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A B S T R A C T

An efficient copper-catalyzed decarboxylative hydroboration of phenylpropiolic acids with bis(pina-

colato)diboron was developed, affording b-vinylboronates as the only products in high yields. Extra

hydrogen sources such as methanol are not needed in this catalytic system. This reaction could be

performed successfully under ligand- and base-free conditions. It demonstrated that phenylpropiolic

acids can be employed as alkyne synthons in the hydroboration reaction and exhibited good reactivity

and higher selectivity than terminal alkynes.

� 2016 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.

Published by Elsevier B.V. All rights reserved.
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1. Introduction

Alkenylboron compounds are especially versatile building
blocks that are widely employed as vinyl anionic or cationic
synthons in a myriad of coupling reactions [1], as well as they can
be readily transformed into various vinylic derivatives [2]. Over the
past years, the transition-metal-catalyzed addition of boron to
carbon–carbon triple bonds presents a convenient and important
strategy for alkenylboron synthesis [3]. Among them, copper-
catalyzed hydroboration of alkynes has attracted much attention
due to the readily availability, low cost, and low toxicity of copper
salts. Great progress has been made by Miyaura [4], Yun [5], Li [6],
Haveyda [7], and others [8]. However, some limitations still exist,
such as the requirement of ligand, base, and special hydrogen
source, thus the development of more efficient method with much
wide applicability to prepare vinylboronates via copper-catalyzed
regioselective hydroboration of aryl alkynes is still a challenge for
synthetic organic chemistry. On the other hand, alkynyl carboxylic
acids are regarded as ideal substitutions for terminal alkynes and
have been widely applied in the transition-metal-catalyzed
construction of C–C and C-heteroatoms bonds via decarboxylation
[9]. In particular, alkynyl carboxylic acids exhibit superiority to
terminal alkynes in the reactions: they are often more reactive, and
they can efficiently suppress the Glaser coupling reaction that
53
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frequently occurs in the Sonogashira reactions. As part of our
ongoing research into the development of highly efficient and
versatile copper-catalyzed decarboxylative reactions [10], and in
conjunction with our work on oxidative decarboxylative coupling
of arylpropiolic acids with dialkyl H-phosphonates [11], we
decided to expand this strategy in the copper-catalyzed hydro-
borations. Recently, we have achieved the synthesis of bis-
deuterated b-borylated a,b-styrene derivatives from the reaction
of alkynyl acids with bis(pinacolato)diboron under base-free
conditions [12]. Herein, we report our results on the general
hydroboration using alkynyl acids as the substrates under ligand-
free or both ligand- and base-free conditions.

2. Experimental

All experiments were conducted with a Schlenk tube. Flash
column chromatography was performed over silica gel (200–300
mesh). 1H NMR spectra were recorded on a Bruker AVIII-400M or
AVIII-500M spectrometers. Chemical shifts (in ppm) were refer-
enced to CDCl3 (d 7.26) as an internal standard. 13C NMR spectra
were obtained by using the same NMR spectrometers and were
calibrated with CDCl3 (d 77.0). Unless otherwise noted, materials
obtained from commercial suppliers were used without further
purification. Anhydrous dioxane was obtained by refluxing for at
least 12 h over sodium and freshly distilled prior to use.

General procedure for the synthesis of (E)-4,4,5,5-tetramethyl-
2-styryl-1,3,2-dioxaborolane (3a): A Schlenk tube with a magnetic
stirring bar was charged with 3-phenylpropiolic acid (1a, 68 mg,
rboxylative hydroboration of phenylpropiolic acids under ligand-
6), http://dx.doi.org/10.1016/j.cclet.2016.02.012

 Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cclet.2016.02.012
mailto:qsong@hqu.edu.cn
http://dx.doi.org/10.1016/j.cclet.2016.02.012
http://www.sciencedirect.com/science/journal/10018417
www.elsevier.com/locate/cclet
http://dx.doi.org/10.1016/j.cclet.2016.02.012


57 0.
58 Cu
59 1,
60 80
61 re
62 te
63 a 

64 or
65 dr
66 ro
67 to
68 89
69 NM
70 J =
71 12
72 12

73 3.

