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An efficient copper-catalyzed decarboxylative hydroboration of phenylpropiolic acids with bis(pina-
colato)diboron was developed, affording 3-vinylboronates as the only products in high yields. Extra
hydrogen sources such as methanol are not needed in this catalytic system. This reaction could be
performed successfully under ligand- and base-free conditions. It demonstrated that phenylpropiolic

acids can be employed as alkyne synthons in the hydroboration reaction and exhibited good reactivity
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and higher selectivity than terminal alkynes.
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1. Introduction

Alkenylboron compounds are especially versatile building
blocks that are widely employed as vinyl anionic or cationic
synthons in a myriad of coupling reactions [1], as well as they can
be readily transformed into various vinylic derivatives [2]. Over the
past years, the transition-metal-catalyzed addition of boron to
carbon-carbon triple bonds presents a convenient and important
strategy for alkenylboron synthesis [3]. Among them, copper-
catalyzed hydroboration of alkynes has attracted much attention
due to the readily availability, low cost, and low toxicity of copper
salts. Great progress has been made by Miyaura [4], Yun [5], Li [6],
Haveyda [7], and others [8]. However, some limitations still exist,
such as the requirement of ligand, base, and special hydrogen
source, thus the development of more efficient method with much
wide applicability to prepare vinylboronates via copper-catalyzed
regioselective hydroboration of aryl alkynes is still a challenge for
synthetic organic chemistry. On the other hand, alkynyl carboxylic
acids are regarded as ideal substitutions for terminal alkynes and
have been widely applied in the transition-metal-catalyzed
construction of C-C and C-heteroatoms bonds via decarboxylation
[9]. In particular, alkynyl carboxylic acids exhibit superiority to
terminal alkynes in the reactions: they are often more reactive, and
they can efficiently suppress the Glaser coupling reaction that
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frequently occurs in the Sonogashira reactions. As part of our
ongoing research into the development of highly efficient and
versatile copper-catalyzed decarboxylative reactions [10], and in
conjunction with our work on oxidative decarboxylative coupling
of arylpropiolic acids with dialkyl H-phosphonates [11], we
decided to expand this strategy in the copper-catalyzed hydro-
borations. Recently, we have achieved the synthesis of bis-
deuterated [3-borylated a,[3-styrene derivatives from the reaction
of alkynyl acids with bis(pinacolato)diboron under base-free
conditions [12]. Herein, we report our results on the general
hydroboration using alkynyl acids as the substrates under ligand-
free or both ligand- and base-free conditions.

2. Experimental

All experiments were conducted with a Schlenk tube. Flash
column chromatography was performed over silica gel (200-300
mesh). 'H NMR spectra were recorded on a Bruker AVIII-400M or
AVIII-500M spectrometers. Chemical shifts (in ppm) were refer-
enced to CDCl; (8 7.26) as an internal standard. >C NMR spectra
were obtained by using the same NMR spectrometers and were
calibrated with CDCl3 (§ 77.0). Unless otherwise noted, materials
obtained from commercial suppliers were used without further
purification. Anhydrous dioxane was obtained by refluxing for at
least 12 h over sodium and freshly distilled prior to use.

General procedure for the synthesis of (E)-4,4,5,5-tetramethyl-
2-styryl-1,3,2-dioxaborolane (3a): A Schlenk tube with a magnetic
stirring bar was charged with 3-phenylpropiolic acid (1a, 68 mg,
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0.5 mmol), bis(pinacolato)diboron (2a, 152 mg, 0.6 mmol),
Cu(TFA); (29 mg, 10 mol%), Na,CO3 (127 mg, 1.2 mmol), and
1,4-dioxane (2 mL) under N,. The reaction mixture was stirred at
80 °C for 18 h (monitored by TLC and GC). Upon completion of the
reaction, the reaction mixture was then cooled to ambient
temperature, diluted with ethyl acetate (20 mL), filtered through
a plug of silica gel, and washed with ethyl acetate (20 mL). The
organic layer was washed with saturated brine (20 mL x 2) and
dried over anhydrous Na,SO,. The solvents were removed via
rotary evaporator and the residue was purified by flash chroma-
tography (silica gel, ethyl acetate: petroleum ether = 1:30) to give
89.7 mg of desired product 3a in 78% yield as a colorless oil. 'H
NMR (400 MHz, CDCl3): 8 7.48-7.50 (m, 2H), 7.41 (d, 1H,
J=18.5Hz), 7.29-7.32 (m, 3H), 6.18 (d, 1H, J=18.4 Hz), 1.32 (s,
12H). '3C NMR (100 MHz, CDCls): § 148.5, 136.4, 127.9, 127.5,
126.0, 82.3, 23.8.

