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Some new (2‘-5’)triadenylates 13- 16, containing at the 2‘-terminal end 3‘-fluoro-2,3‘-dideoxyadenosine 
derivatives, have been synthesized by the phosphotriester method. The selectively blocked nucleosides 2,4,5, and 
7 were synthesized from the corresponding unprotected nucleosides 1, 3, and 6 .  The synthesized trimers 13 and 
14 were 4- and &fold, respectively, more stable towards phosphodiesterase from Crorulus durissus than the natural 
trimer 17. In comparison to trimer 17 the new compounds 13-15 inhibit HIV-I reverse transcriptase (RT) 
activity, and 15and 16 the HIV-I induced syncytia formation 2 - 3  fold whereas none of 13-16can improve RNase 
L activity. 

1. Introduction. - The series of 2’,5’-phosphodiester bond-linked oligoadenylate 5‘- 
triphosphates, with exception of the dimeric forms, are known as potential inhibitors of 
translation [2] and counteracting especially virus replication. Their mechanism of action 
seems to be mediated mainly through the activation of a latent endonuclease (RNase L), 
leading to the degradation of viral RNA and subsequent inhibition of protein synthesis 
[3]. But, the presence of these triphosphates in intact cells has a dramatic effect on the 
RNase L which is activated but is not able to discriminate between viral and cellular 
RNA, and hence, also degrades cellular mRNA and rRNA [4][5]. From this point of 
view, and, because of a high sensitivity of (2’- 5’)oligoadenylate 5’-triphosphates towards 
enzymes which degrade phosphorylated oligonucleotides [6] [7], the use of the first in 
chemotherapy seems to be problematical. Such disadvantages have not been found for 
the various unphosphorylated (2’- 5’)oligoadenylates and its synthetic analogues. The 
metabolic stability of ( 2  - 5‘)oligoadenylates plays also an important role for their poten- 
tial activity and practical use. Many analogues of (2’- 5’)oligoadenylates have been 
synthesized to achieve new approaches to antiviral and antitumor therapy [8- 161. Previ- 



HELVETICA CHIMICA ACTA - Vol. 81 (1998) 1219 

ous studies have shown that a 3’ modification at  the 2’-terminus of (2’- 5‘)oligoadenylates 
makes a major contribution to the metabolic stability and biological activity of such 
analogues [ 5 ]  [I 71. Thus, cordycepin (= 3’-deoxyadenosine) trimer core [I 81 was found 
to be a biologically active compound with metabolic stability [19]; later it turned out that 
i t  is also an inhibitor of HIV-1 reverse transcriptase (RT) [20]. Recent studies with 
3’-deoxy-3’-fluoroadenosine containing analogues of 5’-phosphorylated (2‘-5’)oligo- 
adenylate trimer have shown high metabolic stability towards 2’,5’-phosphodiesterase of 
mouse L cells, and the ability to bind to and to activate RNase L [21-231. As far as each 
individual nucleoside residue of (2’- 5’)oligoadenylate may assume a different role in 
inhibition of RT and replication of viruses, we synthesized some new (2’-5’)triadenylates 
with a double modification at the 2’- and 3’-position of the 2’-terminal adenosine unit, 
as potential metabolically stable (2’-5’)oligoadenylates. The rationale for the replace- 
ment of H-atoms and OH groups of biologically significant molecules by F-atoms has 
been extensively reviewed [24]. 

2. Syntheses. - The syntheses of 2’,3’-dideoxy-3‘-fluoroadenosine containing trimers 
were achieved by the phosphotriester method, using the approach published by us earlier 
[25].  The starting 2‘,3’-dideoxy-3’-fluoroadenosine derivatives 1, 3, and 6 were also de- 
scribed earlier [26] [2712), and their selective interconversion into the blocked nucleosides 
2,4,5, and 7 were achieved by the transient protection method [28]. Thus, trimethylsilyl- 
ation of 1, 3, and 6 with chlorotrimethylsilane in pyridine was followed by benzoylation 
and hydrolysis with dilute NH,OH solution (in the case of 7, only with H,O) to give the 
corresponding nucleosides 2,4,5, and 7 after isolation by column chromatography (CC, 
silica gel) in 91, 29, 67, and 72% yield, respectively. 

