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ABSTRACT: We report on the active template synthesis of a 
[2]rotaxane through a Goldberg copper-catalyzed C–N bond 

forming reaction. A C2-symmetric cyclohexyldiamine macro-
cycle directs the assembly of the rotaxane, which can subse-
quently serve as a ligand for enantioselective nickel-catalyzed 
conjugate addition reactions. Rotaxanes are a previously un-
explored ligand architecture for asymmetric catalysis. We 
find that the rotaxane gives improved enantioselectivity 
compared to a non-interlocked ligand, at the expense of 
longer reaction times. 

The active metal template synthesis of rotaxanes utilizes 
both a metal ion’s preferred coordination geometry (to direct 
the assembly of a threaded intermediate) and its ability to 
catalyze chemical reactions (to covalently capture the inter-
locked molecular architecture).

1
 Advantages of this approach 

compared to classical ‘passive’ metal template synthesis in-
clude that (i) the traditionally separate ‘threading’ and ‘cova-
lent capturing’ processes are combined in a single reaction, 
and (ii) the metal catalyst can often turn over, meaning that 
only sub-stoichiometric quantities of the template may be 
required.

2
 In addition, it is unnecessary to have a permanent 

ligand set on the axle of the rotaxane in active template syn-
thesis, making it easier for rotaxanes to be designed that can 
bind metal ions without saturating all of their coordination 
sites.

3
 Furthermore, the orthogonal orientation of the 

threaded components should embed a coordinated metal ion 
within a binding pocket where the shape and surface topog-
raphy is well defined in all three dimensions. In principle, 
these latter two features could be exploited to assemble well-
expressed chiral environments for catalysis. Here we report 
on the synthesis and efficacy of the first rotaxane ligand em-
ployed in asymmetric transition metal catalysis.

4 

    To introduce asymmetry close to the metal center in a 
target rotaxane ligand we searched for reactions that might 

form rotaxanes with a chiral C2-symmetric trans-N,N′-
dialkyl-1,2-cyclohexanediamine macrocycle, 1. Buchwald and 
co-workers have described an effective strategy for the ami-
dation of aryl halides—the Goldberg reaction

5
—employing a 

copper catalyst bound to a cyclohexyldiamine ligand, and we 
envisaged that this could be adapted for active template syn-
thesis (Scheme 1).

6
 In the proposed catalytic cycle, macrocy-

cle 1 co-ordinates the copper ion endotopically to generate 

complex 2. Subsequently the anion is displaced by the stop-
pered nucleophile 3, generating 4. Oxidative insertion into 
the C–I bond of aryl iodide 5 should occur preferentially from 

the other face of the macrocycle to give threaded Cu(III) 
species 6. Reductive elimination should then liberate 
[2]rotaxane 7, concurrently regenerating Cu(I) allowing its 
re-entry into the catalytic cycle. Reactions catalyzed by cop-
per ions not bound to 2, or coordinated outside of the cavity, 
would produce the non-interlocked thread 8 instead. 
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Scheme 1. Proposed Catalytic Cycle for the Goldberg 
Active Metal Template Synthesis of [2]Rotaxane 7 
from 1, 3, and 5.  
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  We started our investigation of the Goldberg active metal 
template rotaxane-forming reaction using conditions report-
ed by Buchwald and co-workers.

6
 A screen of reaction pa-

rameters found toluene to be the optimal solvent when 
Cs2CO3 was employed as the base, and Cu(OAc)2 was identi-
fied as the most effective copper source. We optimized these 
conditions for [2]rotaxane formation (Table 1). Extending the 
reaction time from 8 h to 20 h improved the yield of 7 from 
6% to 15% (Table 1, entries 1 and 2). Increasing the reaction 
concentration to 0.15 M, close to the limit of solubility of 3, 
increased the rotaxane yield to 21% (Table 1, entry 3). While a 
decrease in the loading of the copper catalyst (from 0.5 to 0.1 
equiv.) slowed the reaction rate (Table 1, entry 4), higher 
copper loadings reduced the amount of rotaxane 7 formed 
(Table 1, entry 5), probably by increasing the rate of the non-
ligated-Cu(I)-catalyzed reaction to form 8. Using a higher 
ratio of the axle components 3 and 5 to macrocycle 1 in-
creased the yield of [2]rotaxane to a synthetically viable 50 % 
(Table 1, entries 6–8).  

