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A novel copper catalyzed approach to oxazoles via enamide 
intermediates was developed from benzamides and β-
diketones. The successive condensation and cyclization 
reactions afforded various 2,4,5-trisubstituted oxazoles in 
good yields. 10 

Substituted oxazoles are an important class of heterocycles that 
are ubiquitous in biologically active molecules, including natural 
products, agrochemicals and pharmaceutical drugs.1 A large 
number of oxazole-containing natural products have been isolated 
from marine invertebrates and microorganisms.2 Moreover, many 15 

synthetic trisubstituted oxazoles have been evaluated to show 
activity against diabetes, breast cancer and pancreatic cancer.3 
(Figure 1) Consequently, great effort has been paid on the 
development of efficient synthetic methods to access substituted 
oxazoles, and most of the existed methods are using ketone 20 

derivatives as the starting materials.4 Traditionally, a range of 
highly substituted and complex oxazoles are prepared via 
cyclodehydration of α-acylaminoketones, esters, or amides (the 
Robison-Gabriel oxazole synthesis,).5 Nevertheless, this method 
requires the use of highly functionalized  diketone substrates 25 

(Scheme 1, a). Additionally, catalytic decomposition of α-
diazocarbonyl compounds in nitriles,6 photolysis and pyrolysis of 
N-acylisoozalones7 can provide alternative procedures for the 
preparation of functionalized oxazole derivatives. Transition 
metals such as copper,8 rhodium,9 ruthenium10 and gold11 are 30 

successfully used as the cyclization catalysts to afford various 
substituted oxzoles. 
 

 
Figure 1. Selected oxazole-containing drugs 35 

 
In recent years, enamides bearing β-vinylic C-heteroatom 

bonds are proved to be versatile cyclization precursors to 
construct the oxazole ring (Scheme 1, b).12 The groups of 
Buchwald and Stahl reported copper-mediated oxidative 40 

cyclization of enamides to 2,5-disubstituted oxazoles via vinylic 
C-H functionalization.13 This method provided a more direct 
approach to substituted oxzoles by avoiding the substrate 

functionalization. However, some highly functionalized enamide 
precursors require several steps to prepare. Therefore, the in situ 45 

formation of enamides from readily available starting materials 
such as β-diketones is highly desirable for one pot construction of 
oxazoles. There are only few reports on multi-substituted oxazole 
synthesis from β-diketones and arylamides or benzyl amines.14 
Moreover, a leaving group need to be introduced into the α-50 

position of β-diketones. Efficient method to prepare multi-
substituted oxazoles in one pot from β-diketones without leaving 
substituents is highly desirable. Herein, we report an efficient 
copper-catalyzed oxidative cyclization strategy from readily 
available benzamides and β-diketones (via enamide intermediate), 55 

providing the 2,4,5-trisubstituted oxazoles in good yields 
(Scheme 1, c).15 In the whole process, the acyl functional group is 
retained and located selectively at the ortho position of the 
oxygen atom.16   
  60 

 

Scheme 1. Various procedures for multi-substituted oxazole 
synthesis 

 

In the first experiment we examined the reaction between 65 

benzamide (1a) and pentane-2,4-dione (2a) in toluene using 
molecular oxygen as the oxidant. As shown in Table 1, four 
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different copper salts were screened using p-toluenesulfonic acid 
(TsOH) as the acidic additive. Among the catalysts investigated, 
CuBr showed the best efficiency (entries 1-4). Various oxidants 
were investigated instead of oxygen using CuBr as the catalyst 
(entries 5-8). Among the various oxidants screened, K2S2O8 5 

showed the best activity and its use improved the reaction yield to 
24% (entry 7). The choice of acidic additive is very important, 
and the product 3a could be obtained in 46% yield when acetic 
acid was used (entry 10). Slightly higher yield was obtained when 
the reaction was carried out in Cl2CHCHCl2 (entry 14). The 10 

reaction yield increased from 51% to 64% when the ratio of 
1a:2a changed to 2:1 (entry 15). The desired product could be 
obtained in 82% yield when the reaction temperature increased 
from 120 oC to 140 oC (entry 16). Compared with CuBr2, CuBr 
showed better efficiency (entry 16 and 17). 15 

 
Table 1. Optimization of the reaction conditionsa 

a Conditions: 1a (0.2 mmol), 2a (0.3 mmol), catalyst (20 mol%), 
oxidant (2.0 equiv.), additive (2.0 equiv.), solvent (0.4 mL), 120 
oC, 36 h under argon (under oxygen for entries 1-4). b GC yield 20 

based on 1a. c 1a (0.4 mmol), 2a (0.2 mmol), yield based on 2a.  
d At 140 oC. 
 

