>n</i> -C ₁₀ F ₂₁ -I (mmol)	Solvent	Yield (%) ^[a]
1	0.1	0.1	$CDCI_3$	13
2	0.2	0.1	$CDCI_3$	45
3	0.3	0.1	$CDCI_3$	81 (79)
4	0.4	0.1	CDCI3	71
5	0.6	0.1	$CDCI_3$	43
6	0.3	0.1	CD₃CN	10
7	0.3	0.1	C_6D_6	10
8	0.3	0.1	BTF	62
9	0.1	0.2	BTF	76
10 ^[b]	0.1	0.2	BTF	59
11 ^[c]	0.3	0.1	CDCI ₃	0
12 ^[d]	0.3	0.1	$CDCI_3$	40

^[a] Determined by ¹⁹F NMR. Isolated yield is shown in parentheses.

- ^[b] The reaction was conducted in a sealed quartz NMR tube.
- ^[c] Irradiation with a tungsten lamp (450 W).
- ^[d] Irradiation with a super-high pressure mercury lamp (250 W).

Table 2. Scope and limitations of reaction between triarylphosphines and perfluoroalkyl iodides under photoirradiation.

PAr ₃ + 0.3 mmol	$\begin{array}{c} R_{f} I & \underline{hv} \\ & CDCI_3 (\\ \mathbf{0.1 \ mmol} \end{array} \end{array}$	(Xe lamp) 1.0 mL), 30 h, r.t.	• R _f PAr ₂	$\left(\begin{array}{c} R_fPAr_2\\ II\\ S\\ 1j \end{array} \right)$
Entry	Ar	R _f l	Product	Yield ^[a]
1	Ph	<i>n</i> -C ₁₀ F ₂₁ I	1a	79%
2	$4-CF_3C_6H_4$	<i>n</i> -C ₁₀ F ₂₁ I	1b	84%
3	3-CF ₃ C ₆ H ₄	<i>n</i> -C ₁₀ F ₂₁ I	1c	84%
4	4-CIC ₆ H ₄	<i>n-</i> C ₁₀ F ₂₁ I	1d	73%
5	3,4,5-F ₃ C ₆ H ₂	<i>n-</i> C ₁₀ F ₂₁ I	1e	0%
6	$4-CH_3C_6H_4$	<i>n-</i> C ₁₀ F ₂₁ I	1f	0%
7	4-CH ₃ OC ₆ H ₄	<i>n-</i> C ₁₀ F ₂₁ I	1g	0%
8	$4-CF_3C_6H_4$	<i>n-</i> C ₁₂ F ₂₅ I	1h	71%
9	$4-CF_3C_6H_4$	<i>n</i> -C ₈ F ₁₇ Ⅰ	1i	83%
10 ^[b]	Ph	<i>i-</i> C ₅ F ₁₁ I	1j	39%

^[a] Isolated yield.

^[b] The product was isolated as a phosphine sulfide.

(entries 8 and 9). The branched perfluoroalkyl iodide $i-C_5F_{11}I$ gave the corresponding fluorinated phosphines in moderate yields (entries 10). Because of the low fluorine content of this fluorinated phosphine, it could not be extracted *via* FBS. Therefore, its isola-

tion was carried out *via* silica gel column chromatography as the corresponding phosphine sulfide (**1j**), after treatment with sulfur.

Moreover, in order to elucidate the tolerance of this reaction, trialkylphosphines were examined. When $(n-Bu)_3P$ and $(n-octyl)_3P$ were used, the corresponding *P*-perfluoroalkylated phosphines (**1k** and **1l**) were obtained rapidly in good yields [Eq. (2)]. Overall, the present reaction was tolerant to several triaryl- or trialkylphosphines and perfluoroalkyl iodides and successfully afforded the corresponding *P*-perfluoroalkylated phosphines.

$$\begin{array}{c|c} PR_{3} + n - C_{10}F_{21}I & \xrightarrow{hv (Xe \ lamp)} & n - C_{10}F_{21}PR_{2} & (2) \\ \hline CDCI_{3} (0.5 \ mL), \ 0.5 \ h, \ r.t. & \mathbf{1} \\ R = n - Bu, \ \mathbf{1k}: \ 79\% \\ = n - octyl, \ \mathbf{1l}: \ 77\% \\ I solated \ yield \end{array}$$

To obtain insight into the reaction pathway, the perfluoroalkylation reactions were conducted under several conditions [Eq. (3)]. When a mixture of PPh₃ and

$PPh_3 + n-C_{10}F_{21}I \xrightarrow{\text{conditions}}$	n-C ₁₀ F ₂₁ PPh ₂	(3)
0.3 mmol 0.1 mmol	1a	
BTF (2.0 mL), test tube, reflux, dark, 24 h	0%	
BTF (2.0 mL), two-necked flask AIBN (0.1 mmol), reflux, dark, 8 h	0%	
BTF (1.0 mL), Pyrex NMR tube filter (>350 nm), 30 h	0%	

n-C₁₀F₂₁-I was heated without irradiation, the desired perfluoroalkylphosphine was not obtained. Heating in the presence of the radical initiator AIBN^[16] did not facilitate the perfluoroalkylation reaction. Photoirradiation through a filter (>350 nm) also prevented the reaction. As heating of $R_{\rm f}$ -I with AIBN and irradiation of $R_{\rm f}$ -I^[17] around 350 nm can cause homolytic cleavage of $R_{\rm f}$ -I and generate perfluoroalkyl radicals ($R_{\rm f}$), these results suggested that $R_{\rm f}$ did not trigger the perfluoroalkylation reaction on the phosphorus atom.

Next, photoirradiation of Ar_3P was performed in the absence of R_f -I [Eq. (4)]. Irradiation of PPh₃ and

$$\begin{array}{c|c} PAr_{3} & Xe \ lamp & Ar_{2}P-PAr_{2} \\ \hline 0.3 \ mmol & yield \ (\%)^{[a]} \\ Ar: \ C_{6}H_{5} & 24 \\ & 3,4,5-F_{3}C_{6}H_{2} & 0 \\ & 4-CF_{3}C_{6}H_{4} & 30 \end{array}$$

$$(4)$$

Adv. Synth. Catal. 2015, 357, 2509-2519

 $Ar_{3}P \xrightarrow{h\nu} Ar_{2}P^{\bullet} \xrightarrow{Ar_{2}PPAr_{2}} Ar_{2}PPAr_{2} \xrightarrow{R_{f}^{\bullet}} Ar_{2}PR_{f}$

Scheme 1. A proposed reaction pathway for the photoinduced reaction between PAr_3 with $R_{f}I$.

 $(4-CF_3C_6H_4)_3P$ afforded diphosphines,^[18] but $(3,4,5-F_3C_6H_2)_3P$ did not afford the corresponding diphosphine. Triarylphosphines that could give the corresponding diphosphines were required for the perfluoroalkylation reaction.

