ARTICLE IN PRESS

Bioorganic & Medicinal Chemistry Letters xxx (2014) xxx-xxx

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery of *N*-sulfonyl-7-azaindoline derivatives as potent, orally available and selective M₄ muscarinic acetylcholine receptor agonists

Atsushi Suwa^a, Yasuko Konishi^a, Yoshiharu Uruno^a, Kentaro Takai^a, Tomokazu Nakako^b, Mutsuko Sakai^a, Takeshi Enomoto^b, Yoshiaki Ochi^b, Harumi Matsuda^b, Atsushi Kitamura^b, Yasuaki Uematsu^a, Akihiko Kiyoshi^b, Takaaki Sumiyoshi^{a,*}

^a Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd, 3-1-98, Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
^b Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd, 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan

ARTICLE INFO

Article history: Received 28 January 2014 Revised 14 April 2014 Accepted 22 April 2014 Available online xxxx

Keywords:

Muscarinic acetylcholine receptor agonist M₄ muscarinic acetylcholine receptor Subtype-selective agonist Schizophrenia *N*-Sulfonyl-7-azaindoline

ABSTRACT

We designed and synthesized novel *N*-sulfonyl-7-azaindoline derivatives as selective M_4 muscarinic acetylcholine receptor agonists. Modification of the *N*-carbethoxy piperidine moiety of compound **2**, an M_4 muscarinic acetylcholine receptor (mAChR)-preferring agonist, led to compound **1**, a selective M_4 mAChR agonist. Compound **1** showed a highly selective M_4 mAChR agonistic activity with weak hERG inhibition in vitro. A pharmacokinetic study of compound **1** in vivo revealed good bioavailability and brain penetration in rats. Compound **1** reversed methamphetamine-induced locomotor hyperactivity in rats (1–10 mg/kg, po).

© 2014 Elsevier Ltd. All rights reserved.

Psychosis is the key features in schizophrenia, and is currently treated with dopamine D₂ receptor antagonists.¹ However, there is an ongoing need for alternative approaches considering nonresponders to D₂ receptor antagonists.² A pilot clinical trial with xanomeline (Fig. 1), an M₁ and M₄ muscarinic acetylcholine receptor (mAChR)-preferring agonist, has demonstrated the efficacy of this agent as both an antipsychotic and a cognition-enhancing agent in schizophrenic patients who had exhibited poor response with previous antipsychotic treatment.³ While it has been widely accepted that M₁ mAChR is key subtype for cognitive function,⁴ animal studies with M₁ or M₄ mAChR-knockout mice have suggested that M₄ mAChR, but not M₁ mAChR, predominantly mediates antipsychotic efficacy of xanomeline.⁵ It is further supported by recent studies showing that M₄ mAChRs regulates dopaminergic neurotransmission in the nucleus accumbens that is the key brain region for psychosis.⁴ Although the development of xanomeline has been halted by the peripheral side effects via M₃ mAChR activation,⁶ M₁ and M₄ mAChR-dual agonist would be promising both for psychosis and cognitive deficits in schizophrenia. However, there is a large hurdle to achieve the optimal balance

* Corresponding author at present address: Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan. Tel.: +81 663681773.

E-mail address: t-sumiyo@kansai-u.ac.jp (T. Sumiyoshi).

http://dx.doi.org/10.1016/j.bmcl.2014.04.083 0960-894X/© 2014 Elsevier Ltd. All rights reserved. between M_1 and M_4 mAChR agonism for developing dual-agonists. It is essential because a recent clinical study have shown that even M_1 mAChR-selective agonism might induce some dose-related muscarinic side effects.⁷ Furthermore, animal studies have shown that over-activation of M_1 mAChR might have a risk for seizure.⁸ Alternative approach especially for psychosis is M_4 mAChR-selective agonist or positive allosteric modulators (PAM) such as LY2033298.⁹ Brady and colleagues have identified, VU0152100 (Fig. 1), a brain-penetrant M_4 mAChR PAM, reversed amphetamine-induced locomotor hyperactivity without causing sedation in rats.¹⁰ On the other hand, identifying agonists selective for M_4 mAChR has so far been challenging because of limited resources in the literature. Here, we describe the identification of novel *N*-sulfonyl-7-azaindoline derivatives as potent, orally available, and selective M_4 mAChR agonists (Fig. 1).

Among the compounds synthesized in our drug discovery program for M₁ and M₄ mAChRs selective agonists,¹¹ we picked up the *N*-sulfonyl-7-azaindoline compound **2** as an M₄ mAChR preferring agonist. A calcium mobilization assay¹² confirmed that compound **2** M₄ mAChR agonistic activity (88% at 0.3 µM) is more potent than its M₁ mAChR agonistic activity (20% at 0.3 µM) (Table 1). This finding indicates that the *N*-methansulfonyl-7azaindoline scaffold increases M₄ mAChR preference. However, the selectivity of compound **2** for M₄ (EC₅₀ = 93 nM, IA = 83%) versus M₁ mAChR (EC₅₀ = 352 nM, IA = 59%) was not so high (Fig. 2).

