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ABSTRACT
A facile and practical method was described for the synthesis of 4H-
chromen-5-ones under catalyst- and solvent-free conditions by one-
pot stirring of starting materials at 110 �C. The products were
obtained by the reaction between cyclic 1,3-dicarbonyl compounds,
aromatic aldehydes and (E)-N-methyl-1-(methylthio)-2-nitroethen-
amine (NMSM) in short duration with good to excellent yields. This
simple and environmentally benign method eliminates the use of
expensive, metallic and corrosive catalysts, hazardous organic sol-
vents, and chromatographic separation.
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Introduction

In the mainstream of current research, green techniques or processes have recently
gained significant economic and ecological interest, as they focused on approaches,
which minimize the uses and generation of hazardous substances.[1,2] The main focus of
green chemistry is to reshape the way and design different synthetic strategies to include
the environment as a major concern. Therefore, the green chemistry provides modern
synthetic pathways to architecting the molecules in a more economical and proficient
manner. The replacement of either toxic solvent with eco-friendly solvent or catalyst-
and solvent-free chemical processes have been a promising interest in academia and
industry. Catalyst- and solvent-free multicomponent synthesis is particularly more
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attractive because they incorporate many green chemistry principles.[3] In this specific
circumstance, multicomponent reactions (MCRs) have emerged as a powerful strategy
for the synthesis of biologically active compounds in green synthetic frameworks with-
out isolation of unwanted intermediates,[4] which offered high atom economy, high
selectivity, less waste production, and good yields.[5,6]

4H-Chromenone and its analogs exhibit a broad spectrum of biological and pharma-
cological activities such as anticancer,[7] anticoagulant,[8] antimicrobial,[9] anti-HIV, [10]

antimalarial, [11] anti-tumour,[12] antidyslipidemic,[13] anticonvulsant,[14] and diuretic.
[15] Compounds with 4H-chromenone framework are not only biologically and pharma-
cologically active, but also widely distributed as a key structural motif in many natural
products and structure related to plant pigments.[16,17] In addition, these derivatives
have also played promising roles in the field of agrochemicals and cosmetics indus-
tries.[18] Moreover, 4H-chromenone derivatives have also been applied for the treatment
of human inflammatory TNFa-mediated diseases such as rheumatoid, psoriatic arthritis,
as apoptosis inducers, and inhibitors for excitatory amino acid transport.[19] For
example, compound A possesses antirheumatic activity[20] and compound B act as an
antibacterial,[21] whereas anticancer activities shown by compounds C and D[22] (Figure
1). These diverse applications of 4H-chromenone derivatives in medicinal and pharma-
ceutical chemistry have dragged substantial interest among synthetic chemists to develop
useful synthetic routes for their preparation. A number of synthetic methods for the
construction of 2-aminochromenone and 4H-chromenone derivatives have
been reported.[23]

Recently, synthetic chemists explored (E)-N-methyl-1-(methylthio)-2-nitroethenamine
(NMSM) and synthesized a variety of oxygen and nitrogen-containing heterocyclic com-
pounds. [24] However, for the synthesis of substituted 4H-chromen-5-one derivatives by
using NMSM, there were only two methods reported using 20mol% piperidine and
1.5mol% 6, 60-thiobis(methylene)-b-cyclodextrin dimer as a catalyst.[25] Although this
method is useful but associated with some demerits such as longer reaction time and
use of catalysts as well as solvents. Therefore, it is need of time to develop an efficient
and greener protocol for the synthesis of these important compounds, which might be a
better alternative.
In continuation of our research work towards the synthesis of functionalized hetero-

cycles by using green and sustainable approaches via MCRs,[26] herein, we wish to
report a sustainable and efficient protocol for the synthesis of 4H-chromene-5-one

Figure 1. 4H-Chromenone and 4H-chromen containing biologically active compounds.
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derivatives in high yields by the reaction of cyclic-1,3-diketones and aromatic aldehydes
with NMSM under neat conditions (Scheme 1).

