ARTICLE IN PRESS

Chinese Chemical Letters xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Chinese Chemical Letters

journal homepage: www.elsevier.com/locate/cclet

2 Original article

3

4

5 6

Magnetically recyclable copper modified GO/Fe₃O₄ catalyst for efficient synthesis of quinazolinones

👥 🗛 Q1 Lu-Lu Kong, Li-Yan Fan

Department of Chemistry, Tongji University, Shanghai 200092, China

ARTICLE INFO

ABSTRACT

Article history: Received 23 December 2015 Received in revised form 9 January 2016 Accepted 25 January 2016 Available online xxx

Keywords: Quinazolinones GO/Fe₃O₄-Cul Magnetically Recyclable Heterogeneous A series of bioactive quinazolinones were effectively synthesized by the condensation of halide benzamide with amino acid using magnetically recyclable GO/Fe₃O₄-CuI as catalyst. Magnetic GO/Fe₃O₄-CuI was prepared via a simple chemical method and characterized by FTIR, powder XRD, and SEM. This heterogeneous copper catalyst can be easily separated from reaction mixtures by an external permanent magnet and reused without any obvious loss in activity which shows its applicability as a reusable and promising catalyst for quinazolinones synthesis.

© 2016 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Recently, there has been growing interest in transition metalcatalyzed C–N and C–C bond forming processes [1]. In particular, the copper-catalyzed Ullmann-type *N*-arylations have received enormous attention and have been widely used to prepare quinazolinones derivatives [2], whose subunits are extensively used in medicinal chemistry as a pharmacophore [3], with applications such as hypnotic, sedative, analgesic, antibacterial, and antitumor agents [4], or to modify known bioactive molecules and to potentiate their biological activities [5].

Generally, copper salts have been used as homogeneous catalyst systems to catalyze synthesis of quinazolinones derivatives from ortho-amino- or-nitrobenzoic acid derivatives, aryl halides [6]. Although homogeneous copper catalysts have many advantages, such as high turnover number, good activity, and good selectivity [7], they are difficult to separate from reaction mixtures and reuse. Furthermore, the residual copper metal along with the final products may cause serious problems in the synthesis of pharmaceuticals [8]. In light of these problems, various catalysts supports have been explored, such as polymers [9], zeolite [10] and mesoporous particles [11] that can be efficiently reused while keeping the inherent activity of the catalytic center. In recent years,

* Corresponding author.

E-mail address: Fanly@tongji.edu.cn (L.-Y. Fan).

magnetic nanoparticles supported on various materials for 30 recovery have provided new ways to develop recyclable catalyst 31 [12]. 32

It is well known that graphene oxide (GO), one of the most 33 important derivatives of graphene, has a unique planar structure [13], huge surface area $(2630 \text{ m}^2 \text{ g}^{-1})$ [14], and a variety of 35 oxygen-containing functional groups [15], which renders it a good 36 candidate for supporting other functional materials. What's more, 37 the acidic and oxidative nature of these oxygen functionalities 38 allow it to function as a solid acid catalyst or green oxidant [16].

In this study, we prepared a magnetically recyclable heterogeneous catalyst GO/Fe₃O₄-Cul for the synthesis of quinazolinones by the condensation of halide benzamide with amino acid, which is rarely reported [17]. The catalyst gave the desired products in good yields and could be reused several times without any loss of its catalytic activity, which showed its applicability as a reusable and promising catalyst for quinazolinones synthesis. 46

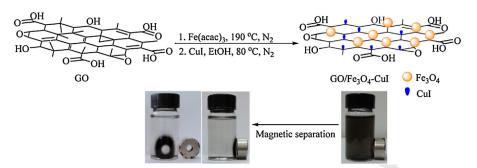
2. Experimental

2.1. Sample preparation procedures 48

47

GO was synthesized by natural graphite powder oxidation 49 according to the Hummers method [18]. GO (200 mg) was 50 dispersed in 60 mL of 1-methyl-2-pyrrolidone with ultrasonication for 1 h [19], and the mixture was heated to 190 °C under 52 nitrogen atmosphere (Scheme 1). Fe(acac)₃ (1.413 g) was dissolved 53

1001-8417/© 2016 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.


