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Metal vapor synthesis of ultrasmall Pd nanoparticles 
functionalized with N-heterocyclic carbenes 
Patricia Tegeder,a Marcello Marelli,b Matthias Freitag,a Laura Polito,b Sebastian Lamping,a Rinaldo 
Psaro,b Frank Glorius,a Bart Jan Ravoo,a*and Claudio Evangelistib*

The synthesis of N-heterocyclic carbene (NHC)-stabilized palladium 
nanoparticles (PdNPs) by an entirely new strategy comprising the 
NHC functionalization of ligand-free PdNPs obtained by metal 
vapor synthesis is described. Detailed characterization confirms the 
formation of very small monodisperse PdNPs (2.3 nm) and the 
presence of the NHC ligand onto the Pd surface. The stable NHC-
functionalized PdNPs dispersed onto carbon support showed high 
activity in the hydrogenation of limonene with enhanced 
regioselectivity in comparison to bare PdNPs on carbon. 

Ligand stabilized metal nanoparticles (MNPs) attract a large 
interest as alternative to classical homogeneous and 
heterogeneous transition metal catalyst due to their unique 
activity and selectivity.1–3 The surface chemistry of the MNPs 
plays a crucial role in their performance as catalyst. On the one 
hand, surface ligands can activate the metal they are binding to 
by electronic effects. On the other hand, the adsorbed ligands 
can influence the number and location of active sites on the 
MNP, which can have in turn a huge impact on the selectivity. 
In the recent years, N-heterocyclic carbenes (NHCs) have 
attracted increasing attention as a new type of MNP ligands.4,5 
Similar to thiols, they form strong covalent bonds to many 
transition metals, but contrary to thiols, do not tend to inhibit 
the catalytic properties of the metal. Moreover, they are 
structurally very versatile, feature a facile synthesis and can 
induce catalytic activity by their outstanding donor ability.6 
NHC-stabilized MNPs have been so far synthesized by four 
different strategies: 1) reduction of an NHC metal complex,7–12 
2) deprotonation of an azolium metalate and subsequent 
reduction,13,14 3) degradation of a metal(0) complex in the 
presence of the free NHC15–17 and 4) ligand exchange with 

preformed ligand stabilized MNPs.18–21 By using the first three 
approaches, the particles are formed in presence of the NHC 
ligand, which consequently governs the size of the MNPs. Since 
the catalytic performance of MNPs is strongly influenced by the 
particle diameter and the ligand structure,2 it is highly desirable 
to tune both parameters individually. To the best of our 
knowledge, the ligand exchange procedure is the only method 
that allows the synthesis of MNPs with defined size and shape 
independent from the used NHC ligand. However, the 
disadvantages of this approach are the excess of NHC needed 
to replace the precursor ligand, the elaborate and time-
consuming work-up to purify the particles and the instable 
mixed ligand shell during the exchange process which can lead 
to irreversible aggregation.22 Therefore, it would be highly 
beneficial to develop a synthetic protocol in which the MNPs are 
formed with defined properties and further functionalized with 
the NHC ligand avoiding the use of additional ligands.  
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Scheme 1: Synthetic approaches to NHC-stabilized MNPs. 
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The metal vapor synthesis (MVS) potentially enables this 
approach.23 By using MVS, very small (< 5 nm) solvent-stabilized 
MNPs of a variety of transition metals can be generated.24-26 
MNPs are weakly stabilized by solvent molecules, thus the NHC 
coordination is effective and an excess of NHC is not necessary 
for surface functionalization. Since only the solvent and the 
pure metals are used in the MVS method, the number of 
possible impurities is reduced to a minimum and the 
subsequent purification is facilitated. 
We describe in this communication the synthesis of ultrasmall 
NHC-stabilized PdNPs by the MVS technique. To the best of our 
knowledge this is the first report on the immobilization of NHC 
ligands on preformed, ligand-free MNPs. We selected PdNPs as 
a first test system because their functionalization with NHC 
ligands by means of other methods is already known. As ligand, 
we selected a NHC with long alkyl chains in the backbone of the 
heterocycle (LC-NHC), which forms a protective monolayer 
around the MNPs and was successfully used before for MNP 
stabilization.27,28 
The solvent-stabilized PdNPs were synthesized by the MVS 
technique according to a previously reported procedure (see 
ESI).29-31 Briefly, Pd vapor generated in high-vacuum by resistive 
heating of the pure metal was co-condensed with a 1:1 mixture 
of mesitylene and 1-hexene in a liquid nitrogen cooled glass 
reactor. The melting of the solid matrix afforded a brown 
solution of PdNPs which was handled and stored at low 
temperature (−20°C) under argon atmosphere. For the surface 
modification with LC-NHC, the free carbene was first generated 
in situ by deprotonation of the corresponding imidazolium salt 
with KOtBu in mesitylene. The PdNPs were added to the NHC 
and the solution was stirred at room temperature. After 18 h, 
the absence of any precipitate indicated the successful 
coordination of LC-NHC on the particle surface (LC-NHC@Pd). 
As a matter of fact, the solvent-stabilized PdNPs are not stable 
in air and precipitation of Pd powder takes places after few 
hours (ca. 2 h) at 25°C even under inert atmosphere. The 
particles were then purified in air by precipitation in acetonitrile 
and subsequent centrifugation. The thus prepared LC-NHC@Pd 