A proposed reaction pathway for the photoinduced reaction between PAr_3 with R_f -I is illustrated in Scheme 1. It was previously reported that PAr₃ could be excited with a UV laser flash to generate diarylphosphino radicals (Ar₂P[•]).^[18,19] In the present reaction, we assumed that Ar_2P was also generated via the cleavage of the C-P bond of PAr₃ upon irradiation with the Xe lamp. The generated Ar₂P[•] forms diphosphine Ar_2P -PAr₂. Photoirradiation of R_f -I also generated perfluoroalkyl radicals (R_{f}) ,^[17] and the generated $R_{\rm f}$ could attack Ar_2P -PAr₂ to afford the product (Ar_2PR_f) . The S_H2 reaction between the phosphorus atom of Ar₃P and the perfluoroalkyl radical does not proceed, because there is no leaving group. However, the formation of Ar₂P-PAr₂ facilitates the attack by the radical and Ar₂P[•] serves as the leaving group.

Overall, by using triarylphosphines, a practical synthesis of P-perfluoroalkylated phosphines 1 has been developed. Next, we investigated the utility of the synthesized P-perfluoroalkylated phosphines as ligands.

Cu-Free Pd-Catalyzed Coupling Reaction between Acid Chlorides and Terminal Alkynes Using Perfluoroalkylated Phosphines as Ligands

We previously reported that $n-C_{10}F_{21}PPh_2$ reacted with PdCl₂(PhCN)₂ to form the palladium complex PdCl₂($n-C_{10}F_{21}PPh_2$)₂.^[5] Therefore, reactions using PdCl₂($n-C_{10}F_{21}PPh_2$)₂ as a catalyst were examined. When the coupling reaction between benzoyl chloride (**2a**) and 1-octyne (**3a**) was conducted in the presence of PdCl₂($n-C_{10}F_{21}PPh_2$)₂ under Cu-free conditions, surprisingly, the coupling product (1-phenylnon-2-yn-1one, **4aa**) was obtained in quantitative yield [Eq. (5)]. As a control, the coupling reaction was conducted in the absence of the *P*-perfluoroalkylated phosphine ligand and the desired product was obtained in a low yield. With Pd(OAc)₂ alone, the desired product was also obtained in a low yield. In contrast, the use of Pd(OAc)₂ with ligand **1a** afforded the product in excellent yield. These results showed that perfluoroal-

^[a] Determined by ³¹P NMR.

kylphosphine ligand **1a** had a positive effect on the coupling reaction.

Therefore, the effect of phosphine ligand **1** on the coupling reaction between acid chlorides and terminal alkynes was investigated. We first investigated the effects of the electronic properties of the phosphine ligands on the coupling reaction, because a characteristic feature of *P*-perfluoroalkylated phosphines is the electron deficiency (Table 3). The ³¹P,⁷⁷Se coupling constant (¹J_{P,Se}) is known to correlate with the electronic properties of phosphines.^[20] Specifically, a large ¹J_{P,Se} indicates that the phosphine ligand has a poor electron-donating ability. As such, these values are in-

Table 3. Effect of ligands on coupling reaction of benzoyl chloride with 1-octyne.^[a]

[a] Reaction conditions: benzoyl chloride (0.6 mmol), 1-octyne (0.5 mmol), PdCl₂(PhCN)₂ (1 mol%), ligand (2 mol%), Et₃N (0.2 mL), toluene (0.5 mL), room temperature.

^[b] Determined by ¹H NMR.

^[c] The data are from ref.^[5]

cluded in Table 3. When electron-poor phosphines (as compared to PPh₃) such as $(4-CF_3C_6H_4)_2P(n-C_{10}F_{21})$, $(4-CF_3C_6H_4)_3P$, and $(3,4,5-F_3C_6H_2)_3P$ were used, the coupling reaction proceeded to give **4aa** in excellent yield (entries 2, 7 and 8). In contrast, upon addition of relatively electron-rich phosphines such as $(4-CH_3C_6H_4)_3P$, $(4-CH_3OC_6H_4)_3P$, and $(2-CH_3C_6H_4)_3P$, the coupling reaction did not occur (entries 4–6). These results suggested that electron-deficient ligands were favorable for this coupling reaction.

The tolerance of the base and solvent for the coupling reaction was investigated (Table 4). As expected, the coupling reaction did not proceed in the absence of a base (entry 2). Other organic and inorganic bases were examined in place of Et_3N ; however, the coupling reaction did not proceed (entries 3–6). The coupling reaction proceeded well using THF, CHCl₃, CH₃CN, and BTF as the solvent (entries 8–11). Decreasing the amount of toluene was also tolerated in the coupling reaction and the use of toluene together with Et_3N represented the optimal conditions for the coupling reaction (entry 12).

With the optimal conditions in hand, the scope of the Cu-free coupling reaction was investigated (Table 5). When several benzoyl chlorides such as *p*-

Table 4. Influence of base and solvent on the coupling reaction between benzoyl chloride and 1-octyne.^[a]

 $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & + & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

Entry	Base	Solvent	Yield [%] ^[b]
1	Et ₃ N	toluene	99
2	-	toluene	0
3	EtN(<i>i</i> -Pr) ₂	toluene	16
4	pyridine	toluene	0
5	K ₂ CO ₃	toluene	trace
6	KO- <i>t-</i> Bu	toluene	7
7	Et ₃ N	dioxane	57
8	Et ₃ N	THF	98
9	Et ₃ N	CHCI ₃	99
10	Et ₃ N	CH₃CN	76
11	Et ₃ N	BTF	82
12 ^[c]	Et ₃ N	toluene	99 (85)

[a] Reaction conditions: benzoyl chloride (0.6 mmol), 1-octyne (0.5 mmol), PdCl₂(PhCN)₂ (1 mol%), ligand (2 mol%), Et₃N (0.2 mL), toluene (1.5 mL).

^[b] Determined by ¹H NMR (isolated yield).

^[c] Solvent (0.5 mL).

methylbenzoyl chloride, *p*-methoxybenzoyl chloride, and *p*-chlorobenzoyl chloride were coupled with 1octyne, the corresponding 1-arylnon-2-yn-1-ones were obtained in moderate to good yields (entries 2–4). The use of heteroaromatic acid chlorides also gave the desired products in good yields (entries 5 and 6). Furthermore, an aliphatic acid chloride, cyclohexanecarbonyl chloride, afforded the corresponding ynone successfully and in a good yield (entry 7). On the other hand, with acetyl chloride, the desired coupling

kynes. ¹⁻³				
R R 2	°CI + ═──R' 3	$\begin{array}{c} {\sf PdCl}_2({\sf PhCN})_2 \ (1 \ {\sf mol}\%) \\ \hline {\it n-C}_{10}{\sf F}_{21}{\sf PPh}_2 \ (2 \ {\sf mol}\%) \\ \hline {\sf Et}_3 N \ (0.2 \ {\sf mL}) \\ {\sf toluene} \ (0.5 \ {\sf mL}) \\ {\sf r.t.}, \ 1 \ {\sf h} \end{array}$		
Entry	2	3	Product, 4	Yield [%] ^[b]
1		<i>──−n</i> -C ₆ H ₁₃ 3a	4aa <i>n</i> -C ₆ H ₁₃	85
2	O 2b ^{Cl}	3a	4ba	76
3		3a H₃CO	4ca	86
4	CI 2d	3a Cl	4da	87
5	S 2e	3a	S 4ea n-C ₆ H ₁₃	89
6		3a	0 0 0 4fa 0 0 -C ₆ H ₁₃	85
7	Cl 2g O	3a	4ga O	78
8	CI 2h 0	3a	4ha 0 1	0
9	Cl 2a	CN 3b	CN O H	86
10	2a	3c	0 4ac	92 Cl
11	2a	≡	4a	d 86
12	2a	≡{OH 3e	OH 4a	43 e