Please cite this article in press as: L.-L. Kong, L.-Y. Fan, Magnetically recyclable copper modified GO/Fe₃O₄ catalyst for efficient synthesis of quinazolinones, Chin. Chem. Lett. (2016), http://dx.doi.org/10.1016/j.cclet.2016.01.055

http://dx.doi.org/10.1016/j.cclet.2016.01.055

2

ARTICLE IN PRESS

L.-L. Kong, L.-Y. Fan/Chinese Chemical Letters xxx (2016) xxx-xxx

Scheme 1. Preparation of GO/Fe_3O_4 -Cul catalyst and magnetic separation of GO/Fe_3O_4 -Cul catalyst from water.

in 40 mL of 1-methyl-2-pyrrolidone and then dropped into the GO
solution under stirring for 2 h. After the reaction finished and
cooled to room temperature, the precipitate was separated by
magnet and dispersed in ethanol. Finally, the resulting black
powder was washed several times with acetone and vacuum dried
at 45 °C overnight.

60 The obtained GO/Fe_3O_4 (0.50 g) and CuI (0.25 g) were dispersed 61 in 50 mL ethanol under nitrogen atmosphere (Scheme 1). Then the mixture was stirred at 80 °C overnight. The GO/Fe₃O₄-CuI powder 62 63 was retrieved by an external permanent magnet, and washed with 64 deionized water and ethanol. Finally, the GO/Fe₃O₄-CuI powder 65 was dried under vacuum at 45 °C overnight for further use. The 66 prepared GO/Fe₃O₄-CuI was characterized by FTIR, powder XRD, 67 and SEM. The doped concentration of CuI was detected by ICP-AES.

2.2. Typical procedure for the condensation synthesis ofquinazolinones

70 2-Iodobenzamide 1a (1.0 equiv.), 2-aminoisovaleric acid 2a 71 (3.0 equiv.), Cs_2CO_3 (3.0 equiv.) and GO/Fe_3O_4 -CuI (Cu^+) 72 0.03 equiv.) were added to DMSO/ethylene glycol (60:1, v/v) in 73 a round bottom flask. The reaction was monitored by TLC. The 74 product was purified by column chromatography with petroleum 75 ether/ethyl acetate (3:1, v/v) to give pure white solid 3a. Other products were synthesized through the same procedure and 76 characterized by ¹H NMR and ¹³C NMR. Their molecular masses 77 78 were determined by HRMS.

79 3. Results and discussion

80 Fourier-transform infrared spectroscopy (FTIR) spectra of GO, 81 GO/Fe₃O₄, and GO/Fe₃O₄-CuI are presented in Fig. 1. Characteristic 82 peaks of GO/Fe₃O₄-CuI are basically the same with GO and GO/ Fe₃O₄. The FTIR pattern of GO shows the presence of the oxygen-83 containing functional groups. The peaks at 3370 cm⁻¹, 1730 cm⁻¹ 84 are the results of the stretching of O-H, C=O in COOH. The band at 85 1622 cm^{-1} , 1230 cm^{-1} , and 1056 cm^{-1} can be assigned to 86 87 aromatic C=C, carboxy C-O, and alkoxy C-O stretches [20], 88 respectively. The FTIR spectra of GO/Fe₃O₄-CuI and GO/Fe₃O₄ differ 89 from that of GO as evidenced by the new band at 580 cm⁻¹ [21]. The peak at 1730 cm⁻¹ disappeared in the FTIR pattern of GO/ 90 91 Fe_3O_4 -CuI and the new peaks that emerged from 800 cm⁻¹ to 1000 cm⁻¹ are attributed to the formation of -COO⁻ after the 92 93 complex reaction with Cul.