were re-dispersed in toluene and were stable at room 
temperature for a very long time (> 6 months). 
Transmission electron microscopy (TEM) analysis revealed the 
presence of very small NPs with a size distribution ranging from 
1.5 to 3.0 nm (mean diameter of 2.3 nm ± 0.4 nm) (Fig. S1). High 
resolution TEM micrographs (Fig. S2) confirmed the presence of 
crystalline lattice planes exhibiting spots in the fast Fourier 
transform pattern at 2.3 Å, which are ascribed to the spacing of 
{111} planes of face centered cubic (fcc) structure of metallic Pd. 
The presence of the NHC ligand on the particle surface was 
investigated by NMR measurements. In the 1H NMR spectrum 
of LC-NHC@Pd, the expected proton signals of the alkyl chains 
are visible in the aliphatic region (Fig. 1 top). The signals are 
broadened due to the immobilization on the particle surface, as 
expected for ligands anchored on NPs.32 The signal of the 
methyl groups at 4.1 ppm is particularly weak due to the close 
distance of the protons to the particle surface. The formation of 
the carbene species is attested by the absence of a signal at 
10.1 ppm corresponding to the proton at the C2 position of the 
imidazolium salt. In the 13C NMR spectrum only the signals of 
the aliphatic alkyl chains can be observed (Fig. 1 bottom). The 
carbon signals of the heterocycle are not visible in the spectrum 
which is in agreement with our previous report on NPs 
functionalized with LC-NHC.28 For the determination of the 
metal-to-ligand ratio, the PdNPs were investigated by 
thermogravimetric analysis (TGA) (Fig. S3). Taking the residual 
toluene in the sample into account, the particles contain 38% 
Pd and 62% ligand corresponding to a metal-to-ligand ratio of 
2.3 : 1. Elemental analysis carried out on LC-NHC@Pd revealed 
a carbon-to-nitrogen atomic ratio of 17.9 in good agreement 
with the theoretical value of the free NHC ligand (C/N atomic 
ratio = 16.1). 

Figure 1: 1H (top) and 13C NMR (bottom) spectra of LC-NHC@Pd measured in benzenze-
d6.

Scheme 2: PdNPs synthesis by metal vapor synthesis (1) and subsequent NHC 
immobilization (2). 
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In order to effectively use the NPs as heterogeneous catalyst, 
LC-NHC@Pd was quantitatively deposited on a carbon support 
(Vulcan® XC72) by simple impregnation, yielding LC-
NHC@Pd/C. For comparison, the unmodified PdNPs 
synthesized by the same MVS procedure were also deposited 
on the carbon material, denoted as Pd/C (Fig. S4). 
HAADF-STEM and TEM analysis of the NHC-functionalized 
PdNPs deposited onto the support (Fig. 2a, Fig. S5a) revealed 
the presence of MNPs with identical size and shape compared 
to the unsupported MNPs, proving that no reconstruction of the 
metal core or coalescence takes place during the immobilization 
step. Likewise, the MVS-derived supported unfunctionalized 
PdNPs (Pd/C) have a similar size of 2.1 ± 0.4 nm indicating that 
the NHC ligand does not affect the particle dimensions (Fig. 2b, 
Fig. S5b).  

 
Figure 2: Representative HAADF-STEM micrograph and corresponding histogram of 
particle size distribution of LC-NHC@Pd/C (a) and Pd/C (b). MNPs can be observed as 
bright spots in the micrographs. 