Results and discussion

To optimize the reaction conditions, we first conducted a series of trial reactions with
NMSM 1a (1.0mmol), dimedone 2a (1.0mmol), and 4-chlorobenzaldehyde 3a
(1.0mmol) in the presence of recyclable heterogeneous nano ZnO (10mol%) as a cata-
lyst using ethanol at room temperature, ethanol at 78 �C, acetonitrile at 80 �C and with-
out solvent at 100 �C, respectively (Table 1, entries 1–4). Again, the same reaction was

Scheme 1. Comparison of present work with reported method.

Table 1. Optimization of reaction conditions for the synthesis of compound 4aa.

Entry Catalyst (mol%) Solvent Temp. Time Yieldb (%)

1 Nano ZnO (10) EtOH rt 3 h 40
2 Nano ZnO (10) EtOH 78�C 2 h 65
3 Nano ZnO (10) CH3CN 80�C 2.5 h 60
4 Nano ZnO (10) Neat 100�C 1 h 72
5 No Catalyst Neat 100�C 40min 84
6 No Catalyst Neat 110�C 20min 90
7 No Catalyst Neat 115�C 20min 90
6 No Catalyst Neat 120�C 18min 88
9 No Catalyst Neat 130�C 15min 86
aGeneral reaction conditions: NMSM 1a (1mmol), dimedone 2a (1mmol) and 4-chlorobenzaldehyde 3a (1mmol).
bIsolated yields. Bold values in entry 6 signifies the optimized raction conditions.
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performed under catalyst- and solvent-free conditions at 100 �C (Table 1 entry 5). From
the above preliminary experiments, we have noticed that catalyst- and solvent-free con-
ditions at 100 �C afforded the comparably good result in terms of yield and time for
exclusive formation of the desired product 4a.
The product 4a was characterized by the physical and spectral properties, which gives

the good agreement with the reported data.[25] Encouraged by this result and in a quest
to develop a green and sustainable method, we further commenced the same reaction at
different temperature viz. 110 �C, 115 �C, 120 �C, and 130 �C at neat conditions and
without a catalyst, which furnished the product in 90%, 90%, 88%, and 86% yields,
respectively (Table 1, entries 6–9). The best result was achieved at 110 �C, which gives
the desired product 4a in 90% yield within 20min of stirring. We have observed that
there is no significant increase in yield while further increasing the temperature.
From the above observations (Table 1, entry 6), the catalyst- and solvent-free
conditions at 110 �C came out as the optimized reaction conditions in terms of best
yield and time.
After optimizing the reaction conditions, we explored the scope of the synthetic

protocol. For this, we started our reactions with benzaldehyde, dimedone, and NMSM
under the same reaction conditions and it furnished the product 4 b in 86% yields
within 30min. After getting these encouraging results, the reaction of various substi-
tuted aromatic aldehydes having electron donating groups such as 4-Et and 4-Me and
withdrawing groups such as 4-Cl, 4-Br, 4-F, 4-NO2, 4-OMe, 3-Cl, 3-Br, 3-OMe, 2-NO2

and 2-F with dimedone and NMSM were performed under optimized conditions. The
reaction proceeds effectively to afford a series of chromen-5-one derivative 4a–4q in
85–94% yields (Table 2). We have noticed that the aromatic aldehydes having electron
withdrawing groups afforded the products with good to excellent yields. Electron donat-
ing substituted aromatic aldehydes also shows equal ease towards the product formation
in good yields.
Further, the scope of this protocol was extended by the reaction of cyclohexane-1,3-

dione with aromatic aldehydes and NMSM under optimized reaction conditions, which
afforded the formation of desired products 4r–4u in very good yields (Table 2).
Subsequently, to create more complexity, we performed the reaction of terephthalalde-
hyde with cyclic-1,3-diketones and NMSM under optimized conditions, which furnished
the corresponding novel bis 4H-chromen-5-one derivatives 6a and 6b as shown in
Scheme 2.
Next, we moved to validate our protocol on gram-scale under the optimized condi-