ARTICLE IN PRESS

A. Suwa et al./Bioorg. Med. Chem. Lett. xxx (2014) xxx-xxx

Figure 1. Structures of M₄ mAChR agonists and modulators.

Table 1

SAR at the N-carbamoyl piperidine moiety of the N-sulfonyl-7-azaindoline derivatives

Compound	R	Agonistic activity (% effect)				hERG inhibition ¹²	
		M_1^{a}	$M_2^{\ a}$	$M_3 {}^a$	$M_4^{\ a}$	M_5^{b}	(IC ₅₀ : μM)
2	≹NCO₂Et	20	12	7	88	3	1.90
3	§····√ NCO2Et	NT	NT	NT	4	NT	NT
1	MeNCO2Et	5	3	4	94	3	3.63
4	MeNCO_2Me	3	2	1	52	NT	17
5	MeNCO_2 <i>i</i> -Pr	NT	NT	NT	3	NT	2.75
6	Me NCO ₂ t-Bu	NT	NT	NT	2	NT	NT

NT: Not tested.

 $^a\,$ Maximum efficacy of each receptor subtype was defined as 100%. Concentration of the test compound was 0.3 $\mu M.$

^b Concentration of the test compound was 10 μ M.

To further increase selectivity for the M_4 mAChR, we introduced into compound **2** another moiety that decreases M_1 mAChR agonistic activity. We focused on the *N*-carbethoxy piperidine moiety (Fig. 3) because Lindsley and co-workers reported that a tropane unit partializes M_1 mAChR agonistic activity.¹³

The structure–activity relationships (SARs) of the prepared *N*-sulfonyl-7-azaindoline derivatives are summarized in Table 1. Replacement of the piperidine by a tropane depleted M_4 mAChR

Figure 3. Strategy to increase selectivity for M₄ mAChR.

Table 2	
PK and pharmacological profiles of com	pound 1

Compound 1				
PK profiles				
P-gp efflux ratio BA (%) Brain/plasma ratio Pharmacological profiles	0.9 49 0.9			
M ₄ EC ₅₀ (nM) M ₄ IA(%) Binding assay	13 81			
$lpha_{1D}R$ inhibition (%) D ₂ R inhibition (%) H ₁ R inhibition (%)	0 ^a 0 ^a 27 ^a			

 a Concentration of the test compound was 3 $\mu M.$

agonistic activity (compound **3**). Assuming that a tropane unit is too large to maintain M_4 mAChR agonistic activity, we designed compound **1** with a methyl group at the 4-position of the *N*-carbethoxypiperidine. As expected, compound **1** decreased M_1 mAChR agonistic activity, while maintaining M_4 mAChR agonistic activity. A further SAR study of the carbethoxy moiety revealed that relatively small alkyl group can maintain M_4 mAChR agonistic activity

Figure 2. Functional activity of compound 2. Agonistic activity on M₁₋₅ mAChRs. The maximum efficacy of each subtype of ACh was defined as 100%.

Please cite this article in press as: Suwa, A.; et al. Bioorg. Med. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.bmcl.2014.04.083

ARTICLE IN PRESS

A. Suwa et al./Bioorg. Med. Chem. Lett. xxx (2014) xxx-xxx

Figure 4. Functional activity of compound **1**. (A) Agonistic activity on M₁₋₅ mAChRs. The maximum efficacy of each subtype of ACh was defined as 100%. (B) Antagonism for ACh-stimulated activity on M₁ mAChR. M₁ mAChR was expressed in CHO cells. Both compound **1** and ACh (0.01 μ M) were added at the same time. The maximum efficacy of ACh (0.3 μ M) was defined as 100%. (C) Effects on methamphetamine-induced hyperactivity in rats. Compound **1** or vehicle was administered into rats 60 min before injection with methamphetamine (0.1 mg/kg, ip). Locomotor activity was measured for 80 min from 10 min after the methamphetamine injection. Values correspond to the mean ± SEM (*n* = 6). ***P* <0.01 versus vehicle/methamphetamine-treated group (Dunnett test).

(compound **4**), while bulky alkyl groups diminish M_4 mAChR agonistic activity (compounds **5** and **6**). Considering that compounds **1** showed only micromolar inhibition of human Ether-Go-Go-Related-Gene (hERG), we selected this compound for further evaluation as a potent M_4 mAChR-selective agonist.