Condensation of 2 or 5 with 2’-phosphodiester 8 [25] in pyridine in the presence of 
a mixture of 1 H-tetrazo~e/2,4,6-triisopropy~benzenesulfony1 chloride (TpsC1) 3 : 1, fol- 
lowed by detritylation with 2 %  TsOH solution in CH,CI,/MeOH 4:l  in a one-pot 
reaction led to the 5’-OH dimers 10 and 11 in 63 and 67% yield, respectively. Similar 
condensation of 7 with 9 [25] in the presence of a mixture of I-methyl-IH-imidazolel 
TpsCl 3 :  1 and subsequent cleavage of the dimethoxytrityl group gave in an analogous 
manner dimer 12 in 77% yield. 

The transformations of the dimers 10-12 to the trimer level required the same 
techniques consisting of a condensation step, followed by successive treatment with 2 % 
TsOH solution and either I M  I ,8-diazabicyclo[5.4.O]undec-7-ene (DBU)/pyridine (13, 14) 
or with a solution of 4-nitrobenzaldehyde oxime in dioxane/H,O/Et,N 1 : 1 : 1 (15), and 
finally with conc. NH,OH solution to remove the different protecting groups. Final 
purification was done by ion-exchange CC (DEAE-Servacell23-SS) to give the trimers 
13- 15 in 51,44, and 53 % overall yield, respectively. The catalytic hydrogenolysis of the 
azido derivative 13 in the presence of 10% Pd/C in H,O/EtOH 1 : 1, followed by ion 
exchange CC led to the trimer 16 in 71 YO yield. 

3. Biological Application. - The stability of the newly synthesized trimers 13 and 14 
towards phosphodiesterase from Crotalus durissus and comparison with the naturally 

’) The 2’-chloro-2’,3’-dideoxy-3’-fluoroadenosine (3) has been obtained as a gift from Dr. Tamara Pricora 
(Institute of Bioorganic Chemistry, Byelorussian Academy of Sciences, Minsk). 
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occurring (T-5’)A trimer core 17 was studied by means of prep. TLC. The calculated 
half-life for the trimers 13, 14, and 17 was found to be 126,205, and 27 min, respectively. 

Replacement of the OH group at the 2’,3’-terminus of trimer 17 with either F, CI, N,, 
or NH, substituents produced a new type of inhibitors of HIV-1 replication (Table). 
Three separate studies were performed to determine the antiviral activity of these ( 2 -  5’)- 
oligoadenylate analogues: i )  inhibition of HIV-1-induced syncytia formation, ii) inhibi- 
tion of HIV-1 RT activity, and i i i) activation of recombinant human GST-RNase L. 

Table. Inlzibirion of HIV-I Replication and Biological Aetiviries of (2’-S)Oligoudenylare Triniers 13- 17’) 

R R’ Syn b, RT’) RNase Ld) 

13 
14 
15 
16 
17 

F 
F 
F 
F 
OH 

- 

2.0 
7.0 
9.0 
3.0 

99.7 
99.7 
99.7 

33 
- 

0 
0 
0 
0 

50 

”) Compounds were tested at 300 PM. ’) Inhibition of HIV-1 replication was determined by HIV-1-induced 
syncytia formation (fold reduction) for each compound. The number of syncytia/104 cells was 121 _+ 16 for the 
control Sup T1 cells. The mean of triplicate determinations is shown; variance did not exceed 5-10%. ‘) Percent 
inhibition of reverse transcriptase (HIV-1 RT) activity. Control values for HIV-1 RT activity ranged from 15,000 
to 16,000 cpm. The mean of duplicate determinations is shown; variance did not exceed 5- 10%. d, The activation 
of recombinant human RNase L was measured as the percent hydrolysis of p0ly(U)-3’-[’~P]pCp in the presence 
of the trimers 13-17. The mean of duplicate determinations is shown; variance did not exceed 5-10%. 

