A Novel Method of CCl₄ Disposal by Disproportionation with CH₄ over Pt on Various Supports

Jong Wook Bae, Jae Sung Lee,* Kyung Hee Lee, Byeongno Lee,[†] and Duck Joo Yang[†]

Department of Chemical Engineering and School of Environmental Engineering,

Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang, 790-784, Korea

[†]Samsung Advanced Institute of Technology, 103-6 Moonji-Dong, Yusung-Gu, Taejeon, 305-380, Korea

(Received November 22, 2000; CL-001057)

In disproportionation of CCl_4 with CH_4 into CH_3Cl and $CHCl_3$, platinum supported on $SrCO_3$, SiO_2 , MgO and MgAl_2O_4 showed stable activity and high selectivities around 700 K, providing a novel disposal method of ozone-depleting CCl_4 .

Chlorinated-carbons are known as ozone-depleting compounds.¹ Catalytic combustion and hydrodechlorination are useful methods for disposal of these harmful chlorinated compounds including CCl₄.²⁻⁷ Compared to highly exothermic gas-phase hydrodechlorination of CCl₄, which has a short-coming of rapid catalyst deactivation due to high exothermicity, disproportionation of CCl_4 with CH_4 is very attractive and novel method discharging much lower heat of reaction (ΔH values of ca. -177 kJ/mol for hydrodechlorination of CCl₄, and -11.197 kJ/mol for the perfect disproportionation of CCl₄ and CH₄). Chlorohydrocarbon products such as CHCl₃, CH₂Cl₂ and CH₃Cl, useful for solvents and intermediates can be obtained by this reaction. Chlorination of methane i.e., catalytic reaction of CH₄ with Cl₂, has been found to show a very high selectivity to CH3Cl over solid super-acid and supported noble metal catalysts.^{8–11} Although disproportionation¹² of chlorofluoromethane with CCl₄ and catalytic reaction¹³ of methane with CBrF3 were studied, there has been no report, to our best knowledge, on the disproportionation of CCl₄ and CH₄ to produce chloromethanes. In the present letters, we studied the reaction over various supported platinum catalysts as a novel method of CCl_4 disposal.

Supported platinum catalysts were prepared by the conventional wet impregnation methods with K₂PtCl₆ as a platinum precursor. Various supports were employed including activated carbon (specific surface area, Sg = 1500 m²/g), SrCO₃ (4.8 m²/g), SiO₂ (300 m²/g), MgO (45.3 m²/g), ZSM-5 (350 m²/g, Si/Al = 150), TiO₂ (11 m²/g), MgAl₂O₄ (prepared from 10 wt% Mg/Al₂O₃ by calcination at 1127 K, Sg = 65.1 m²/g), and γ -Al₂O₃ (103 m²/g). Before initiating reaction in quartz reactor at a desired temperature, a prepared catalyst (500 mg) was reduced at 773 K with hydrogen flow of 21.1 µmol/s for 3 h. Methane (Matheson, 99.99%) was

introduced at 7.03 µmol/s (weight hourly space velocity (WHSV) of 1200 L/kgcat./h based on CH₄) through a mass flow controller (Brooks), and CH₄/CCl₄ mole ratio of 20 was adjusted by bubbling helium (3.5 µmol/s) through a CCl₄ saturator. Products were analyzed by HP GC 5890 series II equipped with a 60 m DB-5 capillary column and a flame ionization detector.

As a blank test, pyrolysis of CCl₄ with CH₄ without catalyst was investigated in a quartz reactor (o.d. = 1.27 mm, length = 100 mm). The reaction rates became measurable around 700 K, and conversion of CCl₄ exceeded 10% above 800 K at a total reactant feed rate of 7.38 µmol/s. Typical product distribution (mole%) at CCl₄ conversion of 36.6% at 823 K was as follows; 42.3% for CH₃Cl, 1.2% for CH₂Cl₂, 28.6% CHCl₃, 4.6% for C₂Cl₄, and 23.2% for C₂H_xCl_y. As the reaction temperature increased above 770 K, the selectivity for C₂H_xCl_y (C₂H₂Cl₄, C₂HCl₃, and unidentified by-products) increased abruptly probably by free radical reactions. Hence, performance of each catalyst for disproportionation of CCl₄ and CH₄ was studied below 773 K where the gas phase homogeneous reaction could be neglected.