Next, we determined the pharmacokinetic (PK) of compound **1** both in vitro and in vivo (Table 2). Compound **1** was not a substrate of p-glycoprotein (P-gp). As for PK in vivo, compound **1** showed high bioavailability (BA, 49%, 1 mg/kg, po) in rats with good brain penetration (brain/plasma ratio: 0.9). These findings indicate that compound **1** is a druggable candidate.

Finally, we evaluated compound **1** pharmacological potential. In a radioligand-binding panel assay, compound **1** had weak affinity to human dopamine D_2 , histamine H_1 and adrenaline α_{1D} receptors (Table 2). In addition, compound 1 showed a highly selective M_4 mAChR agonistic activity ($EC_{50} = 13 \text{ nM}$, IA = 81%) with no activation of the M₁₋₃ and M₅ mAChRs (Fig. 4A). In addition, compound 1 competitively antagonizes the M₁ mAChR functional response to ACh (Fig. 4B). These results indicate that introduction of a methyl group at the 4-position of the N-carbethoxypiperidine led to a completely abolished M₁ mAChR agonistic activity. Next, we evaluated the antipsychotic potency of compound 1 in rats. Oral administration of compound 1 reversed methamphetamineinduced hyperlocomotion in dose dependent manner (1-10 mg/kg, Fig. 4C).¹² As far as we know, this is the first agonist highly selective for M₄ mAChR which reverses psychosis-like behavior in rodents. Compound 1 is a potent, orally available, brain-penetrant and highly selective M₄ mAChR agonist with a druggable safety profile. Although further investigation is necessary, the results of this study demonstrate that M_4 mAChR-selective agonist compound **1** is a promising candidate for the treatment of schizophrenia. Furthermore, it would be useful as a pharmacological tool for investigating the physiological role of M₄ mAChR in vivo.

The 3-spiro-7-azaindoline derivatives **2–6** were synthesized as shown in Scheme 1. Compound 7^{14} was converted to the sulfonamide **8**. Deprotection of the benzyl group of **8** by catalytic reduction afforded compound **9**. Reductive amination with the *N*-Boc-4-formylpiperidine **11** and aldehyde **12** afforded compounds **3** and **6**. Boc deprotection followed by introduction of substituents at the final step using appropriate carbamoyl chloride afforded compounds **1**, **4** and **5**.¹⁵

In summary, we have identified *N*-sulfonyl-7-azaindoline derivatives as selective M₄ mAChR agonists. Modification of the

Scheme 1. Reagents and conditions: (a) methanesulfonyl chloride, *N*,*N*-diisopropylethylamine, CH₂Cl₂, rt, 17 h, 78%; (b) 10% Pd/C, HCO₂NH₄, MeOH, reflux, 12 h, 79%; (c) *tert*butyl 4-formyl-4-methylpiperidine-1-carboxylate 11, Ti(O-*i*Pr)₄, NaBH(OAc)₃, CH₂Cl₂, reflux, 19 h, quant.; (d) trifluoroacetic acid, CH₂Cl₂, rt, 17 h, 87%; (e) methyl chloroformate, ethyl chloroformate, or isopropyl chloroformate, *N*,*N*-diisopropylethylamine, CH₂Cl₂, rt, 1.5 h, 78%; (f) 12, NaBH(OAc)₃, CH₂Cl₂, rt, 19 h, quant.

Please cite this article in press as: Suwa, A.; et al. Bioorg. Med. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.bmcl.2014.04.083

4

A. Suwa et al./Bioorg. Med. Chem. Lett. xxx (2014) xxx-xxx

N-carbethoxy piperidine moiety of compound **2** led to the discovery of compound **1**, which showed selective M_4 mAChRs agonistic activity, high oral bioavailability, and good brain penetration in rats. In addition, compound **1** reversed methamphetamine-induced psychosis-like behavior in rats. These findings indicate that compound **1** is a promising antipsychotic candidate with a new mechanism of action.

Acknowledgment

We are grateful to Keiko Bando for performing the elemental analysis and Norio Fujiwara for his useful discussion.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmcl.2014.04. 083.

References and notes

- (a) Andreasen, N. C.; Flaum, M.; Swayze, V. W.; Tyrrell, G.; Arndt, S. Arch. Gen. Psychiatry 1990, 47, 615; (b) Meltzer, H. Y. Biol. Psychiatry 1999, 46, 1321.
- Hirsch, S.; Barnes, T. R. E. The Clinical Treatment of Schizophrenia With Antipsychotic Medication. In *Schizophrenia*; Hirsch, S. R., Weinberger, D. R., Eds.; Blackwell Science: Oxford, 1995.
- (a) Bodick, N. C.; Offen, W. W.; Levey, A. I.; Cutler, N. R.; Gauthier, S. G.; Satlin, A.; Shannon, H. E.; Tollefson, G. D.; Rasmussen, K.; Bymaster, F. P.; Hurley, D. J.; Potter, W. Z.; Paul, S. M. Arch. Neurol. **1997**, *54*, 465; (b) Shekhar, A.; Potter, W. Z.; Lightfoot, J.; Lienemann, J.; Dube, S.; Mallinckrodt, C.; Bymaster, F. P.; McKinzie, D. L.; Felder, C. C. Am. J. Psychiatry **2008**, *165*, 1033.