94Fig. 2 shows the XRD pattern of GO/Fe₃O₄-Cul. The main peaks95at 25.4°, 41.6°, and 49.2°, marked by their indices (1 1 1), (2 2 0),96and (3 1 1) [22], show the characteristics of Cul on GO/97Fe₃O₄. Besides these, no significantly different peaks are observed98among the diffraction patterns of GO, GO/Fe₃O₄ and GO/Fe₃O₄-Cul,99which indicates that the Cul was finely attached on GO/Fe₃O₄.

SEM observation was also undertaken to characterize the 100 morphologies of the GO/Fe_3O_4 and GO/Fe_3O_4 -Cul composites. As is 101 shown in Fig. 3a, GO/Fe₃O₄ sheets show the sheet-like structure 102 with smooth surfaces and wrinkled edges. GO/Fe₃O₄-CuI sheets 103 present similar morphology with the parent GO/Fe₃O₄. Cul 104 composites are uniformly distributed on the surface of GO/ 105 Fe₃O₄-Cul sheets. ICP-AES detected the Cul doped concentration is 106 up to 10.1 wt% which implies CuI successfully doped on the GO/ 107 Fe₃O₄ sheets. 108

To demonstrate its activity for the synthesis of guinazolinones 109 derivatives, the reaction of 2-iodobenzamide 1a and 2-aminoiso-110 valeric acid **1b** was used as a model reaction catalyzed by magnetic 111 GO/Fe₃O₄-Cul. Clearly, the results in Table 1 show that the reaction 112 could be catalyzed by several copper salts. While with the amount 113 of copper was 0.03 equivalent immobilized on GO/Fe₃O₄, the 114 reaction went smoothly with a respective high productivity 115 (compare entries 2-8, Table 1). To further obtain the optimal 116

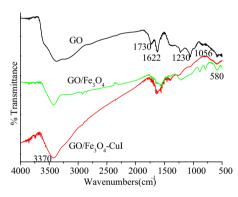


Fig. 1. IR spectra of GO, GO/Fe₃O₄ and GO/Fe₃O₄-CuI.

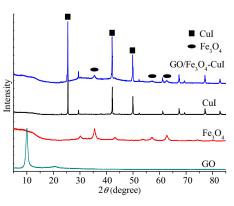


Fig. 2. XRD patterns of GO, Fe₃O₄, CuI and GO/Fe₃O₄-CuI.

L.-L. Kong, L.-Y. Fan/Chinese Chemical Letters xxx (2016) xxx-xxx

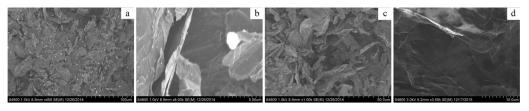


Fig. 3. SEM images of GO/Fe₃O₄-CuI ((a) and (b)), GO/Fe₃O₄ (c) and GO (d).

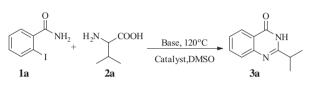
1

2

3

4

5


6

7

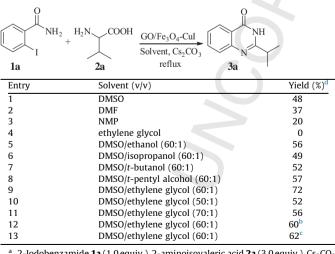
8

Table 1

Effect of different catalyst and base on the synthesis of 2-isopropylquinazolin-4(3H)-one $(3a)^{a}$.

Entry	Catalyst	Base	Yield (%) ^d	Cu (mol%)
1	1	K ₂ CO ₃	0	1
2	CuBr	K ₂ CO ₃	15	3.0
3	CuI	K ₂ CO ₃	20	3.0
4	CuCl	K ₂ CO ₃	trace	3.0
5	CuCl ₂	K ₂ CO ₃	trace	3.0
6	GO	K ₂ CO ₃	5	/
7	GO/Fe ₃ O ₄	K ₂ CO ₃	7	/
8	GO/CuI	K ₂ CO ₃	25	3.0
9	GO/Fe ₃ O ₄ -CuI	K ₂ CO ₃	27	3.0
10	GO/Fe ₃ O ₄ -CuI	Cs ₂ CO ₃	30	3.0
11	GO/Fe ₃ O ₄ -CuI	Na_2CO_3	15	3.0
12	GO/Fe ₃ O ₄ -CuI	t-BuOK	0	3.0
13	GO/Fe ₃ O ₄ -CuI	Cs ₂ CO ₃	42 ^b	3.0
14	GO/Fe ₃ O ₄ -CuI	Cs_2CO_3	48 ^{b,c}	3.0