The scope of this reaction was studied under the optimized 
conditions (Table 2). Arylamides with electron-donating group at 25 

the para position smoothly coupled with pentane-2,4-dione (2a) 
to give the heterocyclic products in high yields (entries 1-4). 
When halogen substituents presented at the para position of 
amides, the corresponding products were obtained in fairly good 
yields (entries 5-7). For example, 68% yield of 3g which could be 30 

converted to other useful compounds easily was obtained when 
an active bromo substituent existed. Strong electron-withdrawing 

substituent significantly decreased the reaction yield. For 
example, when 4-nitrobenzamide (1h) was used in the reaction, 
the desired product 3h was observed in only 38% yield (entry 8). 35 

Similar yield was observed when the methyl substituent shifted 
from para to meta position (entries 2 and 9). 
 
Table 2. Reaction of pentane-2,4-dione (2a) with various 
aromatic amidesa 

40 

a Conditions: 1 (0.4 mmol), 2a (0.2 mmol), CuBr (20 mol%),                 
K2S2O8 (0.4 mmol), AcOH (0.4 mmol),    Cl2CHCHCl2 (0.4 mL), 
140 oC, 36 h under Argon. b  Isolated yield based on 2a. 

The scope of the reaction with β-diketones is outlined in Table 
3. 1,3-Diphenylpropane-1,3-dione (2b) reacted with benzamide to 45 

give (2,4-diphenyloxazol-5-yl)(phenyl)methanone (3j) in 81% 
yield (entry 1). Besides symmetrical β-diketones, various 
unsymmetrical β-diketones were also employed in the oxidative 
cyclization reaction, providing the corresponding products in 
moderate to good yields (entries 2-9). For regioselectivity of the 50 

unsymmetrical β-diketones, the steric hindrance is a key factor. In 
all cases, 5-acyl substituted oxazoles were the major products. 
When 1-(naphthalen-1-yl)butane-1,3-dione (2h) was used, the 5-
acyl substituted oxazole 3p was obtained almost as the sole 
product (entry 7). Furthermore, extension of this reaction to 55 

heteroaryl β-diketones proved to be successful (entry 8). It is 
important to point out that changing the substituting position on 
the aromatic ring of 1-phenylbutane-1,3-dione (2c) greatly 
influenced the reaction yields of the corresponding products 
(entries 6 and 9). Unfortunately, no desired product was observed 60 

when β-diketone was replaced by ethyl acetoacetate. 

A series of control experiments were designed to investigate 
the reaction mechanism (Scheme 2). When the reaction of 1a 
with 2a was stopped after 2 h, 4a and 3a were obtained in 8% and 
9% yields, respectively (Scheme 2, a). The starting materials 65 

could be smoothly converted into the desired product 3a with 
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extension of time whereas no significant change was observed for 
intermediate 4a (Scheme 2, b). The isolated 4a could be further  
 
Table 3. Reactions of 1a with various β-diketonesa 

a Conditions: 1a (0.4 mmol), 2 (0.2 mmol), CuBr (20 mol%), 5 

K2S2O8 (2.0 equiv.), AcOH (2.0 equiv.), Cl2CHCHCl2 (0.4 mL), 
140 oC, 36 h under Argon. b Isolated yield based on 2. c 48 h. 
 

 
Scheme 2. Control experiments 10 

 
transformed into 3a in 80% yield under the standard reaction 
conditions (Scheme 2, c). These results suggested that enamide 
might be the key intermediate during the formation of oxazoles. 
Only trace amounts of 3a and 4a were observed when two equiv 15 

of TEMPO was added to the reaction mixture (Scheme 2, d). This 
means that a radical process was possibly involved in this 
transformation. Based on these competition experiments and 
related literatures,13 a possible mechanism to illustrate this 
reaction is presented in Scheme 3. Condensation of 1a with 2a 20 

yields an enamide intermediate 4a which can be further converted 
into a radical cation A in the presence of Cu(II) and Cu(I) is 
released and oxidized into Cu(II). The cyclization of A generates 

intermediate B. Subsequent oxidation of the intermediate B by 
Cu(II) provides the product 3a and releases Cu(I) which can be 25 

re-oxidized to participate the next catalytic cycle. 
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Scheme 3. Proposed mechanism 
 30 

Conclusions 

In conclusion, we have developed a novel approach for the 
synthesis of oxazoles using CuBr as the catalyst. Readily 
available β-diketones and primary arylamides were used as the 
starting materials. 5-Acyl substituted oxazoles were obtained as 35 

the sole products in all cases. Halogen substituted benzamides 
also could be employed for this kind of transformation. This 
strategy affords an efficient approach for the synthesis of 
biologically active oxazoles with acyl substituents from readily 
available starting materials with cheap and low toxic copper 40 

catalyst. The generality and synthetic applications of this 
methodology are under investigation. 
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