74 

75 bo
76 co
77 Na
78 lig
79 a,
80 th
81 te
82 yi
83 (T
84 th
85 (T

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

Ta
Op

E

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

a

b

c

d

e

Q. Feng et al. / Chinese Chemical Letters xxx (2016) xxx–xxx2

G Model

CCLET 3599 1–4
5 mmol), bis(pinacolato)diboron (2a, 152 mg, 0.6 mmol),
(TFA)2 (29 mg, 10 mol%), Na2CO3 (127 mg, 1.2 mmol), and

4-dioxane (2 mL) under N2. The reaction mixture was stirred at
 8C for 18 h (monitored by TLC and GC). Upon completion of the
action, the reaction mixture was then cooled to ambient
mperature, diluted with ethyl acetate (20 mL), filtered through
plug of silica gel, and washed with ethyl acetate (20 mL). The
ganic layer was washed with saturated brine (20 mL � 2) and
ied over anhydrous Na2SO4. The solvents were removed via
tary evaporator and the residue was purified by flash chroma-
graphy (silica gel, ethyl acetate: petroleum ether = 1:30) to give
.7 mg of desired product 3a in 78% yield as a colorless oil. 1H

R (400 MHz, CDCl3): d 7.48–7.50 (m, 2H), 7.41 (d, 1H,
 18.5 Hz), 7.29–7.32 (m, 3H), 6.18 (d, 1H, J = 18.4 Hz), 1.32 (s,
H). 13C NMR (100 MHz, CDCl3): d 148.5, 136.4, 127.9, 127.5,
6.0, 82.3, 23.8.

 Results and discussion

We chose 3-phenylpropiolic acid (1a) and bis(pinacolato)di-
ron (2a) as the model substrates. Initially, the reaction was
nducted in the presence of 10 mol% of Cu(OTf)2 and 1.2 equiv. of

2CO3 in benzene at 80 8C under N2 atmosphere and no extra
and and hydrogen source were used. To our delight, b-borylated
b-styrene with E-configuration (3aa) was formed in 55% yield as
e single product (Table 1, entry 1). When the reaction
mperature was raised to 90 8C, a slight decrease on the product
eld was observed and no reaction occurred at room temperature
able 1, entries 2 and 3). Further screening of the solvents showed
at acetonitrile and 1,4-dioxane are good choice for this reaction
able 1, entries 5–9). We also employed other copper catalysts
ble 1
timization of the reaction conditions.a

ntry Cu catalyst Base 

 Cu(OTf)2 Na2CO3

 Cu(OTf)2 Na2CO3

 Cu(OTf)2 Na2CO3

 Cu(OTf)2 Na2CO3

 Cu(OTf)2 Na2CO3

 Cu(OTf)2 Na2CO3

 Cu(OTf)2 Na2CO3

 Cu(OTf)2 Na2CO3

 Cu(OTf)2 Na2CO3

0 Cu(OAc)2 Na2CO3

1 Cu(TFA)2 Na2CO3

2 Cu(TFA)2 Na2CO3

3 Cu(TFA)2 Na2CO3
c

4 Cu(TFA)2 – 

5 Cu(OAc)2 – 

6 Cu(OTf)2 – 

7 CuSO4 – 

8 CuO – 

9 Cu2O – 

0d Cu2O – 

1 Cu2O – 

2e Cu2O – 

Reaction conditions: (1) (0.5 mmol), (2) (1.2 equiv., 0.6 mmol), copper catalyst (0

Yields are based on GC analysis with n-dodecane as the internal standard.

1.1 mmol (2.2 equiv.) of Na2CO3 was used.

0.025 mmol of Cu2O was used.

0.05 mmol of Xantphos was added.

Please cite this article in press as: Q. Feng, et al., Copper-catalyzed dec
free or both ligand- and base-free conditions, Chin. Chem. Lett. (20
and copper trifluoroacetate (Cu(TFA)2) exhibited the best activity
(Table 1, entry 12). The yield of 3aa could be further enhanced to
83% when 2.2 equiv. of Na2CO3 was employed. To our surprise, in
the absence of the base Na2CO3, also 37% yield could be obtained
(Table 1, entry 14). Then we screened the copper catalyst again
under base-free condition and found out that Cu2O could lead to
satisfied result, probably because of its potential basicity (Table 1,
entry 18). Considering that actually a double amount of [Cu] was
involved for Cu2O, a loading of 5 mol% was used and a little lower
yield was obtained (Table 1, entry 20). Further increasing the
reaction temperature to 100 8C made the product being formed
nearly quantitatively (Table 1, entry 21). Finally, this reaction
performed smoothly at room temperature if a phosphorous ligand
was added (Table 1, entry 22). It is noteworthy that the solvents we
used were actually wet. When the reaction under the conditions as
in entry 19 was performed in anhydrous dioxane, only 7% of 3aa
was obtained. If extra 0.25 mmol of water (0.5 equiv.) was added to
anhydrous dioxane, the yield was 31%. Only when more than
1 equiv. of water was used, acceptable around 60% yield could be
achieved, indicating that water content in the wet dioxane we used
was higher than 0.4%.