^a 2-Iodobenzamide 1a (1.0 equiv.), 2-aminoisovaleric acid 2a (2.0 equiv.), K₂CO₃ (2.0 equiv.), catalyst (Cu⁺ 0.03 equiv.), DMSO (3.0 mL), 120 °C.

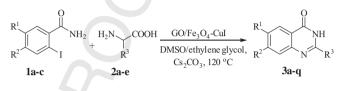

b Cs₂CO₃ (3.0 equiv.).

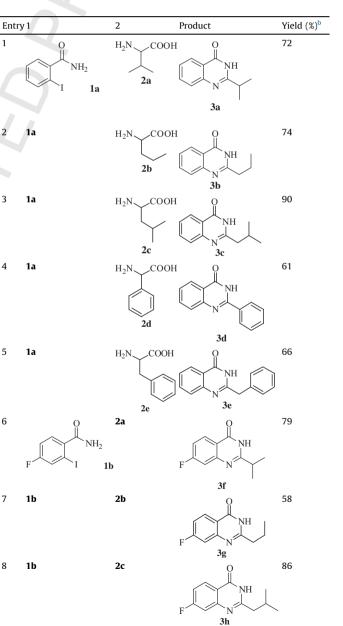
с 2-Aminoisovaleric acid 2a (3.0 equiv.).

d Isolate yield.

Table 2

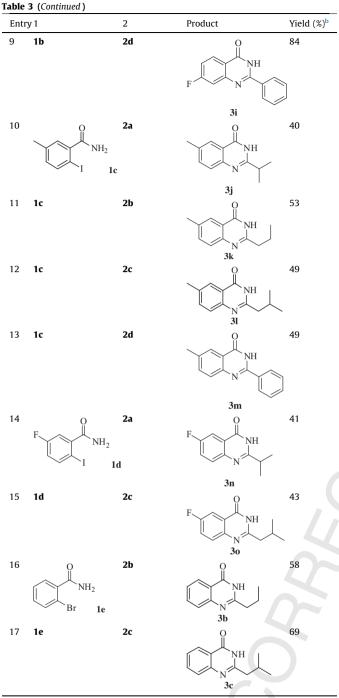
Optimization of solvent on the synthesis of 2-isopropylquinazolin-4(3H)-one (3a) in the presence of GO/Fe₃O₄-CuI as catalyst^a.


2-lodobenzamide 1a (1.0 equiv.), 2-aminoisovaleric acid 2a (3.0 equiv.), Cs₂CO₃ (3.0 equiv.), catalyst (Cu⁺ 0.03 equiv.), solvent (3.0 mL).


^b Catalyst (Cu⁺ 0.024 equiv.).

с Catalyst (Cu⁺ 0.039 equiv.).

^d Isolate yield.


Table 3 Scope of 2-iodobenzamide and amino acid in synthesis of quinazolinone derivatives^a.

Please cite this article in press as: L.-L. Kong, L.-Y. Fan, Magnetically recyclable copper modified GO/Fe₃O₄ catalyst for efficient synthesis of quinazolinones, Chin. Chem. Lett. (2016), http://dx.doi.org/10.1016/j.cclet.2016.01.055

L.-L. Kong, L.-Y. Fan/Chinese Chemical Letters xxx (2016) xxx-xxx

^a 2-Iodobenzamide 1a (1.0 equiv.), 2-aminoisovaleric acid 2a (3.0 equiv.), Cs₂CO₃ (3.0 equiv.), catalyst (Cu⁺ 0.03 equiv.), 3.0 mL DMSO/ethylene glycol (60:1, v/v), 120°C ^b Isolate yield.