Table 5. Scope and limitations of Cu-free coupling reaction between acid chlorides and terminal alkynes.^[a]

Adv. Synth. Catal. 2015, 357, 2509-2519

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

[a] Reaction conditions: benzoyl chloride (0.6 mmol), 1-octyne (0.5 mmol), PdCl₂(PhCN)₂ (1 mol%), ligand (2 mol%), Et₃N (0.2 mL), toluene (0.5 mL), room temperature.

^[b] Isolated yield.

^[c] The reaction was conducted at 40 °C for 1.5 h.

product was not obtained (entry 8). When several aliphatic terminal alkynes such as hex-5-ynenitrile, 6chlorohex-1-yne, and 3,3-dimethylbut-1-yne were employed, the coupling reactions proceeded efficiently (entries 9-11). Although the reaction between acid chlorides and alcohols generally produces esters, the reaction between benzoyl chloride and 2-methylbut-3yn-2-ol gave the desired coupling product in moderate yield (entry 12). The coupling reactions with conjugated and aromatic alkynes also proceeded efficiently (entries 13-17). However, the use of an alkyne bearing a pyridyl group prevented the coupling reaction (entry 18). Finally, although the coupling reaction that employed triisopropylsilylacetylene required a longer reaction time and higher temperature, the coupling product was obtained in excellent yield (entry 19). As shown in Table 5, the $PdCl_2(n-C_{10}F_{21}PPh_2)_2$ -catalyzed coupling reaction had a relatively high tolerance for a wide range of acid chlorides and terminal alkynes.

Finally, we attempted to recycle the Pd catalyst in the coupling reaction (Scheme 2). In the presence of a catalytic amount of $PdCl_2(PhCN)_2$ and ligand 1b,^[21] the reaction between acid chloride 2a and alkyne 3a was examined. After the reaction, the crude product and palladium catalyst were separated *via* FBS and

isolated in their respective layers. Next, the reaction between 2a with 3a was conducted with the recovered catalyst from the fluorous layer. The palladium catalyst could be reused at least twice^[22] to afford the desired coupling product 4aa in good yields (entry 1). Additionally, we conducted the recycling reaction with addition of a *P*-perfluoroalkylated phosphine ligand 2a after every coupling reaction. As the result, the coupling products were obtained in higher yields than those without addition of the *P*-perfluoroalkylated phosphine ligand after every reaction (entry 2).

Conclusions

We have developed a facile photoinduced reaction between triarylphosphines and perfluoroalkyl iodides to afford P-perfluoroalkylated phosphines. The utility of triarylphosphines as a phosphorus source was highlighted. The synthesized P-perfluoroalkylated phosphines can form a complex with palladium, which catalyzes the coupling reaction between acid chlorides and terminal alkynes in the absence of copper iodide. Electron-deficient phosphine ligands had a positive effect on the coupling reaction. This palladium–P-per-

Advanced

^[b] P-Perfluoroalkylated phosphine (1b) was added before

 $^{[c]}\ensuremath{\mathcal{P}}\xspace$ -Perfluoroalkylated phosphine $(\mathbf{1a})$ was added before

first run and after every reaction.

Scheme 2. Effects of recycling the palladium catalyst on the coupling reaction between acid chlorides and alkynes.

fluoroalkylated phosphine complex-catalyzed coupling reaction has a tolerance for various aromatic acid chlorides and terminal alkynes. The recyclability of the complex was also demonstrated. Because of the facile synthesis of *P*-perfluoroalkylated phosphines, investigations regarding their potential synthetic applications as well as those of their palladium complexes are ongoing in our laboratory.

Experimental Section

General Comments

 $(4\text{-}CF_3C_6H_4)_3P_*^{[23]}$ $(3\text{-}CF_3C_6H_4)_3P_*^{[24]}$ $(4\text{-}ClC_6H_4)_3P_*^{[25]}$ and $(3,4,5\text{-}F_3C_6H_2)_3P_*^{[26]}$ were synthesized according to the literature. Other materials were obtained from commercial suppliers. All liquids were purified by distillation before use except deuterated solvents and alkynes.

General Procedure for the Photoinduced Reaction of Triarylphosphines with Perfluoroalkyl Iodides

PAr₃ (0.3 mmol), perfluoroalkyl iodide ($R_{\rm f}$ I, 0.1 mmol), and CDCl₃ (1 mL) were placed in a sealed Pyrex glass NMR tube under an argon atmosphere. The mixture was stirred for 30 s and was then irradiated with a xenon lamp (500 W) at room temperature for 30 h. After the reaction, the generation of Ar₂PR_f was confirmed by ¹⁹F NMR analysis. The crude mixture was poured into a 30-mL Schlenk flask and evaporated. MeOH (2 mL) was added to the flask, and the product was sufficiently pure without further purification The spectral and analytical data of **1a** are shown in ref.^[5]

(Perfluorodecyl)bis[4-(trifluoromethyl)phenyl]phosphine (1b): white solid; ¹H NMR (400 MHz, CDCl₃): δ =7.70 (d, J=7.9 Hz, 4H), 7.78 (t, $J_{\rm H,H}$ = $J_{\rm H,P}$ =8.2 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ =123.6 (d, J_{CP} =272.8 Hz), 125.7 (dq, J_{CF} = J_{CP} =3.8 Hz), 132.8 (q, J_{CF} =15.3 Hz), 133.1 (q, J_{CF} =33.4 Hz), 135.3 (d, J_{CP} =22.9 Hz); ³¹P NMR (162 MHz, CDCl₃): δ =0.4–1.2 (m); ¹⁹F NMR (376 MHz, CDCl₃): δ =-126.2 (2F), -122.7 (2F), -121.9 (2F), -121.7 (6F), -121.3 (2F), -117.3 (d, J_{FP} =28.3 Hz, 2F), -108.2 (dt, J_{FP} =57.0 Hz, J=14.3 Hz, 2F), -80.7 (t, J=9.9 Hz, 3F), -63.3 (6F); HR-MS (FAB): m/z=841.0031, calcd. for C₂₄H₉F₂₇P [M+H]⁺: 841.0011.