Compounds 14-16 inhibited induced syncytia formation 2.0, 7.0, and 9.0 fold, 
respectively, compared to 3.0 fold reduction with unmodified trimer 17. Trimers 13- 15 
inhibited HIV-1 RT activity to 99.7%, which compares with a 33% inhibition of HIV-1 
RT by the compound 17. The previously obtained data about a 96% inhibition of HIV-1 
RT by the cordycepin trimer core [29] and the results presented here show that OH 
groups at either the C(2’) or C(3‘) position of the trimer 17 are not essential for the 
inhibition of HIV-1 RT activity. When (2’-5’)oligoadenylate 17 is modified at the C(3’) 
position with the F-atom and at the C(2’) position either by a H, CI, N,, or NH, 
substituent, recombinant human GST-RNase L is not activated to hydrolyze poly(U)-3’- 
[32P]pCp compared to a 50% activation of GST-RNase L by the trimer 17. These results 
are in agreement with previous data showing that interaction of 3‘-deoxy-3’-fluoro 
analogues of 5’-phosphorylated (2’- 5’)oligoadenylate trimers with RNase L from mouse 
L cells and rabbit reticulocytes [21], their ability to stimulate activation of mouse and 
human RNase L [22], and a 12% activation of GST-RNase L by both the cordycepin 
trimer core and its conjugate with vitamin E at the 2’-terminus of the trimer [29], required 
the OH group at the C(2’) position of the 2’,3’-terminus as a feature essential for the 
activation of GST-RNase L. 

Experimental Part 

General. TLC: Precoated silica gel thin-layer sheets 60 F 254 from Merck. Prep. column chromatography 
(CC): silica gel (Merek 60, 63-200 pm). Ion-exchange chromatography: DEAE-ServaeeN-233s (Servo). M.p.: 
Galienkamp melting-point apparatus; no correction. UVjVIS: Specord UV-VIS (Carl Zeiss, Germany); I,,, in nm 
(log 6). ‘H-NMR: Bruker WM-360; 6 in ppm rel. to SiMe,. 
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Bioassay. The stability of the trimers 13 and 14 towards phosphodiesterase from Crornlus durissus was 
determined as described [15]. Assays measuring HIV-1 induced syncytia formation, HIV-1 reverse transcriptase 
activity, and activation of RNase L were accomplished by known methods [29]. 

2’-Azido-N6-hmzoyl-Z’,3’-dideo.~y-3’-fT~or~~[idenosine (2). A mixture of 1 (0.1 g, 0.34 mmol) and chloro- 
trimethylsilane (0.37 g, 0.42 ml, 3.4 mmol) in pyridine (3  ml) was stirred at r.1. for 4 h and then treated with 
benzoyl chloride (0.09 g, 0.7 mmol). After stirring at r.t. for 0.5 h, the mixture was treated with H,O (0.5 ml) and 
conc. NH,OH soh .  (1 ml) and evaporated. The residue was purified by CC (silica gel, 10 x 2.5 cm, CHCI, and 
then CHCI,/MeOH 24:l) and finally crystallized from EtOH: 123 mg (91 %) of2. M.p. 125-126‘. UV (MeOH): 

(m, 5 arom. H); 6.20 (dd, OH-C(5‘)); 6.00 (d  H-C(1’)); 5.45 (dd. H-C(3’)); 4.95 (ddd, H-C(2’)); 4.61 (d, 
H-C(4)); 3.95 (m, 2 H-C(5’)). Anal. calc. forC,,H,,FN,O, (398.3): C 51.25, H 3.79, N 28.12; found: C 51.22, 
H 3.80, N 28.14. 