Table 1 shows the conversion of CCl₄ over 1.0 wt% platinum supported on various carriers at 723 K, a CH_4/CCl_4 mole ratio of 20, and a WHSV of 1200 L/kgcat./h based on CH4. Although support itself showed some catalytic activity for disproportionation of CCl₄ and CH₄, selectivity to CH₃Cl was lower than Pt-supported catalyst and catalyst deactivation occurred rapidly (not shown). Figure 1 shows the product distribution of each catalyst at the CCl₄ conversion indicated by parenthesis in Table 1. Products distribution and catalyst stability were affected strongly by the nature of support. Carbon- and TiO₂-supported platinum showed high initial CCl₄ conversions, but the conversions decreased rapidly and continuously with time on stream. Pt/ SrCO₃ showed an initial rapid decrease in the conversion but the activity was stabilized after then. Other catalysts of Pt/MgO, Pt/ZSM-5, Pt/SiO₂, and Pt/MgAl₂O₄ showed initial increase in CCl₄ conversions followed by levelingoff or decrease. Alumina also showed a similar behavior although the variation was smaller. However, the catalyst formed solid deposits at the reactor outlet probably due to the low sublimation

 Table 1. CCl_4 conversion on supported platinum catalysts in disproportionation of CCl_4 with CH_4 at 723 K; WHSV = 1200L/kgcat./h and CH_4/CCl_4 mole ratio of 20; Pt precursor : K_2PtCl_6

Catalusta	Conversion of CCl ₄ /%									
Catalysis	0.5 h	1.5 h	2.5 h	3.5 h	5 h	7 h	9 h	11 h	13 h	15 h
1.0 wt%Pt/carbon	98.7	96.8	93.1	87.7	(83.1)	80.0	75.2	68.5	60.8	-
^a 1.0 wt%Pt/SrCO ₃	99.7	99.9	98.3	55.9	52.8	50.8	51.0	50.5	50.9	(51.2)
1.0 wt%Pt/SiO2	27.9	34.4	37.6	57.4	61.2	66.1	(69.4)	69.6	69.3	69.3
1.0 wt%Pt/MgO	10.4	65.6	88.1	94.4	79.9	72.0	`57.9 ´	56.1	(57.0)	57.7
1.0 wt%Pt/ZSM-5	27.1	36.9	48.3	58.5	(61.9)	66.2	65.3	62.6	58.9	-
1.0 wt%Pt/TiO2	95.6	87.0	79.5	64.8	(56.8)	48.8	45.1	-	-	38.0
1.0 wt%Pt/MgAl ₂ O ₄	22.8	34.5	47.1	56.8	(56.6)	54.5	55.5	-	-	-
0.5 wt%Pt/Al ₂ O ₃	61.9	67.3	70.1	74.3	(75.0)	77.4	-	-	-	-

^aWHSV = 600 L/kgcat./hr and CH₄/CCl₄ mole ratio of 10, H₂PtCl₆ Products distribution in Figure 1, was obtained at the parenthesized conversion.

Figure 1. Products distribution over 1.0 wt% Pt catalysts supported on various supports: WHSV = 1200 L/kgcat./h based on CH₄; Reduction T = 573 K(3 h); T = 723 K; mole ratio CH_4/CCl_4 of 20; K_2PtCl_6 ; flow rate of CCl_4 , 0.351 µmol/s; flow rate of CH_4 , 7.03 µmol/s.

temperature of $AlCl_3$ (mp = 463 K) which might be formed during the chlorination reaction.¹⁰ After reaction, Pt/SrCO₃ and Pt/MgO also showed the change in the phase of supports from oxides to chlorides such as SrCl₂ and MgCl₂·6H₂O as observed XRD. Despite this change, two catalysts showed stable catalyst activity and product distribution at 723 K for more than 30 h. These chlorides have high melting points, 987 K for MgCl₂ and 1146 K for SrCl₂. In any case, platinum supported on SiO₂, MgO, SrCO₃ and MgAl₂O₄ showed stable CCl₄ conversions and could become candidate catalysts for a novel disposal process of ozone-depleting CCl₄ by disproportionation with CH₄. Supported platinum catalysts could be classified into two groups according to their products distribution shown in Figure 1. Pt/carbon, Pt/SrCO₃, and Pt/SiO₂ showed the selectivity of CH₃Cl close to 50% and comparable amounts of CHCl₃. Substantial amounts of C₂ products were also formed over Pt/SrCO₃, and Pt/SiO₂. Other catalysts produced predominantly CH₃Cl. In particular, $Pt/MgAl_2O_4$, and Pt/Al₂O₃ catalysts exhibited CH₃Cl selectivity values higher than 90%. An ideal disproportionation of CCl₄ with CH₄ should have the following stoichiometry:

$$CH_4 + CCl_4 \rightarrow CH_3Cl + CHCl_3$$
(1)