(Perfluorodecyl)bis[3-(trifluoromethyl)phenyl]phosphine (1c): white solid; ¹H NMR (400 MHz, CDCl₃): δ =7.54 (dd, $J_{\rm H,H}$ =7.7, $J_{\rm H,P}$ =8.6 Hz, 2H), 7.70 (d, J=7.7 Hz, 2H) 7.78 (dd, $J_{\rm H,H}$ =7.7, $J_{\rm H,P}$ =7.3 Hz, 2H), 7.85 (d, J=8.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ =123.9 (q, $J_{\rm C,F}$ =272.6 Hz), 128.0 (q, $J_{\rm C,F}$ =2.9 Hz), 129.5 (d, $J_{\rm C,P}$ =7.7 Hz), 131.7 (q, $J_{\rm C,F}$ =24.4 Hz), 131.8 (dq, $J_{\rm C,P}$ =20.1 Hz, $J_{\rm C,F}$ =3.8 Hz), 138 (d, $J_{\rm C,P}$ =20.0 Hz); ³¹P NMR (162 MHz, CDCl₃): δ =0.3–1.1 (m); ¹⁹F NMR (376 MHz, CDCl₃): δ –126.0 (2F), –122.7 (2F), –121.8 (2F), –121.7 (6F), –121.2 (2F) –117.4 (2F), –108.3 (dt, $J_{\rm F,P}$ =56.9 Hz, $J_{\rm F,P}$ =11.4 Hz, 2F), –80.7 (t, J= 11.4 Hz, 3F), 62.9 (6F); HR-MS (FAB): m/z=878.9791, calcd. for C₂₂H₈F₂₇PONa [M+Na]⁺: 878.9776.

Bis(4-chlorophenyl)(perfluorodecyl)phosphine (1d): white solid; ¹H NMR (400 MHz, CDCl₃): δ =7.41 (d, *J*=8.8 Hz, 4H), 7.58 (t, *J*_{H,H}=*J*_{H,P}=8.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ =129.0 (d, *J*_{C,P}=7.7 Hz), 134.8 (d, *J*_{C,P}=20.0 Hz), 135.5; ³¹P NMR (162 MHz, CDCl₃): δ =-0.7- -0.1 (m); ¹⁹F NMR (376 MHz, CDCl₃): δ =-126.1 (2F), -123.6 (2F), -121.2 (8F), -120.8 (2F), -117.8 (d, *J*_{F,P}=21.3 Hz, 2F), -108.8 (dt, *J*_{F,P}=51.5 Hz, *J*=14.3 Hz, 2F), -80.6 (t, *J*=11.2 Hz, 3F); HR-MS (FAB): *m*/*z*=788.9436, calcd. for C₂₂H₉Cl₂F₂₁OP [M+H]⁺: 788.9433.

(Perfluorododecyl)bis[4-(trifluoromethyl)phenyl]phosphine (1h): white solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (d, J = 7.6 Hz, 4H), 7.78 (t, $J_{\rm H,H}$ = $J_{\rm H,P}$ = 8.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ = 123.8 (q, $J_{\rm C,F}$ = 271.6 Hz), 125.6 (q, $J_{\rm C,F}$ = 2.9 Hz), 131.5 (q, $J_{\rm C,F}$ = 16.7 Hz), 134.0 (d, $J_{\rm C,P}$ = 20.0 Hz); ³¹P NM R (162 MHz, CDCl₃): δ = 0.1–1.0

(m); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -126.0$ (2F), -121.8 (4F), -121.6 (10F), -121.2 (2F), -117.2 (d, $J_{\rm EP} = 28.5$ Hz, 2F), -108.4 (dt, $J_{\rm EP} = 56.9$ Hz, J = 11.4 Hz, 2F), -80.6 (t, J = 11.4 Hz, 3F), -63.2 (6F): HRMS (FAB): m/z = 955.9811, calcd. for C₂₆H₈F₃₁PO [M]⁺: 955.9818.

(Perfluorooctyl)bis[4-(trifluoromethyl)phenyl]phosphine (1): white solid; ¹H NMR (400 MHz, CDCl₃): δ =7.71 (d, J=8.2 Hz, 4H), 7.78 (t, $J_{\rm H,H}$ = $J_{\rm H,P}$ =8.2 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ =123.6 (q, $J_{\rm C,F}$ =273.7 Hz), 125.7 (q, $J_{\rm C,F}$ =3.8 Hz), 132.8 (q, $J_{\rm C,F}$ =14.3 Hz), 135.3 (d, $J_{\rm C,P}$ = 22.9 Hz); ³¹P NMR (162 MHz, CDCl₃): δ =0.26-1.1 (m); ¹⁹F NMR (376 MHz, CDCl₃): δ =-126.1 (2F), -122.7 (2F), -121.9 (2F), -121.8 (2F), -121.3 (2F), -117.6 (d, $J_{\rm F,P}$ = 19.9 Hz, 2F), -108.2 (dt, $J_{\rm F,P}$ =56.9 Hz, J=11.4 Hz, 2F), -80.8 (t, J=11.4 Hz, 3F), -63.5 (6F); HR-MS (FAB): m/z=757.0009, calcd. for C₂₂H₉F₂₃PO [M+H]⁺: 757.0023.

In the case of product **1j**: after the reaction of Ph_3P with R_f -I, the generation of Ph_2PR_f was confirmed by ³¹P NMR analysis. Sulfur (28.8 mg, 0.9 mmol) was added to the tube, and then the tube was heated at 60 °C after which it was shaken for 30 seconds. The crude mixture was purified by preparative TLC on silica gel.

(Perfluoroisopentyl)diphenylphosphine sulfide (1j): white solid; ¹H NMR (400 MHz, CDCl₃): δ =7.55–7.57 (m, 4H), 7.62–7.64 (m, 2H), (dd, $J_{\rm H,H}$ =8.0 Hz, $J_{\rm H,P}$ =13.5. Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ =126.3 (d, $J_{\rm C,P}$ =83.4 Hz), 129.0 (d, $J_{\rm C,P}$ =13.8 Hz), 133.0 (d, $J_{\rm C,P}$ =10.5 Hz), 133.3 (d, $J_{\rm C,P}$ =3.1 Hz); ³¹P NMR (162 MHz, CDCl₃): δ =46.3 (t, $J_{\rm P,F}$ =67.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ =-185.4 (1F), -113.6 (d, J=80.1 Hz, 2F), -110.6 (d, J=80.1 Hz, 2F), -71.8 (t, J=11.5 Hz, 6F); HR-MS (FAB): m/z=487.0131, calcd. for C₁₇H₁₁F₁₁PS [M+H]⁺: 487.0143.

Dibutyl(perfluorodecyl)phosphine (1k): colorless oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.93$ (d, J = 7.5 Hz, 6H), 1.40–1.53 (m, 8H), 1.57–1.63 (m, 2H), 1.80–1.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.6$, 21.6 (d, $J_{C,P} = 15.2$ Hz), 24.2 (d, $J_{C,P} = 13.3$ Hz), 28.0 (d, $J_{C,P} = 16.2$ Hz); ³¹P NMR (162 MHz, CDCl₃): $\delta = -3.4$ to -2.6 (m); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -126.1$ (2F), -122.7 (2F), -121.8 (2F), -121.5 (8F), -119.2 (2F), -114.5 (dt, $J_{F,P} = 45.4$ Hz, J = 11.4 Hz, 2F), -80.8 (t, J = 11.2 Hz, 3F); HR-MS (FAB): m/z = 681.0850, calcd. for C₁₈H₁₉F₂₁PO [M+H]⁺: 681.0838.