N6 .N6-Dibenzoyl-2’-chloro-2’ .3’-dideory-3’-fTuoroadetio.~inc. (4) nnd N6- Ben:oyl-2’-chloro-2’,3’-dideo.~)~-3’-flu- 
ornudenosine (5). As described for 2, with 3 (0.1 g. 0.34 mmol), trimethylchlorosilane (0.37 g, 0.42 ml, 0.34 mmol), 
pyridine (3 ml) and benzoyl chloride (0.9 g, 0.7 mmol); then treatment with H,O (0.6 ml) and conc. NH,OH soln. 
(1 ml). CC (silica gel, 15 x 2.5 cm, CHCI, and then CHCI,/MeOH 49: 1 )  gave 50 mg (29%) o f 4  and 91 mg (67%) 
of 5. 

Dataof4: Colourless foam. UV (MeOH): 230 (4.50), 280 (4.40). ‘H-NMR (CDCI,): 8.65, 8.17 (2s, H-C(2), 
H-C(8)); 7.90-7.32 (m, 10 arom. H); 6.07 (d, H-C(1’)); 5.86 (dd, OHX(5‘)); 5.30(dd, H-C(2)); 5.17 
(dd, H-C(3‘)); 4.62 (m, H-C(4)); 3.92 (m, 2 H-C(S)). Anal. calc. for C,,H,,CIFN,O, (495.9): C 58.12, H 3.86, 
N 14.12; found: C 58.24, H 3.90, N 14.03. 

Daia qf 5 :  M.p. 198-200” (from EtOH). UV (MeOH): 230 (4.12), 281 (4.32). ‘H-NMR (CDCI,): 9.16 
(s, NH); 8.78, 7.98 (2s, H-C(2), H-C(8)); 8.06-7.50 (nt, 5 arom. H); 6.23 (dd, OH-C(5’)); 6.06 (d, H-C(1’)); 
5.45-5.12 (m, H-C(2‘). H-C(3’)); 4.62 (in, H-C(4)); 3.95 (m, 2 H-C(5’)). Anal. calc. for C,,H,,CIFN,O, 
(391.8):C52.11, H3.85,N17.87;found:C52.30,H3.81, 17.69. 

N6,N6-Diben:oyl-2’,3’-dideo.~y-3’~/lnoroadenosine (7). As described for 2, with 6 (1 3 mg, 0.05 mmol), chloro- 
trimethylsilane (43 mg, 50 pl, 0.39 mmol), pyridine (0.5 ml; 3 h), and benzoyl chloride (35 mg, 29 pl, 0.25 mmol); 
then treatment with H,O (0.1 ml). CC (silica gel. l o x  1 cm, CHCI,/MeOH 24:l) gave 17 mg (72%) of 7. 
Colourless foam. UV (MeOH): 250 (4.25). 278 (4.50). ‘H-NMR (CDCI,): 8.44, 8.18 ( 2 s .  H-C(2), H-C(8)); 
7.86-7.30 (m, 10 arom. H); 6.40 (d, H-C(1‘)); 5.73 (br. s. OH-C(5‘)); 5.48 (dd, H-C(3’)); 4.51 (m, H-C(4)); 
3.88 (m. 2 H-C(5‘)): 3.1 1.2.64 ( 2 m ,  H-C(2’)). Anal. calc. forC2,H,,,CIFN,0,(461.4): C 62.46. H 4.36, N 15.17; 
found: C 62.29, H 4.33, N 15.01. 

