Accepted Manuscript

Synthesis of 2,2-di(pyrazol-1-yl)enones *via* the 2:1 coupling of pyrazoles and acylbromoacetylenes in solid alumina

Maxim D. Gotsko, Lyubov' N. Sobenina, Alexander V. Vashchenko, Boris A. Trofimov

PII: DOI: Reference:	S0040-4039(18)31251-6 https://doi.org/10.1016/j.tetlet.2018.10.033 TETL 50343			
To appear in:	Tetrahedron Letters			
Received Date:	18 September 2018			
Revised Date:	16 October 2018			
Accepted Date:	18 October 2018			

Please cite this article as: Gotsko, M.D., Sobenina, L.N., Vashchenko, A.V., Trofimov, B.A., Synthesis of 2,2di(pyrazol-1-yl)enones *via* the 2:1 coupling of pyrazoles and acylbromoacetylenes in solid alumina, *Tetrahedron Letters* (2018), doi: https://doi.org/10.1016/j.tetlet.2018.10.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Synthesis of 2,2-di(pyrazol-1-yl)enones *via* the 2:1 coupling of pyrazoles and acylbromoacetylenes in solid alumina

Maxim D. Gotsko, Lyubov' N. Sobenina, Alexander V. Vashchenko, Boris A. Trofimov* A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation

Abstract

Pyrazoles were reacted with acylbromoacetylenes in solid Al_2O_3 at room temperature to afford 2,2-di(pyrazol-1-yl)enones in 22-69% yield. The reaction proceeds *via* isolable intermediates, (*Z*)-2-bromo-2-(pyrazol-1-yl)enones. This unexpected 2:1 coupling is in contrast to similar reactions of pyrroles, furans and thiophenes, which give the corresponding acylethynyl derivatives. This reaction opens a one-pot route to inaccessible gem-dipyrazolylenones, which have potential applications as bidentate chelating ligands and building blocks for drug design.

Keywords: pyrazoles; acylbromoacetylenes; di(pyrazol-1-yl)enones; transition metal-free synthesis; Al₂O₃

Introduction

Functionalized pyrazoles have attracted significant attention as promising building blocks for pharmaceuticals and ligands of metallocomplexes. The pyrazole scaffold is common in many commercial drugs, e.g. nonsteroidal anti-inflammatory¹ and anti-cancer medicines.² They are also exploited in fine chemical synthesis,³ metal complex catalysis,⁴ and the design of liquid crystals⁵ and polymer materials.⁶ Therefore the advanced synthesis of functionalized pyrazoles remains a topical issue in this area of heterocyclic chemistry. In order to develop a new approach to the synthesis of acetylenic derivatives of pyrazoles we have extended the previously reported ethynylation reactions of selected five-membered aromatic heterocycles⁷ with electron-deficient haloacetylenes. For example, pyrroles^{7a-f} are easily ethynylated with acylbromoacetylenes in the absence of transition metals in solid metal oxides and salts (e.g. Al₂O₃, ZnO, BaO, K₂CO₃) (Scheme 1).

Scheme 1. Reaction of pyrroles with acylbromoacetylenes.^{7a-f}

It was also shown that furans^{7c, 7g} and thiophenes^{7f} are capable of being ethynylated under similar conditions. A logical evolution of these investigations is to examine whether pyrazoles can be similarly cross-coupled with acylhaloacetylenes.

Results and Discussion

Initially, we examined the model reaction of unsubstituted pyrazole 1a with benzoylbromoacetylene 2a under conditions typical for the ethynylation of pyrroles. The reactants were intensively ground (5-10 min) in excess solid Al₂O₃ and allowed to stand at room temperature for 24 h. The conversion of pyrazole 1a, acylbromoacetylene 2a, and the product ratios were monitored by

¹H NMR spectroscopy of the CDCl₃ extracts. The reaction was stopped after the complete consumption of acylbromoacetylene 2a.