Dioctyl(perfluorodecyl)phosphine (11): colorless oil; H NMR (400 MHz, CDCl₃): $\delta = 0.81$ (t, J = 6.3 Hz, 6H), 1.21–1.52 (m, 26H), 1.71–1.79 (m, 2H); ¹³C N MR (100 MHz, CDCl₃): $\delta = 14.0$, 21.8 (d, $J_{C,P} = 5.7$ Hz), 22.0 (d, $J_{C,P} = 4.8$ Hz) 22.7, 25.9 (d, $J_{C,P} = 16.8$ Hz), 29.1, 31.1 (d, $J_{C,P} =$ 12.4 Hz), 31.8; ³¹P NMR (162 MHz, CDCl₃): $\delta = -3.6$ to -2.7 (m); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -126.1$ (2F), -122.7 (2F), -121.7 (8F), -121.5 (2F), -119.2 (2F), -114.5(dt, $J_{F,P} = 45.6$ Hz, J = 11.4 Hz, 2F), -80.8 (t, J = 11.2 Hz, 3F); HR-MS (FAB): m/z = 777.2156, calcd. for $C_{26}H_{33}F_{21}P$ [M+H]⁺: 777.2141.

Experimental Procedures for the Measurement of ³¹P,⁷⁷Se Coupling Constants of Several Phosphine Selenides

Preparation of phosphine selenide: Under inert atmosphere, phosphine (0.1 mmol), selenium powder (23.7 mg, 0.3 mmol), and CHCl₃ or toluene were added into a 20-mL

two-necked round-bottomed flask equipped with a condenser. The mixture was heated at 100 °C for 48 hours. Then unreacted selenium powder was removed by filtration. Purification of phosphine selenide was performed by preparative TLC on silica gel using AcOEt and hexane as eluent to give pure phosphine selenide. The phosphine selenides (n- $C_{10}F_{21}$)Ph₂P=Se,^[5] Ph₃P=Se,^[27] (4-CH₃C₆H₄)₃P=Se,^[27] (4-CH₃OC₆H₄)₃P=Se,^[27] (2-CH₃C₆H₄)₃P=Se,^[27] and (4-CF₃C₆H₄)₃P=Se^[27] are described in the literature.

(Perfluorodecyl)bis[4-(trifluoromethyl)phenyl]phosphine selenide: white solid; ¹H NMR (400 MHz, CDCl₃): δ =7.84 (dd, $J_{\text{H,H}}$ =8.2 Hz, $J_{\text{H,F}}$ =2.7 Hz, 4H), 8.17 (dd, $J_{\text{H,P}}$ =13.6 Hz, $J_{\text{H,H}}$ =8.2 Hz, 4H); ³¹P NMR (162 MHz, CDCl₃): δ =38.1 (t, $J_{\text{P,F}}$ =67.1 Hz, $J_{\text{P,Se}}$ =847 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ =-126.1 (2F), -122.7 (2F), -121.8 (2F), -121.7 (6F), -121.3 (2F), -114.4 (2F), -108.5 (dt, $J_{\text{F,P}}$ =65.5 Hz, J= 14.2 Hz, 2F), -80.7 (t, $J_{\text{F,P}}$ =9.9 Hz, 3F), -63.4 (6F).

Tris(3,4,5-trifluorophenyl)phosphine selenide: white solid; ¹H NMR (400 MHz, CDCl₃): δ =7.34 (dt, J=14.0 Hz, 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ =117.2 (m), 126.5 (dd, J=80.1, 4.8 Hz), 142.8 (dt, J=264.2, 15.3 Hz), 151.4 (dqd, J=258.0, 10.5, 2.9 Hz); ³¹P NMR (162 MHz, CDCl₃): δ =35.3 (m, J_{P,Se}=795 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ =-128.6 (d, J=22.8 Hz, 6F), -150.8 (t, J= 22.8 Hz, 3F); ⁷⁷Se NMR (76 MHz, CDCl₃): δ =-260.0 (d, J_{P,Se}=794 Hz).

Experimental Procedure for Catalyst Recycling in the Cu-Free Cross Coupling Reactions between Acid Chlorides and Terminal Alkynes Using *P*-Perfluoroalkylated Phosphines

Under an inert atmosphere, PdCl₂(PhCN)₂ (1.9 mg, 0.005 mmol), $(n-C_{10}F_{21})P(4-CF_{3}C_{6}H_{4})_{2}$ (8.4 mg, 0.010 mmol), toluene (0.5 mL), acid chloride (0.60 mmol), terminal alkyne (0.50 mmol), and Et₃N (0.20 mL, 1.7 mmol) were added into a 20-mL two-necked round-bottomed flask in this order. After the mixture was stirred at room temperature for 1 h, solvents were removed under vacuum. After MeOH (5 mL) was added, the mixture was extracted with FC-72 (5 mL \times 5). After the fluorous layer was poured into a 20-mL twonecked round-bottomed flask, the solvent was removed under vacuum. Under an inert atmosphere, toluene (0.5 mL), acid chloride (0.60 mmol), terminal alkyne (0.50 mmol), and Et₃N (0.20 mL, 1.7 mmol) were added to the flask. The second reaction was conducted in a similar fashion. In the recycled reaction, purification was performed via preparative TLC on silica gel using AcOEt and hexane (=1:30 in the case of 4aa) as the eluents to give the coupling product. Structural identification was conducted using ^{$\hat{1}$}H NMR, ¹³C NMR, and GC-MS (EI).

1-Phenyl-2-nonyn-1-one (**4aa**):^[11a] pale yellow oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.91$ (t, J = 6.9 Hz, 3H), 1.29–1.35 (m, 4H), 1.43–1.51 (m, 2H), 1.67 (quint, J =7.3 Hz, 2H), 2.49 (t, J = 7.3 Hz, 2H), 7.46 (dd, J = 7.8, 7.8 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 8.18 (d, J = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 13.9$, 19.1, 22.4, 27.7, 28.5, 31.1, 79.6, 96.8, 128.4, 129.4, 133.7, 136.8, 178.1; MS (EI): m/z = 214 (M⁺).

1-(4-Methylphenyl)-2-nonyn-1-one (4ba):^[11a] pale yellow oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.91$ (t, J = 6.9 Hz, 3H), 1.28–1.38 (m, 4H), 1.43–1.52 (m, 2H), 1.67 (quint, J =

2516 asc.wiley-vo

asc.wiley-vch.de

 $\ensuremath{\mathbb O}$ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

7.3 Hz, 2H), 2.43 (s, 3H), 2.49 (t, J=7.3 Hz, 2H), 7.26 (d, J=8.2 Hz, 2H), 8.02 (d, J=8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta=14.2$, 19.4, 21.9, 22.6, 27.9, 28.8, 31.4, 79.9, 96.5, 129.3, 129.8, 134.8, 145.0, 178.1; MS (EI): m/z=228 (M⁺).