N6,~-0-DihenzoyIa~len.vI~~I-~Z’- /OP-[2- (4-ni t ro~phenyl )e~/~~I]~  + S~-2’-a:ido-Nb-henzo?~l-2’ .3’-dideory-3:flu- 
oroudenosine (10). To a soh .  of 2 (100 mg, 0.25 mmol) and 8 (325 mg, 0.3 mmol) in pyridine (2.8 ml), 1H-tetrazole 
(126 mg, 1.8 mmol) and TpsCl (273 mg, 0.9 mmol) were added. The mixture was stirred at r.t. for 20 h, diluted 
with CHCI, (100 ml), and washed with 0 . 0 5 ~  (Et,NH)HCO, ( 2  x 75 ml). The org. phase was dried (Na,SO,), 
evaporated, and co-evaporated with toluene (30 ml). The residue was dissolved in 2% TsOH s o h  in CH,CI,/ 
MeOH 4.1 (15 ml), stirred for 10 min, diluted with CHCI, (100 ml), and washed with 0 . 0 5 ~  (Et,NH)HCO, 
( 2  x 50 ml). The org. phase was dried (Na,SO,) and evaporated. The residue was purified by CC (silica gel, 
l O x l S c m ,  CHCI, and then CHCI,/MeOH 24: l ) :  172mg (63%) of 10. Colourless foam. UV (MeOH): 
230(4.54), 280(4.55). Anal. calc. for C,,H,,FN,,O,,P (1084.9): C 54.24, H 3.90, N 18.07; found: C 54.40, 
H 3.85, N 17.96. 

N6,~-0-Diben:o~~luden~~l~I-~2’-~OP-[2-/4-nitrophenyl)eihylJ~ S,’-N6-ben:nyl-2’-r/iloro-Z’,3’-dideo.ur.-3’- 
fluoroadenosine (11). As described for 10. with 5 (47 mg, 1.12 mmol), 8 (162 mg, 0.15 mmol), IH-tetrazole (64 mg, 
0.92 mmol), and TpsCl(139 mg, 0.46 mmol) in pyridine (1.5 ml; then treatment with 0 . 0 5 ~  (Et,NH)HCO, (50 ml) 
and 2% TsOH soh .  in CH,CI,;MeOH 4: I (6 ml)). CC (silica gel, 15 x 1.5  cm, CHCI, and then CHCI,/MeOH 
49:l) gave 87mg (67%) of 11.  Colourless foam. UV (MeOH): 230(4.50), 278(4.56). Anal. calc. for 
C49H,,CIFN,,0,3P (1078.4): C 54.57. H 3.92. N 14.28; found: C 54.67, H 3.88, N 14.09. 

N6 3-0- Dihen:oylnclc.~i~~l~~l- {Z’-/O”- ~2-t.lrl0r.ophenyl) J + 5‘)-N6 ,N6-rlibenzoyl-2’ ,3’-dj~eo.ri.-3’-fluoroadeno- 
sine (12). To a soln. of 7 (16 mg. 0 035 mmol) and 9 (72 mg. 0.069 mmol) in pyridine (0.5 ml), 1-methyl-1 H- 
imidazole ( 3 2  mg, 0.39 mmol), and TpsCl(42 me. 0.138 mmol) were added. The mixture was stirred at  r.t. for 20 h, 
diluted with CHCI, (50ml).  and wa\hed with 1 ) . 0 5 ~  (Et,NH)HCO, (2x20ml). The org. phase was dried 
(Na,SO,). evaporated, and co-evaporated with toluene (20 ml). The residue was dissolved in 2% TsOH soh .  in 
CH,CI,/MeOH 4:  1 (3  ml). stirred for 10 min. diluted with CHCI, (50 ml). and washed with 0 . 0 5 ~  (Et,NH)HCO, 
(2 x 20 ml). The org. phase was dricd (NalSO,) and evaporated and the residue purified by CC (silica gel, 
10 x 1 cm, CHCI, and then CHCI, MeOH 00: I ) :  39.6 mg (77 %)of 12. Colourless foam. UV (MeOH): 233 (4.42), 

230(4.32), 280 (4.56). ‘H-NMR (CDCI,): 9.18 (s, NH); 8.80, 8.11 ( 2 s ,  H-C(2), H-C(8)); 8.05-7.51 
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278 (4.44). Anal. calc. for C,,H,,CIFN,,O1,P (1109.4): C 58.46, H 3.90, N 12.62; found: C 58.29, H 3.87, 
N 12.79. 