X-ray photoelectron spectroscopy (XPS) analysis of LC-
NHC@Pd/C provided evidence that the NHC ligand is on the Pd 
surface after immobilization on the carbon support, since 
characteristic signals of nitrogen can be found (see Fig. S6). The 
binding energy of the N1s signal at 401.2 eV matches well with 
previously reported values for NHC stabilized PdNPs.22 For Pd/C, 
no signal can be observed in this region. The binding energies 
measured in the Pd3d region of both NHC functionalized and 
unfunctionalized Pd/C compare well with previously reported 
values for Pd0.33 However, small shoulders at higher binding 
energies indicate partial oxidation to Pdn+ (see Fig. S7).34 
The catalytic properties of LC-NHC@Pd/C were studied and 
compared with those of the bare Pd/C prepared by the same 
approach in the selective hydrogenation of limonene, a 
monocyclic terpene, which is the main component of essential 
oils derived from the rinds of various citrus fruits (Fig. 3 and 
Table S1 and S2).35 In particular, the selectivity towards the 

partially hydrogenated p-1-menthene was evaluated 
considering the large applicability of this product for the 
synthesis of bulk and fine chemicals.36,37 

 

Catalyst 
T 

(min) 
Conv. 

(%) 
Sel. 1 
(%)a 

TOF 
(h-1)b 

LC-NHC@Pd/C 
8 68.3 65.5 2.6∙104 

15 86.4 66.5 - 

Pd/C 
8 67.5 47.6  2.5∙104 

15 85.4 42.9 - 
Figure 3. Reaction conditions: (R)-(+)-Limonene (1.1 mL), Pd catalyst 1 
wt.% (35 mg), Sub/Pd molar ratio = 2000, p(H2) = 4 bar; T = 30°C.                           
a Selectivity (Sel 1) calculated as mol of p-(1)-menthene/ mol limonene 
conv. b Normalized TOF (i.e. mmol substrate (converted) x (mmol 
Pd(surface) x h)-1. 
 
Both MVS-derived Pd/C catalysts are very active for the 
reduction of limonene to p-1-menthene (1), p-3-menthene (2) 
and p-menthane (a mixture of cis- (3) and trans- (4) isomers) 
with a normalized TOF [38] higher than 2∙104 h-1. Noteworthy, 
LC-NHC@Pd/C led to a marked increase of the p-1-menthene 
selectivity (66.5% at 86.4% of limonene conversion) respect to 
the unmodified Pd/C (42.9% at 85.4 % of limonene conversion), 
partially inhibiting the Pd-catalyzed isomerization of 1 to 2. The 
differences in regioselectivity between the two catalysts were 
found both in neat conditions and in toluene as solvent (see 
Table S1 and S2). Moreover, the lower regioselectivity of 
unmodified Pd/C is comparable with that found for less active 
commercial and previously reported Pd/C catalysts (see Table 
S1 and refs. 36 and 37). These results demonstrate that the 
presence of NHC ligand influences the reactivity of the Pd 
surface. 
The stability of LC-NHC@Pd/C was analyzed by recyclability 
studies as well as evaluating the Pd leaching in reaction 
conditions. The system was effectively recycled for five reaction 
runs in neat conditions with only a slightly decrease of the 
catalytic activity (Conv. = 75.0 % after 15 min during the 5th 
cycle) (Fig. S8). Remarkably, the selectivity towards p-1-
menthene was almost identical (67-69%) during the five runs. 
Moreover, ICP-OES evidenced no Pd leaching into the reaction 
mixture. 
In summary, ligand-free PdNPs synthesized by the MVS method 
were successfully functionalized with an aliphatic NHC ligand 
leading to air-stable NPs. Characterization of the particles by 
TEM, NMR, TGA, XPS and elemental analysis clearly confirm 
their very small size, the presence of the NHC on the particle 
surface and a high ligand density. The functionalized PdNPs can 
be easily immobilized on carbon support in order to use them 
as recyclable catalyst. The particles show high activity in the 
hydrogenation of limonene with p-1-menthene as main 
product. By comparison with the performances of 
unfunctionalized Pd catalysts, an evident ligand effect was 

H2(g) (4 bar)
+[Pd/C], 30°C

+

1 2 3 4
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observed on the regioselectivity, probably due to electronic 
modification of the Pd surface and/or steric effects by ligand 
binding. Finally, we expect that the metal vapor synthesis 
approach to obtain NHC-immobilized PdNPs can be easily 
extended to other homo- and heterometallic MNPs as well as 
different NHC ligands. 
We are grateful for financial support by the Deutsche 
Forschungsgemeinschaft (DFG SFB 858). We thank Dr. Vassilios 
Siozios from the MEET (WWU Münster) for TGA measurements. 
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