1-(4-Methoxyphenyl)-2-nonyn-1-one (4ca):^[11a] yellow oil; ¹H NMR (400 MHz, CDCl₃): δ =0.91 (t, *J*=6.8 Hz, 3 H), 1.29–1.35 (m, 4 H), 1.44–1.51 (m, 2 H), 1.63–1.71 (m, 2 H), 2.49 (t, *J*=7.3 Hz, 2 H), 3.89 (s, 3 H), 6.95 (dd, *J*=6.8, 2.3 Hz, 2 H), 8.10 (d, *J*=6.8, 2.3 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ =14.2, 19.4, 22.6, 28.0, 28.8, 31.4, 55.7, 79.8, 96.1, 113.9, 130.5, 132.0, 164.4, 177.1; MS (EI): *m*/*z* = 244 (M⁺).

1-(4-Chlorophenyl)-2-nonyn-1-one (4da);^[11a] pale yellow oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.91$ (t, J = 7.1 Hz, 3 H), 1.30–1.35 (m, 4 H), 1.44–1.51 (m, 2 H), 1.68 (quint, J = 7.3 Hz, 2 H), 2.50 (t, J = 7.1 Hz, 2 H), 7.45 (dt, J = 8.7, 2.0 Hz, 2 H), 8.07 (dt, J = 8.7, 2.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.1$, 19.4, 22.6, 27.9, 28.8, 31.4, 79.5, 97.7, 129.0, 131.0, 135.5, 140.6, 177.0; MS (EI): m/z = 248, 250 (M⁺).

1-(2-Thienyl)-2-nonyn-1-one (4ea):^[27] yellow oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.91$ (t, J = 7.0 Hz, 3H), 1.30–1.34 (m, 4H), 1.43–1.51 (m, 2H), 1.62–1.70 (m, 2H), 2.47 (t, J = 7.0 Hz, 2H), 7.14 (dd, J = 5.0, 3.6 Hz, 1H), 7.68 (dd, J = 5.0, 1.4 Hz, 1H), 7.89 (dd, J = 4.1, 1.4 Hz, 1H); ¹³C NM R (100 MHz, CDCl₃): $\delta = 14.1$, 19.2, 22.6, 27.8, 28.7, 31.3, 79.4, 95.5, 128.3, 134.91, 134.94, 145.1, 170.1; MS (EI): m/z = 220 (M⁺).

1-(2-Furyl)-2-nonyn-1-one (4fa):^[28] yellow oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.90$ (t, J = 7.0 Hz, 3H), 1.30–1.34 (m, 4H), 1.42–1.50 (m, 2H), 1.61–1.68 (m, 2H), 2.46 (t, J = 7.3 Hz, 2H), 6.57 (dd, J = 3.6, 1.8 Hz, 1H), 7.32 (dd, J = 3.6, 0.9 Hz, 1H), 7.65 (dd, J = 1.8, 0.9 Hz, 1H); ¹³C NM R (100 MHz, CDCl₃): $\delta = 14.1$, 19.2, 22.6, 27.7, 28.6, 31.3, 79.1, 95.8, 112.6, 120.7, 147.8, 153.3, 165.1; MS (EI): m/z = 204 (M⁺).

1-Cyclohexyl-2-nonyn-1-one (4ga):^[11a] yellow oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.90$ (t, J = 7.0 Hz, 3H), 1.19–1.35 (m, 6H), 1.36–1.46 (m, 4H), 1.55–1.68 (m, 3H), 1.78 (dt, J = 12.2, 7.3 Hz, 2H), 1.97 (dd, J = 13.1, 3.2 Hz, 2H), 2.37 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.2, 19.1, 22.6, 25.6, 26.0, 27.9, 28.4, 28.7, 31.3, 52.4, 80.3, 95.2, 191.9;$ MS (EI): m/z = 220 (M⁺).

7-Oxo-7-phenylhept-5-ynenitrile (4ab):^[11a] yellow oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.04$ (quint, J = 7.0 Hz, 2 H), 2.58 (t, J = 7.0 Hz, 2 H), 2.71 (t, J = 7.0 Hz, 2 H), 7.49 (t, J = 7.5 Hz, 2 H), 7.62 (tt, J = 7.3, 1.4 Hz, 1 H), 8.11 (dd, J =7.9, 1.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 16.4$, 18.2, 23.8, 80.8, 92.7, 118.7, 128.7, 129.5, 134.3, 136.5, 177.8; MS (EI): m/z = 197 (M⁺).

1-Phenyl-7-chlorohept-2-yn-1-one (4ac): pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ =1.80–1.88 (m, 2H), 1.93– 2.00 (m, 2H), 2.55 (t, *J*=6.8 Hz, 2H), 3.60 (t, *J*=6.3 Hz, 2H), 7.48 (t, *J*=7.7 Hz, 2H), 7.60 (tt, *J*=7.5, 1.4 Hz, 1H), 8.13 (dd, *J*=7.3, 1.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ =18.6, 25.1, 31.5, 44.3, 80.0, 95.5, 128.6, 129.5, 134.0, 136.8, 178.1; MS (EI): *m/z*=220, 222 (M⁺); HR-MS (ESI): *m/z*= 243.0553, calcd. for C₁₃H₁₃CIONa [M+Na]⁺: 243.0553.

1-Phenyl-4,4-dimethylpent-2-yn-1-one (4ad):^[12b] pale yellow oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.39$ (s, 9 H), 7.47 (t, J = 7.7 Hz, 2 H), 7.59 (tt, J = 7.4, 1.4 Hz, 1 H), 8.12 (dd, J = 8.6, 1.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): $\delta =$

28.1, 30.2, 78.2, 104.0, 128.5, 129.6, 133.9, 137.1, 178.4; MS (EI): *m/z* = 186 (M⁺).

Advanced >

1-Phenyl-4-hydroxy-4-methylpent-2-yn-1-one (4ae):^[11a] pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ =1.68 (s, 6H), 7.48 (t, *J*=7.7 Hz, 2H), 7.61 (tt, *J*=7.5, 1.4 Hz, 1H), 8.12 (dd, *J*=8.4, 1.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ =30.8, 65.4, 80.0, 98.3, 128.7, 129.7, 134.4, 136.6, 178.1; MS (EI): *m/z*=188 (M⁺).

1-Phenyl-3-(1-cyclohexenyl)prop-2-yn-1-one (4af):^[11a] yellow oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.62-1.74$ (m, 2H), 2.18–2.24 (m, 1H), 2.27–2.31 (m, 1H), 6.58–6.60 (m, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.60 (tt, J = 7.7, 1.4 Hz, 1H), 8.14 (dd, J = 7.7, 0.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.2$, 22.1, 26.3, 28.5, 85.4, 95.9, 119.3, 128.6, 129.6, 133.9, 137.2, 142.8, 178.3; MS (EI): m/z = 210 (M⁺).