tions and compounds 4i and 4q were synthesized in gram scale by the reaction of
NMSM, dimedone with corresponding aldehydes as depicted in Scheme 3.
All the newly synthesized compounds were fully characterized by its melting point

and spectroscopic techniques like IR, 1H & 13C NMR, HRMS and also by CHNS ana-
lysis. Reported compounds 4f, 4i, 4j, 4l, and 4n were also fully characterized and the
spectroscopic data are in good agreement with the proposed structure.25 Moreover, the
structure and configuration of one of the compound were confirmed by single crystal-
XRD analysis and the ORTEP diagram of compound 4m is shown in Figure 2.
Finally, a plausible reaction mechanism for the formation of 4H-chromene-5-ones

was outlined in Scheme 4. The first step is Knoevenagel condensation of dimedone and
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Table 2. Substrate scope for the synthesis of functionalized 4H-chromen-5-one derivtivesa.

aReactions were performed with NMSM (1mmol), cyclic-1,3-dikeone (1mmol) and aromatic aldehydes (1mmol) at
110 �C.

bIsolated yields.
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aromatic aldehyde to give an intermediate I, which undergoes Michael-type
addition with NMSM to form species II. Then, the species II undergoes intra-molecular
O-cyclization to afford the desired compound via species III by the elimination
of –MeSH.

Scheme 2. Synthesis of novel bis 4H-chromen-5-one derivtives.

Scheme 3. Gram scale synthesis of 4H-chromen-5-one 4i and 4q.

Figure 2. ORTEP diagram of compound 4m (CCDC 1814849).
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Conclusion

In summary, we have developed an expedient and sustainable greener method for the
synthesis of 4H-chromen-5-one derivatives from the reaction of cyclic-1,3-diketones,
aromatic aldehydes, and NMSM in catalyst-free under neat conditions at 110 �C. The
significant features of this presented method are simple, clean reaction profile, good to
excellent yields, reduced reaction time, avoidance of toxic catalyst and no need of col-
umn chromatographic separation. We believe that these prominent features will facili-
tate this protocol to find wide applications in the field of synthetic organic chemistry
and medicinal chemistry.

Experimental

Synthetic grade chemicals and all solvents were obtained from Sigma-Aldrich, Merck,
Otto Chemie and used for carrying out this work as received. Infrared spectra were
recorded in potassium bromide pellets in reflection mode on a Perkin-Elmer 10.4.00 IR
spectrophotometer. 1H-NMR and 13C-NMR spectral analysis were carried out on
Bruker (Avance-II 400MHz), Varian-AS400 NMR, and Bruker BioSpin GmbH spec-
trometers using tetramethylsilane (TMS) as an internal standard and DMSO-d6 or
CDCl3 as a solvent. Melting points were measured on a Labtronics apparatus and are
uncorrected. Crystal data were collected with a SuperNova, single source at offset/far,
HyPix3000 diffractometer (CCD) using graphite monochromated MoKa radiation
(k¼ 0.71073Å) at 296K. High-Resolution Mass Spectra (ESI) were obtained on
ORBITRAP mass analyzer (Thermo Scientific, Q Exactive) by the ESI method, while the
elemental analysis of the compounds was performed on a Perkin-Elmer-2400 CHN/S
analyzer and Thermo Scientific (FLASH 2000) analyzer.

Scheme 4. Plausible reaction mechanism for the formation of 4H-chromen-5-ones.
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General procedure for the preparation of functionalized 4H-chromen-5-one
derivatives (4a–4u)

In a dried 5mL round-bottomed flask was charged with a mixture of aromatic alde-
hydes (1.0mmol), cyclic-1,3-diketones (1.0mmol) and NMSM (1.0mmol) at 110�C. The
resulting mixture was stirred for 15–30min and the reaction progress was checked by
TLC. After completion of the reaction as indicated by TLC, the resulting precipitate was
cooled and added 2ml of ethanol and stirred for 5min. Then, the precipitate was fil-
tered and washed with cold ethanol. Recrystallization was performed from hot aceto-
nitrile to give the pure products.
4-(4-chlorophenyl)-7,7-dimethyl-2-(methylamino)-3-nitro-7,8-dihydro-4H-chromen-