After establishing the optimized reaction conditions of the
different catalytic systems, a variety of alkynyl carboxylic acids and
diboron reagents were subjected (Table 1, entries 13 and 21) to
evaluate the scope of the copper-catalyzed decarboxylative
regioselective hydroboration reaction. As shown in Scheme 1,
phenylpropiolic acids with both electron-rich and electron-
deficient substituents on the aromatic ring could be smoothly
converted into the desired products. The position of the substitutes
on the aromatic rings had some influence on yields (3b-3c, 3d-3e,
3m-3o, 3p-3q), with ortho-substitutions usually giving lower
Solvent T (8C) Yield (%)b

Benzene 80 55

Benzene 90 46

Benzene R.T. 0

Benzene 50 Trace

DMSO 80 26

DMF 80 0

CH3CN 80 63

DMA 80 8

1,4-dioxane 80 65

benzene 80 45

Benzene 80 73

1,4-dioxane 80 75

1,4-dioxane 80 83

1,4-dioxane 80 37

1,4-dioxane 80 42

1,4-dioxane 80 Trace

1,4-dioxane 80 19

1,4-dioxane 80 61

1,4-dioxane 80 76

1,4-dioxane 80 58

1,4-dioxane 100 96

1,4-dioxane R.T. 77

.05 mmol), base (0.6 mmol), solvent (2 mL), under N2 atmosphere.

arboxylative hydroboration of phenylpropiolic acids under ligand-
16), http://dx.doi.org/10.1016/j.cclet.2016.02.012
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Scheme 2. Control experiments.

Scheme 1. Substrate scope. Reaction conditions: (a) 1 (0.5 mmol), 2 (1.2 equiv., 0.6 mmol), Cu(TFA)2 (10 mol%), Na2CO3 (2.2 equiv., 1.1 mmol), 1,4-dioxane (2 mL) under N2,

80 8C, 18 h, isolated yield; (b) 1 (0.5 mmol), 2 (1.2 equiv., 0.6 mmol), Cu2O (10 mol%), 1,4-dioxane (2 mL) under N2, 100 8C, 18 h, isolated yield.
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yields of b-borylated a,b-styrene when compared to meta- and
para-substitutions, probably because of steric hindrance. It is
noteworthy that most halo-substituted aryl groups survived well,
leading to halo-substituted aromatic b-borylated a,b-styrene in
good yields which could be used for further transformations (3m-
3r). In addition, 4-phenyl, 1-naphthyl, 4-trifluoromethyl, 4-cyano
substituted 3-phenylpropiolic acid and 3-(thiophen-2-yl)propiolic
acid were transformed into corresponding b-borylated a,b-
styrenes smoothly as well (3h-3l).

In order to understand the reaction mechanism, some control
experiments were performed. When potassium 3-phenylpropio-
late was performed as starting material in anhydrous solvent
(Scheme 2, eq. 1), only trace of hydroboration product was formed.
This result indicates that the hydrogen of alkynyl carboxylic acids
and water in the solvent under ‘‘standard condition’’ offers the
protons as the electrophilic source. When D2O was added to the
standard reaction system, high deuterium incorporation for both
olefinic protons in 3a-D2 was obtained (Scheme 2, eq. 2). Utilizing
phenylacetylene instead of 3-phenylpropiolic acid as the substrate
to perform the reactions with D2O under the standard conditions
resulted in a slight lower reactivity and poorer deuterium
incorporation than alkynyl carboxylic acids (Scheme 2, eq. 3)
(Scheme 3) .

Based on previous copper-catalyzed hydroboration reactions
and our own work, we suggested that the reaction may be
Scheme 3. Proposed mechanism.

Please cite this article in press as: Q. Feng, et al., Copper-catalyzed decarboxylative hydroboration of phenylpropiolic acids under ligand-
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rformed through the addition of copper-boron species (I) to the
C triple bond of (phenylethynyl) copper intermediate (II) which
generated via decarboxylation of phenylpropiolic acid under
se-free condition, followed by the formation of (E)-alkenyl-bis-
pper reactive intermediate (III) which has two reactive positions
ith two copper atoms on. Finally, it can be trapped by protons to
ford the (E)-b-borylated a,b-styrene.

 Conclusion

In conclusion, we have developed efficient catalytic systems to
nthesize alkenylboronates via copper-catalyzed decarboxylative
gioselective hydroboration of alkynyl carboxylic acids under
and-free or both ligand and base-free conditions. The applica-
n of alkynyl carboxylic acids instead of terminal alkynes can lead

 a highly active and selective hydroboration reaction. Mechanic
vestigations supported the formation of an alkenyl-bis-copper
active intermediate. This novel strategy has great potential in the
velopment of bis-functionalization of carbon–carbon triple
nd. Further studies on exploration of the reaction scope,
echanistic elucidation, and synthetic application of this protocol
e ongoing in our laboratory.
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