The first group of catalyst, Pt/carbon in particular, appears to follow this route. However, we have to consider other stoichiometries in order to account for the dominant formation of CH_3Cl over the second group catalysts such as;

$$3CH_4 + CCl_4 \rightarrow 4CH_3Cl \tag{2}$$

Figure 2 compares temperature-programmed oxidation (TPO) of adsorbed CH₄ on fresh Pt/SiO₂ and Pt/MgAl₂O₄ representing each group of catalysts. The catalyst (500 mg) was reduced at 773 K and purged in He flow at 873 K prior to CH₄ adsorption at 723 K. Then, TPO was executed with a ramping rate of 10 K/mim from 323 K to 1173 K. On Pt/MgAl₂O₄ showing a high selectivity to CH₃Cl, a larger amount of a more reactive carbonaceous species is present compared to Pt/SiO2. CO2 evolution temperature was as low as around 750 K. It appears that facile dissociative adsorption of CH₄ promotes the selective formation of CH₃Cl. CCl₄ could adsorb dissociatively on any supported platinum at a temperature as low as 323 K.¹⁴ In order to investigate the source of carbon in each product, the reaction of labeled ${}^{13}CH_4$ with CCl_4 was studied over 1.0 wt%Pt/ MgAl₂O₄ with 4CH₄/CCl₄. As shown in Table 2, most (ca. 85%) of CH₃Cl originates from methane. This higher value than expected from equation 2 (75%) suggested that the reaction

Figure 2. Temperature-programmed oxidation of adsorbed CH₄ at 723 K: (a) 1.0 wt%Pt/MgAl₂O₄. (b) 1.0 wt%Pt/SiO₂. Pt precursor, K₂PtCl₆; Red T = 773 K (3 h); CH₄ adsorbed at 723 K for 1 h with a flow rate of 7.03 μ mol/s; flow rate of 1.0%O₂/He = 20.1 μ mol/s; ramping rate = 10 K/min.

 Table 2.
 ¹³C labeled content in products from catalytic reactions of ¹³C-lableled methane with CCl₄ on 1.0 wt%Pt/MgAl₂O₄ at 723 K and 4CH₄/CCl₄

 Reactants
 Contents of ¹³C fraction in each chlorocarbone/⁰/⁴

Reactants	Contents of	C fraction in each chiorocarbons/%					
¹³ CH ₄ +	¹³ CH ₃ Cl	$^{13}CH_2Cl_2$	¹³ CHCl ₃	$^{13}C_{2}Cl_{4}$			
CCl ₄	~ 85	~ 70	~ 40	0			

^aThe balance is ¹²C fraction for the sauce chloromethane.

pathway should be more complicated than indicated by equations 1 and 2. As chlorine content increases in chloromethanes, the contribution of CCl₄ increases (30% for CH₂Cl₂ and 60% for CHCl₃). C₂Cl₄ comes exclusively from CCl₄. Thus the reaction on the catalyst surface is very complicated comprising reactions 1 and 2 and others. As mentioned, dissociative adsorption of CCl₄ is facile under the current reaction conditions. The selectivity to CH₃Cl depends on the availability of adsorbed CH₂ species on the surface. When chlorine from adsorbed CCl₄ is readily picked up by the CH₃ species, dominant formation of CH₃Cl results. Otherwise, more chlorinated chloromethanes or dimers are preferentially formed due to the extended residence of adsorbed CCl₄ species on the catalyst surface. This overall picture is consistent with the product distribution in Figure 1 and the amounts of methane adsorption in Figure 2. A study of detailed reaction mechanism and optimization of reaction conditions are underway.

References

- 1 M. J. Molina and F. S. Rowland, Nature, 249, 810 (1974).
- S. Imamura, H. Tarumoto, and S. Ishida, *Ind. Eng. Chem. Res.*, 28, 1449 (1989).
- 3 A. H. Weiss, B. S. Gambhir, and R. B. Leon, J. Catal., 22, 245 (1971).
- 4 C. Dogimont, J. Franklin, F. Janssens, and J. P. Schoebrechts, U.S. Patent 5146013 (1992).
- 5 S. Y. Kim, H. C. Choi, O. B. Yang, K. H. Lee, J. S. Lee, and Y. G. Kim, J. Chem. Soc., Chem. Commun., 1995, 2169.
- 6 H. C. Choi, S. H. Choi, J. S. Lee, K. H. Lee, and Y. G. Kim, J. Catal., 166, 284 (1997).
- 7 Z. C. Zhang and B. C. Beard, Appl. Catal. A, 174, 33 (1998).
- 8 N. Kitajima and J. Schwartz, J. Am. Chem. Soc., 106, 2220 (1984).
- 9 G. A. Olah, Acc. Chem. Res., 20, 422 (1987).
- 10 I. Bucsi and G. A. Olah, *Catal. Lett.*, 16, 27 (1992).
- 11 P. Batamack, I. Bucsi, A. Molnar, and G. A. Olah, *Catal. Lett.*, 25, 11 (1994).
- 12 G. C. Rudershausen, European Patent 0306566 (1989).
- 13 K. Li, E. Kennedy, B. Dlugogorski, and R. Howe, *Chem. Commun.*, **1999**, 709.
- 14 J. W. Bae, E. D. Park, J. S. Lee, K. H. Lee, Y. G. Kim, S. H. Yeon, and B. H. Sung, *Appl. Catal. A*, in press.