117 conditions, different copper content, various bases and solvent 118 were screened. The results revealed that the yield was up to 72% 119 with the moderate addition of DMSO/ethylene glycol (60:1, v/v) 120 and Cs₂CO₃ (3.0 equiv.) as base at 120 °C (Table 2, entry 9).

121 The scope of GO/Fe₃O₄-CuI-catalyzed cascade reactions of 122 halide benzamideand with amino acids was investigated under the optimized conditions: GO/Fe₃O₄-CuI (Cu⁺ 0.03 equiv.) as the 123 124 catalyst, 3 equiv. of Cs₂CO₃ as the base, DMSO/ethylene glycol 125 (60:1, v/v) as the solvent at 120 °C. All the examined substrates 126 provided moderate to excellent yields (Table 3). Importantly, the 127 catalyst recycled by permanent magnet retained their catalytic

Table 4

Reuse the	catalyst	for	the	synthesis	of	3aª
-----------	----------	-----	-----	-----------	----	-----

Entry	2-aminoisovalericacid (mmol)	Catalyst (mg)	Yield (%) ^b
Fresh	0.60	40	72
1st turn	0.52	35	73
2nd turn	0.45	30	70
3rd turn	0.42	28	75
4th turn	0.30	20	73

^a 2-lodobenzamide 1a (1.0 equiv.), 2-aminoisovaleric acid 2a (3.0 equiv.), Cs₂CO₃ (3.0 equiv.), catalyst (Cu⁺ 0.03 equiv.), 3.0 mL DMSO/ethylene glycol (60:1, v/v), 120°C

^b Isolate yield.

activity for the synthesis of 2-isopropylquinazolin-4(3H)-one (**3a**) 128 under the same reaction conditions, with the corresponding yields 129 not significantly reduced (Table 4). 130

4. Conclusion

In summary, we have successfully prepared the magnetically 132 recyclable heterogeneous catalyst GO/Fe₃O₄-CuI, which exhibited 133 high catalytic activity for the synthesis of guinazolinones 134 derivatives by the condensation of halide benzamide with amino 135 acid. Due to its unique planar structure, huge surface area, 136 magnetism, and chemicals features, the catalyst shows high 137 catalytic efficiency, magnetically recoverability, and reusability, 138 such that it can be used several times to give desired products 139 without any obvious loss of its catalytic activity. The magnetically 140 recyclable catalyst GO/Fe₃O₄-CuI shows its applicability as a 141 reusable and promising catalyst for guinazolinones synthesis. 142

Acknowledgment

This work was supported by the Research Foundation of Tongji Q2 144 University. 03 145

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cclet.2016.01. 055.

References

- [1] (a) S. Laclef, M. Harari, J. Godeau, et al., Ligand-free Pd-catalyzed and copperassisted C-H arylation of quinazolin-4-ones with aryl iodides under microwave heating, Org. Lett. 17 (2015) 1700-1703; (b) A. Kumar, A.K. Bishnoi, Nanoparticle mediated organic synthesis (NAMOsynthesis): CuI-NP catalyzed ligand free amidation of aryl halides, RSC Adv. 4 (2014) 41631 - 41635[2] F. Wang, H.X. Liu, H. Fu, Y.Y. Jiang, Y.F. Zhao, An efficient one-pot copper-catalyzed
- approach to isoquinolin-1(2H)-one derivatives, Org. Lett. 11 (2009) 2469-2472.
- [3] W. He, H. Zhao, R.Y. Yao, M.Z. Cai, A highly efficient heterogeneous coppercatalyzed cascade reaction of 2-halobenzoic acids and amidines leading to quinazolinones, RSC Adv. 4 (2014) 50285–50294. (a) H.X. Chai, J.R. Li, L.P. Yang, et al., Copper-catalyzed tandem *N*-arylatio/con-

densation: synthesis of quinazolin-4 (3H)-ones from 2-halobenzonitriles and amides, RSC Adv. 4 (2014) 44811-44814: (b) R.J. Abdel-Jalil, W.G. Voelter, M. Saeed, A novel method for the synthesis of 4