5(6H)-one (4a). Isolated as light yellow solid; Yield: 90%; m.p: 240–242
�
C; IR (KBr, cm�1)

3285, 3021, 2963, 1678, 1638, 1560, 1487, 1469, 1254, 1195, 1086, 812; 1H NMR (400MHz,
DMSO-d6) d 0.91 (s, 3H), 1.05 (s, 3H), 2.09 (d, J¼ 16Hz, 1H), 2.27 (d, J¼ 16.4Hz, 1H),
2.62 (dd, J¼ 16.8Hz, 2H), 3.09 (d, J¼ 5.2Hz, 3H), 4.87 (s, 1H), 7.23 (d, J¼ 8Hz, 2H), 7.29
(d, J¼ 8Hz 2H), 10.25 (t, J¼ 4.8Hz, 1H); 13C NMR (400MHz, DMSO-d6) d 26.6, 28.3,
31.9, 35.2, 39.5, 49.7, 108.1, 114.8, 127.8, 129.9, 131.0, 141.4, 157.2, 161.1, 195.3; Anal.
Calcd (%) for C18H19ClN2O4: C, 59.59; H, 5.28; N, 7.72 Found: C, 59.64; H, 5.20; N, 7.80;
EI-HRMS: Anal. Calcd for [C18H19ClN2O4þHþ]: Cacld: 363.1106, Found: 363.1103.

Typical procedure for the synthesis of bis 4H-chromen-5-one
derivatives (6a and 6b)

In a dried 10mL round-bottomed flask was charged with a mixture of terephthalalde-
hyde (1.0mmol), cyclic-1,3-diketones (2.0mmol) and NMSM (2.0mmol) at 110 �C. The
resulting mixture was stirred for 15–20min and after completion of the reaction as indi-
cated by TLC, the resulting precipitate was cooled and added 3ml of ethanol and stirred
for 5min. Then, the precipitate was filtered and washed with cold ethanol.
Recrystallization was performed from hot acetonitrile to give the pure products.
4,4’-(1,4-phenylene)bis(7,7-dimethyl-2-(methylamino)-3-nitro-7,8-dihydro-4H-chro-

men-5(6H)-one) (6a). Isolated as white solid; Yield: 88%; m.p: 290–292 �C; IR (KBr,
cm�1): 3278, 3223, 3024, 2958, 1671, 1634, 1564, 1472, 1368, 1236, 1163, 1052; 1H
NMR (500MHz, DMSO-d6) d 0.89 (s, 3H) 0.90 (s, 3H), 1.02 (s, 3H), 1.05 (s, 3H),
2.10–2.15 (m, 2H), 2.18–2.28 (m, 2H), 2.58–2.64 (m, 4H), 3.06 (d, J¼ 5.0Hz, 3H), 3.09
(d, J¼ 5.0Hz, 3H), 4.84 (s, 1H), 4.86 (s, 1H) 7.05 (s, 2H), 7.45 (d, J¼ 8.0Hz, 1H), 7.78
(d, J¼ 8.0Hz, 1H), 10.18 (s, 1H), 10.19 (s, 1H); 13C NMR (400MHz, DMSO-d6)

13C
NMR (100MHz, DMSO-d6) d 27.0, 27.6, 28.5, 28.7, 28.8, 28.9, 31.1, 32.4, 32.5, 35.3,
35.3, 36.7, 50.2, 50.3, 108.3, 108.9, 115.1, 115.9, 127.9 129.4, 129.7, 135.3, 141.1, 149.6,
1577, 158.0, 161.8, 161.9, 195.8, 195.9; Anal. Calcd (%) for C30H34N4O8: C, 62.27; H,
5.92; N, 9.68. Found: C, 62.20; H, 5.87; N, 9.58; EI-HRMS: Anal. Calcd for
[C30H34N4O8þHþ]: Cacld: 579.2449, Found: 579.2452.
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