1,3-Diphenylprop-2-yn-1-one (4ag):^[11a] pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.42 (tt, *J* = 7.3, 1.6 Hz, 2 H), 7.46–7.54 (m, 3 H), 7.63 (tt, *J* = 7.5, 1.4 Hz, 1 H), 7.70 (dd, *J* = 8.4, 1.4 Hz, 2 H), 8.23 (dd, *J* = 8.6, 1.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ = 87.0, 93.2, 120.2, 128.7, 128.8, 129.7, 130.9, 133.2, 134.2, 137.0, 178.1; MS (EI): *m*/*z* = 206 (M⁺).

3-(4-Methylphenyl)-1-phenylprop-2-yn-1-one (4ah):^[11a] pale yellow solid; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.40$ (s, 3H), 7.22 (d, J = 7.7 Hz, 2H), 7.51 (t, J = 7.7 Hz, 2H), 7.58 (d, J = 8.2 Hz, 2H), 7.62 (tt, J = 7.5, 1.4 Hz, 1H), 8.22 (dd, J = 8.2, 1.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.9$, 86.9, 93.6, 117.1, 128.7, 129.6, 129.7, 133.2, 134.1, 137.0, 141.7, 178.2; MS (EI): m/z = 220 (M⁺).

3-(4-Methoxyphenyl)-1-phenylprop-2-yn-1-one (4ai):^[11a] yellow solid; ¹H NMR (400 MHz, CDCl₃): δ = 3.86 (s, 3 H), 6.94 (d, *J* = 8.2 Hz, 2 H), 7.52 (t, *J* = 7.7 Hz, 2 H), 7.60–7.66 (m, 3 H), 8.20 (d, *J* = 7.7, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ = 55.6, 87.0, 94.4, 112.1, 114.6, 128.7, 129.6, 134.0, 135.3, 137.2, 161.9, 178.2; MS (EI): *m/z* = 236 (M⁺).

1-Phenyl-3-(4-trifluoromethylphenyl)prop-2-yn-1-one (**4a**);^[11a] pale yellow solid; ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.54 (dd, J = 7.7, 7.3 Hz, 2H), 7.66 (tt, J = 7.7, 1.4 Hz, 1H), 7.69 (d, J = 8.6 Hz, 2H), 7.79 (d, J = 8.2 Hz, 2H), 8.22 (dd, J = 8.4, 1.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 88.2, 90.6, 123.7 (q, $J_{C,F} =$ 272.8 Hz), 124.0, 125.9 (q, $J_{C,F} =$ 3.8 Hz), 128.9, 129.8, 132.4 (q, $J_{C,F} =$ 33.4 Hz), 133.3, 134.6, 136.7, 177.8; ¹⁹F NMR (373 MHz, CDCl₃): $\delta =$ -63.0; MS (EI): m/z = 274 (M⁺).

1-Phenyl-3-(triisopropylsilyl)prop-2-yl-1-one (4al):^[11a] yellow oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.12-1.26$ (m, 21 H), 7.49 (t, J = 7.5 Hz, 2H), 7.61 (tt, J = 7.3, 1.4 Hz, 1H), 8.18 (dd, J = 7.9, 1.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 11.2$, 18.7, 98.1, 103.2, 128.7, 129.6, 134.2, 136.9, 177.6; MS (EI): m/z = 286 (M⁺).

Acknowledgements

We thank Kyoto-Nara Advanced Nanotechnology Network and the analytical section of Osaka University, Japan for high resolution mass spectra measurement.

References

- [1] I. T. Horváth, J. Rábai, Science 1994, 266, 72-75.
- [2] a) J. A. Gladysz, D. P. Curran, I. T. Horváth, *Handbook of Fluorous Chemistry*, Wiley-VCH, Weinheim, 2004;
 b) I. T. Horváth, *Acc. Chem. Res.* 1998, *31*, 641–650;
 c) J. Raábai, D. Szabo, E. K. Borbás, I. Kövesi, I. Kovsedi, A. Csámpai, A. Gömöry, V. E. Pashinnik, Y. G. Shermolovich, *J. Fluorine Chem.* 2002, *114*, 199–207;
 d) B. Betzemeier, P. Knochel, *Angew. Chem.* 1997, *109*, 2736–2738; *Angew. Chem. Int. Ed. Engl.* 1997, *36*, 2623–2624; e) J. Moineau, G. Pozzi, S. Quici, D. Sinou, *Tetrahedron Lett.* 1999, *40*, 7683–7686; f) C. C. Tzschucke, C. Markert, H. Glatz, W. Bannwarth, *Angew. Chem.* 2002, *114*, 4678–4681; *Angew. Chem. Int. Ed.* 2002, *41*, 4500–4503.
- [3] a) P. Bhattacharyya, D. Gudmunsen, E. G. Hope, R. D. W. Kemmitt, D. R. Paige, A. M. Stuart, *J. Chem. Soc. Perkin Trans.* 1 1997, 3609–3612; b) M. L. Clarke, D. Ellis, K. L. Mason, A. G. Orpen, P. G. Pringle, R. L. Wingad, D. A. Zaher, R. T. Baker, *Dalton Trans.* 2005, 1294–1300; c) W. P. Chen, J. L. Xiao, *Tetrahedron Lett.* 2000, 41, 3697–3700; d) W. P. Chen, L. J. Xu, Y. L. Hu, A. M. B. Osuna, J. L. Xiao, *Tetrahedron* 2002, 58, 3889– 3899; e) E. Castillejos, M. Jahjah, I. Favier, A. Orejon, C. Pradel, E. Teuma, A. M. Masdeu-Bulto, P. Serp, M. Gomez, *ChemCatChem* 2012, 4, 118–122; f) C. Markert, W. Bannwarth, *Helv. Chim. Acta* 2002, 85, 1877–1882.
- [4] a) A. K. Brisdon, C. J. Herbert, *Chem. Commun.* 2009, 6658–6660; b) S. E. Vaillard, A. Postigo, R. A. Rossi, *Organometallics* 2004, 23, 3003–3007; c) M. N. Lanteri, R. A. Rossi, S. E. Martín, *J. Organomet. Chem.* 2009, 694, 3425–3430.
- [5] S.-i. Kawaguchi, Y. Minamida, T. Ohe, A. Nomoto, M. Sonoda, A. Ogawa, Angew. Chem. 2013, 125, 1792–1796; Angew. Chem. Int. Ed. 2013, 52, 1748–1752.
- [6] a) G. V. M. Sharma, G. Srikanth, P. P. Reddy, Org. Biomol. Chem. 2012, 10, 8119–8124; b) R. S. Ferrarini, A. A. Dos Santos, J. V. Comasseto, Tetrahedron 2012, 68, 10601–10610; c) M. Yoshida, Y. Fujino, K. Saito, T. Doi, Tetrahedron 2011, 67, 9993–9997.
- [7] a) T. Kusakabe, H. Sagae, K. Kato, Org. Biomol. Chem.
 2012, 10, 8119–8124; b) K. Murai, S. Miyazaki, H. Fujioka, Tetrahedron Lett. 2012, 53, 3746–3749.
- [8] a) A. Axelrod, A. M. Eliasen, M. R. Chin, K. Zlotkowski, D. Siegel, Angew. Chem. 2013, 125, 3505–3508; Angew. Chem. Int. Ed. 2013, 52, 3421–3424; b) C. R. Reddy, E. Jithender, K. R. Prasad, J. Org. Chem. 2013, 78, 4251–4260; c) A. Yamamoto, A. Ueda, P. Bremond, P. S. Tiseni, Y. Kishi, J. Am. Chem. Soc. 2012, 134, 893–896; d) N. Gouault, M. Le Roch, G. C. Pinto, M. David, Org. Biomol. Chem. 2012, 10, 5541–5546.
- [9] Y. Tohda, K. Sonogashira, N. Hagihara, *Synthesis* **1977**, 777–778.
- [10] C. Glaser, Ber. dtsch. chem. Ges. 1869, 2, 422-424.
- [11] a) S. Atobe, H. Masuno, M. Sonoda, Y. Suzuki, H. Shinohara, S. Shibata, A. Ogawa, *Tetrahedron Lett.* 2012, 53, 1764–1767; b) S. Santra, K. Dhara, P. Ranjan, P. Bera, J. Dash, S. K. Mandal, *Green Chem.* 2011, 13, 3238–3247; c) M. Bakherad, A. Keivanloo, B. Bahramian, M. Rajaie, *Tetrahedron Lett.* 2010, 51, 33–35; d) P. R. Likhar, M. S. Subhas, M. Roy, S. Roy, M. L.