3. Results and discussion

We chose 3-phenylpropiolic acid (1a) and bis(pinacolato)di-
boron (2a) as the model substrates. Initially, the reaction was
conducted in the presence of 10 mol% of Cu(OTf), and 1.2 equiv. of
Na,COs3 in benzene at 80 °C under N, atmosphere and no extra
ligand and hydrogen source were used. To our delight, 3-borylated
o,B-styrene with E-configuration (3aa) was formed in 55% yield as
the single product (Table 1, entry 1). When the reaction
temperature was raised to 90 °C, a slight decrease on the product
yield was observed and no reaction occurred at room temperature
(Table 1, entries 2 and 3). Further screening of the solvents showed
that acetonitrile and 1,4-dioxane are good choice for this reaction
(Table 1, entries 5-9). We also employed other copper catalysts

Table 1
Optimization of the reaction conditions.?

and copper trifluoroacetate (Cu(TFA),) exhibited the best activity
(Table 1, entry 12). The yield of 3aa could be further enhanced to
83% when 2.2 equiv. of Na,CO3; was employed. To our surprise, in
the absence of the base Na,COs, also 37% yield could be obtained
(Table 1, entry 14). Then we screened the copper catalyst again
under base-free condition and found out that Cu,O could lead to
satisfied result, probably because of its potential basicity (Table 1,
entry 18). Considering that actually a double amount of [Cu] was
involved for Cu,0, a loading of 5 mol% was used and a little lower
yield was obtained (Table 1, entry 20). Further increasing the
reaction temperature to 100 °C made the product being formed
nearly quantitatively (Table 1, entry 21). Finally, this reaction
performed smoothly at room temperature if a phosphorous ligand
was added (Table 1, entry 22). It is noteworthy that the solvents we
used were actually wet. When the reaction under the conditions as
in entry 19 was performed in anhydrous dioxane, only 7% of 3aa
was obtained. If extra 0.25 mmol of water (0.5 equiv.) was added to
anhydrous dioxane, the yield was 31%. Only when more than
1 equiv. of water was used, acceptable around 60% yield could be
achieved, indicating that water content in the wet dioxane we used
was higher than 0.4%.

After establishing the optimized reaction conditions of the
different catalytic systems, a variety of alkynyl carboxylic acids and
diboron reagents were subjected (Table 1, entries 13 and 21) to
evaluate the scope of the copper-catalyzed decarboxylative
regioselective hydroboration reaction. As shown in Scheme 1,
phenylpropiolic acids with both electron-rich and electron-
deficient substituents on the aromatic ring could be smoothly
converted into the desired products. The position of the substitutes
on the aromatic rings had some influence on yields (3b-3c, 3d-3e,
3m-30, 3p-3q), with ortho-substitutions usually giving lower

P OOH H /O/Q
=
+ Bypiny catalyst, base SN B< o
solvent, 7, 18 h H

la 2a 3aa
Entry Cu catalyst Base Solvent T (°C) Yield (%)°
1 Cu(OTf), Na,COs3 Benzene 80 55
2 Cu(OTf), Na,COs3 Benzene 90 46
3 Cu(OTf), Na,COs3 Benzene R.T. 0
4 Cu(OTf), Na,COs3 Benzene 50 Trace
5 Cu(OTf), Na,CO3 DMSO 80 26
6 Cu(OTf), Na,CO3 DMF 80 0
7 Cu(OTf), Na,COs CH5CN 80 63
8 Cu(OTf), Na,CO3 DMA 80 8
9 Cu(OTf), Na,COs3 1,4-dioxane 80 65
10 Cu(OAc); Na,COs3 benzene 80 45
11 Cu(TFA), Na,COs3 Benzene 80 73
12 Cu(TFA), Na,COs3 1,4-dioxane 80 75
13 Cu(TFA), Na,COs© 1,4-dioxane 80 83
14 Cu(TFA), - 1,4-dioxane 80 37
15 Cu(OAc), - 1,4-dioxane 80 42
16 Cu(OTf), - 1,4-dioxane 80 Trace
17 CuSO4 - 1,4-dioxane 80 19
18 CuO - 1,4-dioxane 80 61
19 Cu,0 - 1,4-dioxane 80 76
20¢ Cu,0 - 1,4-dioxane 80 58
21 Cu,0 - 1,4-dioxane 100 96
22¢ Cu,0 - 1,4-dioxane RT. 77

2 Reaction conditions: (1) (0.5 mmol), (2) (1.2 equiv., 0.6 mmol), copper catalyst (0.05 mmol), base (0.6 mmol), solvent (2 mL), under N, atmosphere.