Using an equimolar ratio of the reactants, dipyrazolylenone **3a** (instead of the expected ethynyl derivative **4**) was formed in 18% yield (Scheme 2, Table 1, entry 4) which was in contrast to the previous results for the same reaction with pyrroles^{7a-f} and furans.^{7c, 7g}

R = Ph (a), 2-furyl (b), 2-thienyl (c)

Scheme 2. Reaction of pyrazole 1a with acylbromoacetylenes 2a-c

The reaction proceeds *via* the intermediate (*Z*)-2-bromo-2-(pyrazol-1-yl)enone **5a** and is accompanied by the formation of 2,2-dibromoenone **6a**. Modest yields (22-35%) of dipyrazolylenones **3a-c** were obtained using a two-fold molar excess of pyrazole **1a** relative to acylbromoacetylenes **2a-c**, with the yields of bromopyrazolylenones **5a-c** and dibromoenones **6a-c** being 10-18% and 8-14%, respectively (Table 1).

Table 1. Reaction of pyrazole 1a with acylbromoacetylenes 2a-c.a-c

^a Reagents and conditions: **1a** (2 mmol), **2** (1 mmol), Al₂O₃ (10-fold amount by weight with respect to the total mass of reagents); r.t., 24 h;

^b Reagents and conditions: **1a** (3 mmol), **2** (1 mmol), Al_2O_3 (10-fold amount by weight with respect to the total mass of reagents); r.t., 24 h;

^c Reagents and conditions: **1a** (1 mmol), **2** (1 mmol), Al₂O₃ (10-fold amount by weight with respect to the total mass of reagents); r.t., 24 h;

^d Isolated yield (column chromatography, SiO₂, *n*-hexane-diethyl ether, 1:1);

^e Isolated yield (column chromatography, SiO₂, *n*-hexane).

Surprisingly, no traces of ethynylpyrazoles **4** were detectable in the reaction mixture, implying that dipyrazolylenones **3a-c** are not adducts from the reaction of pyrazole **1a** with the intermediate ethynylated pyrazoles **4**.

The structure of the intermediate (*Z*)-2-bromo-2-(pyrazol-1-yl)enones **5a-c** was established by X-ray crystallographic analysis (**5c**, Fig. 1) and supported by ¹H and ¹³C NMR spectroscopy.

Figure 1. Single crystal X-ray structure of (*Z*)-3-bromo-3-(1*H*-pyrazol-1-yl)-1-(thiophen-2-yl)prop-2en-1-one (**5c**).

3,5-Dimethylpyrazole **1b** reacts with acylbromoacetylenes **2a-d** in a 2:1 ratio to form dipyrazolylenones **7a-d** in 42-55% yield (Table 2). Remarkably, in this case, the bromopyrazolylenone of type **5** was not discernible in the reaction mixture. For example, ¹H NMR monitoring of the reaction between pyrazole **1b** and benzoylbromoacetylene **2a** (reactant molar ratio **1b** : **2a**, 2:1) showed no other products except for dipyrazolylenone **7a** and dibromoenone **6a** (Table 3).

Better yields of dipyrazolylenones **3a-c** (34-43%, Table 1) and **7a-d** (55-69%, Table 2) were attained using a three-fold molar excess of pyrazoles **1a**,**b** relative to acylbromoacetylenes **2a-d**, with the yields of dibromoenones **6a-d** being 5-10% (Tables 1, 2).

It is noteworthy, that a 3-fold molar excess of acetylene 2a, resulted in the formation of dipyrazolylenone 7a in 18% yield, while the expected intermediate bromopyrazolylenone of type 5 was not present in the reaction mixture. The yield of dibromoenone 6a was predictably increased to 60% (*c.f.* Table 2, entry 5). The latter result means that under the conditions studied, acylbromoacetylenes 2a-d undergo a parallel transformation to dibromoenones 6a-d by the addition of HBr to the triple bond.

Table 2. Reaction of pyrazole 1b with acylbromoacetylenes 2a-d.a-c

Reagents and conditions: 1b (2 mmol), 2 (1 mmol), Al₂O₃ (10fold amount by weight with respect to the total mass of reagents); r.t., 24 h; b Reagents and conditions: 1b (3 mmol), **2** (1 mmol), Al_2O_3 (10-fold amount by weight with respect to the total mass of reagents); r.t., 24 h; Reagents and conditions: 1b (1 mmol),

2 (3 mmol), Al₂O₃ (10fold amount by weight with respect to the total mass of reagents); r.t., 24

h;

^d Isolated yield (column chromatography, SiO₂, *n*-hexane-diethyl ether, 1:1);

^e Isolated yield (column chromatography, SiO₂, *n*-hexane).