Adenylyl- (7- S)-adenylyl- (2- 5’)-2’-azid0-2’,3’-dideoxy-3’-jluoroadenosine Bis(triethy1ammonium) Salt (13 . 
2 Et,NH+). Amixtureof8(167mg,0.155 mmol)and 10(140mg,0.129mmol)inpyridine(1.5 m1)in thepresence 
of TpsCl (141 mg, 0.129 mmol) and 1H-tetrazole (65 mg, 0.93 mmol) was stirred at r.t. for 20 h, diluted with 
CHCI, (100 ml), and washed with 0 . 0 5 ~  (Et,NH)HCO, (2 x 30 ml). The org. phase was dried (Na,SO,), evapo- 
rated, and co-evaporated with toluene (20 ml).The residue was dissolved in 2 %  TsOH soh.  in CH,CI,/MeOH 4: 1 
(9 ml), stirred for 10 min, diluted with CHCI, (100 ml), and washed with 0 . 0 5 ~  (Et,NH)HCO, (2 x 30 ml). The 
org. phase was dried (Na,SO,) and evaporated. The residue was dissolved in 1~ DBU/pyndine (15 ml), stirred 
at r.t. for 24 h, neutralized with I M  AcOH/pyridine (15 ml), evaporated, and co-evaporated with toluene (20 ml). 
The residue was dissolved in conc. NH,OH soln. (60 ml), kept at r.t. for 24 h, and evaporated. The residue was 
taken up in CHCI,/H,O 1 : 1 (100 ml). The aq. phase was applied onto a DEAE-Servacell-23-SS column 
(20 x 1.5 cm, linear gradient of 0.005-0.2~ (Et,NH)HCO, buffer (pH 7.5)). The product fractions were evaporat- 
ed, and co-evaporated with MeOH (2 x 20 ml). The residual Et,NH+ salt was lyophilized (H,O): 76 mg (51 %) 

6.10. 6.00 ( 2 4  2 H-C(1’)); 5.90 (s, H-C(1‘)). Anal. calc. for C,,H,,FN,,O,,P (1155.0): C 43.67, H 5.67, 
N 24.25; found: C 43.29, H 5.42, N 23.97. 

Adeny~~l-(~-S)-adenyly-(2’-5’)-2’-chloro-7,3’-dideoxy-3’-fluoroadenosine Bis(triethy1ammonium) Salt (14 . 
2 Et,NH+). As described for 13, with 8 (84 mg, 0.78 mmol), 11 (70 mg, 0.065 mmol), pyridine (1 ml), 1 H-tetrazole 
(33 rng, 0.471 mmol), TpsCl(71 mg, 0.273 mmol; 20 h), 2 %  TsOH soln. in CH,CI,/MeOH 4: 1 ( 5  ml, 10 min), I M  
DBU/pyridine (7 ml, 18 h), 1~ AcOH/pyridine (7 ml), and conc. NH,OH soh.  (40 ml, 20 h). Purification by ion- 
exchange CC (DEAE-Servacell-234s ) gave 32 mg (44%) of 1 4 . 2  Et,NH+. U V  (H,O): 260 (4.56). ‘H-NMR 

Anal. calc. for C42H6,CIFN,70,,P (1148.5): C 43.92, H 5.70, N 20.73; found: C 43.52, H 5.40, N 20.34. 
Adenylyl-(~-5’)-adenylyl-(~-5‘)-2’.3‘-dideoxy-3’~uoroadenosine Bis( triethylammonium) Salt (15.2 Et,NH+). 