(3H)-guinazolinones, Tetrahedron Lett. 45 (2004) 3475-3476;

(c) N.Y. Kim, C.H. Cheon, Synthesis of quinazolinones from anthranilamides and aldehydes via metal-free aerobic oxidation in DMSO, Tetrahedron Lett. 55 (2014) 2340-2344:

(d) X.W. Liu, H. Fu, Y.Y. Jiang, Y.F. Zhao, A simple and efficient approach to quinazolinones under mild copper-catalyzed conditions, Angew. Chem. Int. Ed. 48 (2009) 348-351

(e) K.M. Khan, S.M. Saad, N.N. Shaikh, et al., Synthesis and β-glucuronidase inhibitory activity of 2-arylquinazolin-4 (3H)-ones, Bioorg. Med. Chem. 22 (2014) 3449-3454

[5] A. Nasreen, R.M. Borik, Cobalt(II) chloride catalyzed one pot synthesis of 2substituted and 3-substituted-4 (3H)-quinazolinones, Orient. J. Chem. 30 (2014) 761-768.

147 148 149 150 151 152 153 154 155 156 157 158 150 159 160 161 162 $\begin{array}{c} 163\\ 164\\ 165\\ 166\\ 167\\ 168\\ 169\\ 170\\ 171\\ 172\\ 173\\ 174\\ 175\\ 176\\ 177\\ 178 \end{array}$

131

143

146

Please cite this article in press as: L.-L. Kong, L.-Y. Fan, Magnetically recyclable copper modified GO/Fe₃O₄ catalyst for efficient synthesis of quinazolinones, Chin. Chem. Lett. (2016), http://dx.doi.org/10.1016/j.cclet.2016.01.055

4

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

ARTICLE IN PRESS

L.-L. Kong, L.-Y. Fan/Chinese Chemical Letters xxx (2016) xxx-xxx

5

212

213 214

215

216

217

218

219

220

221

222

223

224

225

226 227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

- [7] L. Yu, M. Wang, P.H. Li, L. Wang, Fe₃O₄ nanoparticle-supported copper(1): magnetically recoverable and reusable catalyst for the synthesis of quinazolinones and bicyclic pyrimidinones, Appl. Organomet. Chem. 26 (2012) 576–582.
- [8] W.J. Zhang, X.H. Shi, Y.X. Zhang, et al., Synthesis of water-soluble magnetic graphene nanocomposites adsorbents for recyclable removal of heavy metal ions, J. Mater. Chem. A 1 (2013) 1745–1753.
- [9] (a) K.M. Ho, P. Li, Design and synthesis of novel magnetic core-shell polymeric particles, Langmuir 24 (2008) 1801–1807;
 (b) P.D. Stevens, J. Fan, H.M.R. Gardimalla, M. Yen, Y. Gao, Superparamagnetic nanoparticle-supported catalysis of suzuki cross-coupling reactions, Org. Lett. 7 (2005) 2085–2088.
- [10] S.M.A.H. Siddiki, K. Kon, A.S. Touchy, K.I. Shimizu, Direct synthesis of quinazolinones by acceptorless dehydrogenative coupling of *o*-aminobenzamide and alcohols by heterogeneous Pt catalysts, Catal. Sci. Technol. 4 (2014) 1716–1719.
- [11] (a) M.C. Hu, K.S. Hui, K.N. Hui, Role of graphene in MnO₂/graphene composite for catalytic ozonation of gaseous toluene, Chem. Eng. J. 254 (2014) 237–244;
 (b) S. Rostamizadeh, M. Nojavan, R. Aryan, E. Isapoor, M. Azad, Amino acid-based ionic liquid immobilized on α-Fe₂O₃-MCM-41: an efficient magnetic nanocatalyst and recyclable reaction media for the synthesis of quinazolin-4 (3*H*)-one derivatives, J. Mol. Catal. A: Chem. 374–375 (2013) 102–110.
- [12] (a) N.A. Zubir, C. Yacou, J. Motuzas, X.W. Zhang, J.C.D.D. Costa, Structural and functional investigation of graphene oxide-Fe₃O₄ nanocomposites for the heterogeneous Fenton-like reaction, Sci. Rep. 4 (2014) 4594;
 (b) S.M. Baghbanian, M. Farhang, CuFe₂O₄ nanoparticles: a magnetically recoverable and reusable catalyst for the synthesis of quinoline and quinazoline
- derivatives in aqueous media, RSC Adv. 4 (2014) 11624–11633. [13] J. Li, S.W. Zhang, C.L. Chen, et al., Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe₃O₄ nanoparticles, ACS Appl. Mater. Interfaces 4 (2012) 4991–5000.