Table 3. ¹H NMR-monitoring of the reaction between pyrazole 1b and benzoylbromoacetylene 2a^a

	~	^a Reagents and			
Compound	Compositi	conditions: 1b (2			
	1 h	3 h	6 h	24 h	mmol), $2a$ (1 mmol),
1b	48	36	27	22	by weight with respect
2a	28	13	9	1	to total mass of
7a	20	45	56	62	reagents); r.t.
6a	4	6	8	15	The

structure of dipyrazolylenones 7a-d was established by X-ray crystallographic analysis (7b, Fig. 2) and supported by ¹H and ¹³C NMR spectroscopy.

Figure 2. Single crystal X-ray structure of 3,3-di(3,5-dimethyl-1*H*-pyrazol-1-yl)-1-(furan-2-yl)prop-2en-1-one (7b).

It should be noted that when the reaction of pyrazole 1a with benzoylbromoacetylene 2a was conducted without Al₂O₃ (rt, 24 h) it proceeded much more slowly (the conversion of acetylene 2a was about 30%), although the products formed in minor quantities were the same (¹H NMR).

Basing on the results obtained and previous mechanistic rationalizations concerning the reactions of pyrroles with haloacetylenes^{7a-f} it may be suggested that the synthesis of dipyrazolylenones **3a-c** and 7a-d is triggered by the nucleophilic addition of pyrazoles 1a,b to the triple bond of acylbromoacetylenes 2a-d to form the intermediate zwitterion (Scheme 3), which converts via proton

transfer from the pyrazole moiety to its carbanionic center to give isolable intermediate **5**. Subsequent nucleophilic substitution of the bromine atom by a second molecule of pyrazole **1a** affords dipyrazolylenone **3**. The released HBr is scavenged by another molecule of bromoacetylene to produce dibromoenone **6**. Presumably, substitution of the bromine atom in the intermediate and hence the release of HBr is faster than its consumption by bromoacetylene for the formation of dibromoenone **6** which explains why in some cases the yield of the product exceeds 50%. Additionally, this also can take place because HBr may be partially consumed by Al₂O₃.

Scheme 3. Proposed mechanism for dipyrazolylenones 3a-c formation.

Unlike the ethynylation of pyrroles, where the initial zwitterion releases a halogen anion to restore the triple bond, for pyrazole, rapid intramolecular neutralization of the carbanionic site of the intermediate zwitterion occurs which precludes formation of the ethynyl derivatives. Such a change of the reaction mechanism is likely due to the higher acidity of pyrazoles compared with pyrroles (pk_a of pyrazole is 14.2 whereas pk_a of pyrrole is 17.5).

This mechanism has been experimentally proven by the reaction between bromopyrazolylenone **5a** and pyrazole **1a** (under the same conditions), which led to the reaction mixture containing product **3a**. According to ¹H NMR monitoring the composition of the mixture was **3a** : **5a** : **1a** = 0.94 : 0.87 : 1.

Intramolecular proton transfer in the initial zwitterion is supported by the (*Z*)-configuration of intermediates **5** which is stabilized in a five-membered ring transition state (Scheme 2). This is also consistent with the fact that 1,3,5-trimethyl-1*H*-pyrazole **1c**, which has no proton at position 1 available for intramolecular transfer, does not react with acetylbromoacetylene **2d** under the conditions studied.

The assumption that dipyrazolylenones **3a-c** and **7a-d** may result from double nucleophilic substitution of the bromine atom in dibromoenones **6a-d** was not confirmed by the following experiment: when dibromoenone **6a** was allowed contact (120 h, Al_2O_3 , room temperature) with

pyrazole **1a**, only a small amount of dipyrazolylenone **3a** (5%) was detected (¹H NMR) in the reaction mixture.

In conclusion, a transition metal-free one-pot synthesis of dipyrazolylenones *via* the reaction of pyrazoles with acylbromoacetylenes in solid Al_2O_3 at room temperature has been developed. This facile synthesis of dipyrazolylenones can be considered as a novel contribution to the chemistry of pyrazoles and their applications.

Acknowledgements

Authors acknowledge the Baikal Analytical Center for collective use SB RAS for the equipment.