- 4. Wess, J.; Eglen, R. M.; Gautam, D. Nat. Rev. Drug Disc. 2007, 6, 721.
- Woolley, M. L.; Carter, H. J.; Gartlon, J. E.; Watson, J. M.; Dawson, L. A. Eur. J. Pharmacol. 2009, 603, 147.
- 6. Langmead, C. J.; Austin, N. E.; Branch, C. L.; Brown, J. T.; Buchanan, K. A.; Davies, C. H.; Forbes, I. T.; Fry, V. A.; Hagan, J. J.; Herdon, H. J.; Jones, G. A.; Jeggo, R.; Kew, J. N.; Mazzali, A.; Melarange, R.; Patel, N.; Pardoe, J.; Randall, A. D.; Roberts, C.; Roopun, A.; Starr, K. R.; Teriakidis, A.; Wood, M. D.; Whittington, M.; Wu, Z.; Watson, J. Br. J. Pharmacol. 2008, 154, 1104.
- Nathan, P. J.; Watson, J.; Lund, J.; Davies, C. H.; Peters, G.; Dodds, C. M.; Swirski, B.; Lawrence, P.; Bentley, G. D.; O'Neill, B. V.; Robertson, J.; Watson, S.; Jones, G. A.; Maruff, P.; Croft, R. J.; Laruelle, M.; Bullmore, E. T. Int. J. Neuropsychopharmacol. 2013, 16, 721.
- Bymaster, F. P.; Carter, P. A.; Yamada, M.; Gomeza, J.; Wess, J.; Hamilton, S. E.; Nathanson, N. M.; McKinzie, D. L.; Felder, C. C. Eur. J. Neurosci. 2003, 17, 1403.
- Chan, W. Y.; McKinzie, D. L.; Bose, S.; Mitchell, S. N.; Witkin, J. M.; Thompson, R. C.; Christopoulos, A.; Lazareno, S.; Birdsall, N. J.; Bymaster, F. P.; Felder, C. C. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 10978.
- Brady, A. E.; Jones, C. K.; Bridges, T. M.; Kennedy, J. P.; Thompson, A. D.; Heiman, J. U.; Breininger, M. L.; Gentry, P. R.; Yin, H.; Jadhav, S. B.; Shirey, J. K.; Conn, P. J.; Lindsley, C. W. J. Pharmacol. Exp. Ther. **2008**, 327, 941.
- Takai, K.; Inoue, Y.; Konishi, Y.; Suwa, A.; Uruno, Y.; Matsuda, H.; Nakako, T.; Sakai, M.; Nishikawa, H.; Hashimoto, G.; Enomoto, T.; Kitamura, A.; Uematsu, Y.; Kiyoshi, A.; Sumiyoshi, T. *Bioorg. Med. Chem. Lett.* **2014**. in press. http:// dx.doi.org/10.1016/j.bmcl.2014.04.085.
- 12. The procedures for calcium mobilization assays, hERG inhibition and methamphetamine-induced hyperlocomotion in rats are described in Sumiyoshi, T.; Enomoto, T.; Takai, K.; Takahashi, Y.; Konishi, Y.; Uruno, Y.; Tojo, K.; Suwa, A.; Matsuda, H.; Nakako, T.; Sakai, M.; Kitamura, A.; Uematsu, Y.; Kiyoshi, A. ACS Med. Chem. Lett. 2013, 4, 244.
- Melancon, B. J.; Gogliotti, R. D.; Tarr, J. C.; Saleh, S. A.; Chauder, B. A.; Lebois, E. P.; Cho, H. P.; Utley, T. J.; Sheffler, D. J.; Bridges, T. M.; Morrison, R. D.; Daniels, J. S.; Niswender, C. M.; Conn, P. J.; Lindsley, C. W.; Wood, M. R. *Bioorg. Med. Chem. Lett.* 2012, *22*, 3467.
- Uruno, Y.; Tanaka, A.; Hashimoto, K.; Usui, S.; Inoue, Y.; Konishi, Y.; Suwa, A.; Takai, K.; Katoda, W.; Fujiwara, N.; Sumiyoshi, T. *Tetrahedron* 2013, 69, 9675.
- 15. Analytical data of compound 1 is described in Supporting information.