A mixture of 9 (40 mg, 0.038 mmol) and 12 (21.5 mg, 0.019 mmol) in pyridine (1 ml) in the presence of TpsCl 
(24 mg, 0.08 mmol) and 1 -methyl-1H-imidazole (19.2 mg, 0.018 ml, 0.234 mmol) was stirred at r.t. for 20 h, diluted 
with CHCI, (50 ml), and washed with 0 . 0 5 ~  (Et,NH)HCO, (2 x 20 ml). The org. phase was dried (Na,SO,), 
evaporated, and co-evaporated with toluene (15 ml).The residue was dissolved in 2 %  TsOH soln. in CH,Cl,/ 
MeOH 4:l (1.5 ml), stirred for lOmin, diluted with CHCI, (50ml), and washed with 0 . 0 5 ~  (Et,NH)HCO, 
(2 x 15 ml). The org. phase was dried (Na,SO,), and evaporated. The residue was treated with a soln. of 
4-nitrobenzaldehyde oxime (50 mg, 0.3 mmol) in Et,N/H,O/dioxane 1 : 1 : 1 (3 ml), kept at r.t. for 24 h, and 
evaporated. The residue was dissolved in conc. NH,OH soln. and, after 24 h, evaporated. The residue was taken 
up in CHCI,/H,O 1 :1 (60 ml). The aq. phase was applied onto a DEAE-Servacell-233s column (15 x 1.5 cm, 
linear gradient of 0.005-0.12~ (Et,NH)HCO, buffer (pH 7.5)). The product fractions were evaporated and 
co-evaporated with MeOH (2x 1Oml). The residual Et,NH+ salt was lyophilized (H,O): 11 mg (53%) of 
15.  2 Et,NH+. U V  (H,O): 259 (4.59). ‘H-NMR (D,O): 8.17, 8.12, 8.07, 7.93,7.85,7.75 (6s, H-C(2), H-C(8)); 
6.33 (dd, H-C(1’)); 6.08, 5.86 ( 2 4  2 H-C(1’)); 2.68, 2.36 (2m, 2 H-C(2)). Anal. calc. for C4,H6,FNl7O,,P 
(1114.0): C45.28, H5.97, N21.37; found: C45.30, H6.01, N21.50. 

AdenyIl?l-/2’-5’)-adenylyl-(Y-5’)-2’-amino-2’,3’-dideoxy-3’-jluoroadenosine Bis( triethylammonium) Salt (16 . 
2 Et,NH+). A soh.  of 13 (1 1 mg, 0.01 mmol) in H,O/EtOH 1 : 1 (8 ml) in the presence of Pd/C (1 3 mg) was stirred 
under H, for 48 h. Then the catalyst was filtered off and washed with H,O (6 x 1 ml). The filtrate and washings 
were evaporated. The residue was purified by ion exchange CC (DEAE-Servacell-234s (15 x 1.5 cm), linear 
gradient of 0.005-0.201 (Et,NH)HCO, buffer (pH 7.5)). The product fractions were evaporated, and co-evaporat- 
ed with MeOH (2 x 5 ml). The residual Et,NH+ salt was lyophilized (H,O): 8 mg (53%) of 1 6 . 2  Et,NH+. U V  
(H,O): 260(4.60). ‘H-NMR (D,O): 8.19, 8.14, 8.06, 7.92, 7.87, 7.76(6s,H-C(2), H-C(8)); 6.20, 6.07, 
5.91 ( 3 4  3 H-C(1’)). Anal. calc. for C,,H,,FN,,O,,P~ 2 H,O (1165.1): C 43.29, H 6.14, N 21.63; found: 
C 42.98, H 6.01, N 21.30. 

of 13. 2 Et,N+. U V  (H,O): 260(4.58). ‘H-NMR (D,O): 8.21, 8.13,8.08,7.91,7.88,7.75 ( 6 ~ ,  H-C(2), H-C(8)); 

(D,O): 8.20, 8.15, 8.05, 7.95, 7.90, 7.78(6~,H-C(2), H-C(8)); 6.14(~,H-C(1’)); 6.10, 5.94(2d, 2H-C(1‘)). 
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