References and notes

- (a) Friedrich, G., Rose, T., Rissler, K. J. Chromatogr. B. 2002; 786: 295-305; (b) Teranisi, K. J. P.
 W. O. Patent 2004,014,932, 2004; Chem. Abstr. 2004, 140, 199632; (c) Chimenti, F., Fioravanti, R., Bolasco, A., Manna, F., Chimenti, P., Secci, D., Befani, O., Turini, P., Ortuso, F., Alcaro, S. J. Med. Chem. 2007; 50: 425-428; (d) Pantel, J., Williams, S. Y., Sebag, J. D., Corbin, J. D., Weaver, C. D., Cone, R. D. Eur. J. Pharmacol. 2011; 660: 139-147; (e) Kumar, K. A., Jayaroopa, P. Int. J. PharmTech Res. 2013; 5: 1473-1486.
- (a) Kumari, S., Paliwal, S., Chauhan, C. Synth. Commun. 2014; 44: 1521-1578; (b) Shamsuzzaman, Siddiqui, T., Alam, M. G., Dar, A. M. J. Saudi Chem. Soc. 2015; 19: 387-391.
- (a) Noshiranzadeha, N., Ramazani, A., Mahyari, A. T., Slepokura, K., Lis, T. Z. Naturforsch., B: Chem. Sci. 2008; 63: 65-70; (b) Azpiroz, R., Rubio-Perez, L., Giuseppe, A., Passarelli, V., Lahoz, F., Castarlenas, R., Perez-Torrente, J., Oro, L. ACS Catal. 2014; 4: 4244-4253; (c) Azpiroz, R., Passarelli, V., Castarlenas, R., Perez-Torrente, J., Oro, L. J. Mex. Chem. Soc. 2017; 61: 138-145.
- (a) Pal, A., Ghosh, R., Adarsh, N., Sarkar, A. *Tetrahedron*. 2010; 66: 5451-5458; (b) Huertas-Sanchez, A., Luna-Giles, F., Vinuelas-Zahinos, E., Barros-Garcia, F., Bernalte-García, A. *Polyhedron*. 2015; 102: 394-400.
- (a) Thaker, B., Solanki, D., Patel, B., Vansadia, A., Dhimmar, Y. *Mol. Cryst. Liq. Cryst.* 2012; 552: 134-146; (b) Soria, L., Ovejero, P., Cano, M., Campo, J. A., Torres, M. R., Nunez, C., Lodeiro, C. *Dyes and Pigments*. 2014; 110: 159-168.
- Mukundam, V., Kumar, A., Dhanunjayarao, K., Ravi, A., Peruncheralathana, S., Venkatasubbaiah, K. Polym. Chem. 2015; 6: 7764-7770.
- 7. (a) Trofimov, B. A., Stepanova, Z. V., Sobenina, L. N., Mikhaleva, A. I., Ushakov, I. A. *Tetrahedron Lett.* 2004; 45: 6513-6516; (b) Trofimov, B. A., Sobenina, L. N. *Targets in Heterocyclic Systems.* 2009; 13: 92-119; (c) Sobenina, L. N., Petrova, O. V., Tomilin, D. N., Gotsko, M. D., Ushakov, I. A., Klyba, L. V., Mikhaleva, A. I., Trofimov, B. A. *Tetrahedron.* 2014; 70: 9506-9511; (d) Gotsko, M. D., Sobenina, L. N., Tomilin, D. N., Ushakov, I. A., Dogadina, A. V., Trofimov, B. A. *Tetrahedron Lett.* 2015; 56: 4657-4660; (e) Gotsko, M. D., Sobenina, L. N., Tomilin, D. N., Markova, M. V., Ushakov, I. A., Vakul'skaya, T. I., Khutsishvili, S. S., Trofimov, B. A. *Tetrahedron Lett.* 2016; 57: 4961-4964; (f) Tomilin, D. N., Petrushenko, K. B., Sobenina, L. N., Gotsko, M. D., Ushakov, I. A., Skitnevskaya, A. D., Trofimov, A. B., Trofimov, B. A. *Asian J. Org. Chem.* 2016; 5: 1288-1294; (g) Sobenina, L. N., Tomilin, D. N., Gotsko, M. D., Ushakov, I. A., Trofimov, B. A. *Tetrahedron.* 2018; 74: 1565-1570.

2,2-Di(pyrazol-1-yl)enones via 2:1 cross-coupling of pyrazoles and acylhaloacetylenes This reaction differs essentially from pyrrole behavior under the same conditions

The mechanism involves substitution of bromine in intermediate pyrazolylbromoenones