- [14] J. Li, Z.Y. Shao, C.L. Chen, X.K. Wang, Hierarchical GOS/Fe₃O₄/PANI magnetic composites as adsorbent for ionic dye pollution treatment, RSC Adv. 4 (2014) 38192–38198.
- [15] (a) J.H. Yang, B. Ramaraj, K.R. Yoon, Preparation and characterization of superparamagnetic graphene oxide nanohybrids anchored with Fe₃O₄ nanoparticles, J. Alloys Compd. 583 (2014) 128–133;
 (b) Ö. Metin, Ş. Aydoğan, K. Meral, A new route for the synthesis of graphene oxide-Fe₃O₄ (GO-Fe₃O₄) nanocomposites and their Schottky diode applications, J. Alloys Compd. 585 (2014) 681–688.
- [16] C.L. Su, K.P. Loh, Carbocatalysts: graphene oxide and its derivatives, Acc. Chem. Res. 46 (2013) 2275–2285.
- [17] (a) J.X. Chen, D.Z. Wu, F. He, et al., Gallium(III) triflate-catalyzed one-pot selective synthesis of 2,3-dihydroquinazolin-4 (1*H*)-ones and quinazolin-4 (3*H*)-ones, Tetrahedron Lett. 49 (2008) 3814–3818;
 (b) X.W. Liu, H. Fu, Y.Y. Jiang, Y.F. Zhao, A simple and efficient approach to quinazolinones under mild copper-catalyzed conditions, Angew. Chem. 121 (2009) 354–357.
- [18] A. Sergi, F. Shemirani, M. Alvand, A. Tajbakhshian, Graphene oxide magnetic nanocomposites for the preconcentration of trace amounts of malachite green from fish and water samples prior to determination by fiber optic-linear array detection spectrophotometry, Anal. Methods 6 (2014) 7744–7751.
- [19] Y.L. Dong, H.G. Zhang, Z.U. Rahman, et al., Graphene oxide-Fe₃O₄ magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose, Nanoscale 4 (2012) 3969–3976.
- [20] L.Z. Bai, D.L. Zhao, Y. Xu, et al., Inductive heating property of graphene oxide– Fe₃O₄ nanoparticles hybrid in an AC magnetic field for localized hyperthermia, Mater. Lett. 68 (2012) 399–401.
- [21] J.M. Shen, F.Y. Gao, L.P. Guan, et al., Graphene oxide–Fe₃O₄ nanocomposite for combination of dual-drug chemotherapy with photothermal therapy, RSC Adv. 4 (2014) 18473–18484.
- [22] LL Li, H.M. Duan, X.J. Wang, C.N. Luo, Adsorption property of Cr(VI) on magnetic mesoporous titanium dioxide-graphene oxide core-shell microspheres, New J. Chem. 38 (2014) 6008–6016.

Please cite this article in press as: L.-L. Kong, L.-Y. Fan, Magnetically recyclable copper modified GO/Fe₃O₄ catalyst for efficient synthesis of quinazolinones, Chin. Chem. Lett. (2016), http://dx.doi.org/10.1016/j.cclet.2016.01.055