Yields are based on GC analysis with n-dodecane as the internal standard.
1.1 mmol (2.2 equiv.) of Na,CO3 was used.

0.025 mmol of Cu,0 was used.

0.05 mmol of Xantphos was added.

o an o
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Scheme 1. Substrate scope. Reaction conditions: (a) 1 (0.5 mmol), 2 (1.2 equiv., 0.6 mmol), Cu(TFA), (10 mol%), Na>CO5 (2.2 equiv., 1.1 mmol), 1,4-dioxane (2 mL) under N,
80 °C, 18 h, isolated yield; (b) 1 (0.5 mmol), 2 (1.2 equiv., 0.6 mmol), Cu,0 (10 mol%), 1,4-dioxane (2 mL) under N,, 100 °C, 18 h, isolated yield.

yields of B-borylated o,(3-styrene when compared to meta- and
para-substitutions, probably because of steric hindrance. It is
noteworthy that most halo-substituted aryl groups survived well,
leading to halo-substituted aromatic (3-borylated «,[3-styrene in
good yields which could be used for further transformations (3m-
3r). In addition, 4-phenyl, 1-naphthyl, 4-trifluoromethyl, 4-cyano
substituted 3-phenylpropiolic acid and 3-(thiophen-2-yl)propiolic
acid were transformed into corresponding [3-borylated o,3-
styrenes smoothly as well (3h-31).

In order to understand the reaction mechanism, some control
experiments were performed. When potassium 3-phenylpropio-
late was performed as starting material in anhydrous solvent
(Scheme 2, eq. 1), only trace of hydroboration product was formed.
This result indicates that the hydrogen of alkynyl carboxylic acids
and water in the solvent under “standard condition” offers the
protons as the electrophilic source. When D,0 was added to the
standard reaction system, high deuterium incorporation for both
olefinic protons in 3a-D, was obtained (Scheme 2, eq. 2). Utilizing
phenylacetylene instead of 3-phenylpropiolic acid as the substrate
to perform the reactions with D,0 under the standard conditions
resulted in a slight lower reactivity and poorer deuterium
incorporation than alkynyl carboxylic acids (Scheme 2, eq. 3)

Q2(Scheme 3).

Based on previous copper-catalyzed hydroboration reactions
and our own work, we suggested that the reaction may be

P COOK 0 /<
7 . Conditions A ]é\
+ B,Piny, —— ©/\/ (6]

la 3a
trace
65% D
COOH ° 9’§ .
Z Conditions B<
+ BzPil’lz DO (6 K N 0
equiv. D
»O (6 equiv.) \78% D
1a 3a-D2
58%
0,
. 76% D ~~p
& Condltlons
+ B,Pin, D.0 (6 )
equiv.
200 ‘\sw D
la 3a-D2
50%

*Reaction conditions are that shown in entry 20, Table 1

Scheme 2. Control experiments.

CuL o H
b3
COOH Cu salt P Cul, |:> X BOR), | —— X~ B(OR),
E Z CuL H
-CO, 11

I

Scheme 3. Proposed mechanism.
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performed through the addition of copper-boron species (I) to the
C-C triple bond of (phenylethynyl) copper intermediate (II) which
is generated via decarboxylation of phenylpropiolic acid under
base-free condition, followed by the formation of (E)-alkenyl-bis-
copper reactive intermediate (IIl) which has two reactive positions
with two copper atoms on. Finally, it can be trapped by protons to
afford the (E)-B-borylated a,3-styrene.

4. Conclusion

In conclusion, we have developed efficient catalytic systems to
synthesize alkenylboronates via copper-catalyzed decarboxylative
regioselective hydroboration of alkynyl carboxylic acids under
ligand-free or both ligand and base-free conditions. The applica-
tion of alkynyl carboxylic acids instead of terminal alkynes can lead
to a highly active and selective hydroboration reaction. Mechanic
investigations supported the formation of an alkenyl-bis-copper
reactive intermediate. This novel strategy has great potential in the
development of bis-functionalization of carbon-carbon triple
bond. Further studies on exploration of the reaction scope,
mechanistic elucidation, and synthetic application of this protocol
are ongoing in our laboratory.
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