Kantam, *Helv. Chim. Acta* **2008**, *91*, 259–264; e) S. S. Palimkar, P. H. Kumar, N. R. Jogdand, T. Daniel, R. J. Lahoti, K. V. Srinivasan, *Tetrahedron Lett.* **2006**, *47*, 5527–5530; f) W. J. Sun, Y. Wang, X. Wu, X. Q. Yao, *Green Chem.* **2013**, *15*, 2356–2360; g) D. A. Alonso, C. Najera, M. C. Pacheco, *J. Org. Chem.* **2004**, *69*, 1615–1619.

- [12] < For other synthetic methods towards ynones, see: a) S.-i. Kawaguchi, P. Srivastava, L. Engman, Tetrahedron Lett. 2011, 52, 4120-4122; b) B. Liang, M. Huang, Z. You, Z. Xiong, K. Lu, R. Fathi, J. Chen, Z. Yang, J. Org. Chem. 2005, 70, 6097-6100; c) X.-F. Wu, B. Sundararaju, H. Neumann, P. H. Dixneuf, M. Beller, Chem. Eur. J. 2011, 17, 106-110; d) Y. Nishihara, D. Saito, E. Inoue, Y. Okada, M. Miyazaki, Y. Inoue, K. Takagi, Tetrahedron Lett. 2010, 51, 306-308; e) J. Liu, X. Peng, W. Sun, Y. Zhao, C. Xia, Org. Lett. 2008, 10, 3933-3936; f) R. J. Cox, D. J. Ritson, T. A. Dane, J. Berge, J. P. H. Charmant, A. Kantacha, Chem. Commun. 2005, 1037-1039; g) M. S. Mohamed Ahmed, A. Sekiguchi, K. Masui, A. Mori, Bull. Chem. Soc. Jpn. 2005, 78, 160-168; h) C. H. Oh, V. R. Reddy, Tetrahedron Lett. 2004, 45, 8545-8548; i) M. M. Jackson, C. Leverett, J. F. Toczko, J. C. Roberts, J. Org. Chem. 2002, 67, 5032-5035; j) E. Mohammadi, B. Movassagh, M. Navidi, Helv. Chim. Acta 2014, 97, 70-75; k) K. T. Neumann, S. R. Laursen, A. T. Lindhardt, B. Bang-Andersen, T. Skrydstrup, Org. Lett. 2014, 16, 2216-2219; l) C. Taylor, Y. Bolshan, Org. Lett. 2014, 16, 488-491.
- [13] a) K. Baba, M. Tobisu, N. Chatani, Org. Lett. 2014, 16, 70–73; b) F. Y. Kwong, K. S. Chan, Chem. Commun. 2000, 1069–1070; c) F. Y. Kwong, C. W. Lai, M. Yu, Y. Tian, K. S. Chan, Tetrahedron 2003, 59, 10295–10305.
- [14] The generation of diphenylphosphide anions from Ph₃P and alkali metals is known, see: a) W. Kuchen, H. Buchwald, *Angew. Chem.* **1957**, *69*, 307–308; b) D. Wittenberg, H. Gilman, *J. Org. Chem.* **1958**, *23*, 1063–1065.
- [15] A. Ogawa, D. P. Curran, J. Org. Chem. 1997, 62, 450– 451.
- [16] N. O. Brace, J. E. Van Elswyk, J. Org. Chem. 1976, 41, 766–771.
- [17] a) A. Ogawa, M. Imura, N. Kamada, T. Hirao, *Tetrahedron Lett.* 2001, *42*, 2489–2492; b) K. Tsuchii, M. Imura, N. Kamada, T. Hirao, A. Ogawa, *J. Org. Chem.* 2004, *69*, 6658–6665.
- [18] S. Yasui, Y. Ogawa, K. Shioji, S. Yamazaki, *Chem. Lett.* 2013, 42, 1478–1480.
- [19] Y. Sakaguchi, H. Hayashi, J. Phys. Chem. A 2004, 108, 3421–3429.
- [20] D. W. Allen, B. F. Taylor, J. Chem. Soc. Dalton Trans. 1982, 51–54.
- [21] The formation of the PdCl₂[(4-CF₃C₆H₄)₂P(*n*-C₁₀F₂₁)]₂ complex was observed by ³¹P NMR spectroscopy (δ = 36.2 ppm, t, J_{PF}=31 Hz).
- [22] There are some considerable reasons for the low recyclability of the catalyst. Among them, we assume that the oxidation of *P*-perfluoroalkylated phosphine ligand during the coupling reaction causes the low recyclability of the catalyst, because we detected a certain amount of *P*-perfluoroalkylated phosphine oxide after the reaction. Therefore, we conducted the recycling re-

action with addition of a *P*-perfluoroalkylated phosphine ligand after every coupling reaction.

- [23] W. N. Chou, M. Pomerantz, J. Org. Chem. 1991, 56, 2762–2769.
- [24] H. A. Brune, M. Falck, R. Hemmer, G. Schmidtberg, H. G. Alt, *Chem. Ber.* **1984**, *117*, 2791–2802.
- [25] T. Allman, R. G. Goel, Can. J. Chem. 1982, 60, 716– 722.
- [26] M. L. Clarke, D. Ellis, K. L. Mason, A. G. Orpen, P. G. Pringle, R. L. Wingad, D. A. Zaher, R. T. Baker, *Dalton Trans.* 2005, 1294–1300.

Advanced >

Synthesis &

- [27] D. W. Allen, I. W. Nowell, B. F. Taylor, J. Chem. Soc. Dalton Trans. 1985, 2505–2508.
- [28] B. Huang, L. Yin, M. Cai, New J. Chem. 2013, 37, 3137–3144.