 

Table 1. Optimization of [2]Rotaxane Synthesis by 
Active Template Goldberg C–N Bond Formation.a 

entry Cu(OAc)2 
(equiv.) 

time 
(h) 

temp 
(°C) 

conv. of 
5 (%) 

rotaxane 7 

(conv. %)
b
 

1 0.5 8 110 26 6 

2 0.5 20 110 78 15 

3
c
 0.5 20 110 99 21 

4
c
 0.1 20 110 65 14 

5
c
 2 20 110 82 11 

6
c,d

 0.5 48 110 74 51 

7
c,d

 0.5 48 90 51 51 

8
c,e

 0.9 15 120 99 57 (50
f
) 

a 
Performed with macrocycle 1 (1.0 equiv.), aryl amide 3 (1.5 

equiv.), aryl iodide 5 (1.0 equiv.) and Cs2CO3 (2 equiv.) in 
toluene (0.0725 M). 

b 
Conversion to rotaxane 7 determined by 

1
H NMR. 

c 
0.15 M concentration. 

d 
Aryl amide 3 (4.5 equiv.), 

aryl iodide 5 (4.0 equiv.) and Cs2CO3 (8.0 equiv.). 
e 
Performed 

with aryl amide 3 (5.5 equiv.), aryl iodide 5 (5.0 equiv.) and 
Cs2CO3 (10 equiv.).

 f 
Isolated yield. 

 

  The rotaxane architecture of 7 was confirmed by mass spec-
trometry and NMR spectroscopy (see Supporting Infor-
mation). The 

1
H NMR spectra of [2]rotaxane 7 and its com-

ponents (1 and 8) also provided insight into the interactions 
and relative positions of the components within the rotaxane 
(Figure 1). Resonances for protons associated with, or proxi-
mate to, the amide group of the axle (Hk, Hl and Hj) are 
shifted dramatically downfield in the rotaxane (Figure 1b) 
compared to the non-interlocked thread (Figure 1c), with Hk 
shifting nearly 3 ppm. This is indicative of the axle being held 
in position by intercomponent hydrogen bonding between 
the amide H-bond donor of the axle and the H-bond accep-
tor amines of the macrocycle. Several proton resonances for 
the macrocycle are doubled in the rotaxane (e.g. HG, Figure 

1b), a consequence of the threaded unsymmetrical axle ren-
dering the faces of the macrocycle inequivalent.  

 

 

Figure 1. 
1
H NMR spectra (600 MHz, C6D6, 298 K) of a) mac-

rocycle 1, b) rotaxane 7, c) thread 8. The assignments corre-
spond to the lettering shown in Scheme 1. 

 

  Having established that the Goldberg reaction could be 
used to prepare a chiral [2]rotaxane with an embedded metal 
ion binding pocket with vacant coordination sites, our atten-
tion turned to evaluating the efficacy of 7 as a ligand in enan-
tioselective metal catalysis (Table 2). As a proof-of-concept, 
we examined the well-studied metal-catalyzed enantioselec-

tive Michael addition of diethyl malonate (9) to trans-β-
nitrostyrene (10a).

7
 Evans  has demonstrated

8
 the utility of 

chiral cyclohexyldiamine ligands in NiBr2-promoted variants 
of this reaction to afford 11a, and we compared the effective-
ness of acyclic ligand 12 (Table 2, entry 1) and [2]rotaxane 7 
(Table 2, entry 2) in this process. Pleasingly, both ligands 
catalyzed the reaction between 9 and 10a. However, they 
exhibited significant differences in catalytic behavior and 
stereochemical outcome of the reaction. Although acyclic 
ligand 12 facilitated rapid formation of 11a, only modest en-
antiomeric enrichment (68:32 er) was observed. In contrast, 
despite more sluggish activity (10x longer reaction times than 
for 12), [2]rotaxane 7 afforded product 11a in good yield 
(>98% conversion) and enantioselectivity (93:7 er). This be-
havior is consistent with the rotaxane providing a much 
more structurally defined 3D pocket for the metal ion and 
substrate, improving the expression of chirality of the ligand 
and reducing the degrees of freedom (in terms of confor-
mation and orientation) that the substrate can adopt upon 
binding to the catalytic center.

9
 However, burying the metal 

ion deeper in the ligand structure apparently reduces its ac-
cessibility and availability for catalysis, increasing the reac-
tion time needed for full conversion to product. 
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  The substrate scope of the rotaxane-nickel-catalyzed reac-
tion was investigated (Table 3), with high levels of enantio-
meric enrichment obtained regardless of substitution pattern 
(11b-d) or electronic properties (11e,f) of the nitrostyrene 
employed.  

 

Table 2. Ligand-Nickel-Catalyzed Enantioselective 

Michael-Addition of Diethyl Malonate 9 and trans-ββββ-

Nitrostyrene 10a.
a
 

Ligand (10 mol%)

9 10a 11a

PhMe, rt

NiBr2 (4.5 mol%)

EtO

O

OEt

O
NO2

(S)
EtO2C

CO2Et

NO2

 

ligand  time (d) conv. (%)
b
 

b
er (S:R)

c
 

c

 

2 >98  68:32 

Rotaxane 7 27 >98 93:7 

a 
Reaction conditions: 10a (1.0 equiv.), 9 (1.2 equiv.), ligand 

(10 mol%) and NiBr2 (4.5 mol%) in toluene (1 M) at rt. 
b
 Reac-

tions were run to full conversion as determined by 
1
H NMR. 

c 

Enantiomeric ratios determined by HPLC using a Chiralpak 
IC column.

9  
In the absence of NiBr2, diamine 12 gives >98 % 

conversion to 11a over 4 days with er 49:51 (consistent with 
the diamine acting as a base, as with other amines in this 
type of reaction

8b
).

 

 

Table 3. Scope of the Rotaxane-Nickel-Catalyzed En-
antioselective Michael-Addition of Diethyl Malonate 

9 and trans-ββββ-Nitrostyrenes 10a-f.
a
 

 
 a 

Reaction conditions: 10a-f (1.0 equiv.), 9 (2.0 equiv.), 7 (10 
mol%) and NiBr2 (10 mol%) in toluene (0.2 M) at rt. 

b
 Reac-

tions were performed under the conditions used for Table 2. 
c
 

Conversions determined by 
1
H NMR. 

d 
Enantiomeric ratios 

determined by HPLC using a Chiralpak IC column. 

 

In conclusion, we have demonstrated that the Goldberg cop-
per-catalyzed amidation of an aryl iodide provides an effec-
tive means of introducing a C2-symmetric chiral cyclohex-
yldiamine macrocycle into a [2]rotaxane architecture. Once 
the rotaxane is assembled, the ligand remains active in pro-
moting asymmetric transition-metal-catalyzed reactions, 
giving markedly higher enantioselectivities compared to a 
non-interlocked analogue, albeit at the expense of signifi-
cantly longer reaction times.  

   Enzymes often perform asymmetric catalysis within deep 
binding pockets of well-defined shape and surface topogra-
phy. It can be difficult to construct three-dimensional cavi-
ties in which the chirality is similarly well-expressed using 
conventional small-molecule structures. The orthogonal ar-
rangement of the mechanically interlocked components of 
rotaxanes, which can conveniently incorporate chiral C2-
symmetric (and other) macrocyclic ligands through active 
template synthesis, offers an intriguing way of assembling 
chiral three-dimensional binding pockets that have a ligated 
transition metal ion with accessible coordination sites at the 
core. Tuning of the structure of rotaxane ligand 7, by short-
ening the thread (to further restrict the freedom of move-
ment of the interlocked components) and varying the axle 
constitution, is on-going in our laboratory. 
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