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Peroxisome proliferator-activated receptor alpha (PPAR-a) is a ligand-activated nuclear receptor tran-
scription factor that regulates the fatty acid b-oxidation. An in vitro assay identified the p-methoxy phe-
nyl ureido thiobutyric acid derivative KSM-01 (IC50 = 0.28 ± 0.09 nM) having a higher affinity to activate
PPAR-a than the PPAR-a agonist GW7647 (IC50 = 0.46 ± 0.19 nM). In this study, we report the synthesis
and initial in vivo evaluation of [11C]KSM-01. The radiosynthesis was carried out by first alkylating the
corresponding p-phenol precursor with [11C]MeI in DMF using NaOH, followed by deprotection of the
t-butyl ester group by TFA, yielding [11C]KSM-01. SUV analysis of dynamic micro PET/CT imaging data
showed that [11C]KSM-01 accumulation was �2.0-fold greater in cardiac-specific PPAR-a overexpressing
transgenic mice compared to wild-type littermates. The post-PET biodistribution studies were consistent
with these results and demonstrated 2.5-fold greater radiotracer uptake in the heart of transgenic mice
compared to the wild-type littermates. These results demonstrate the potential utility of PPAR-a agonists
as PET radiopharmaceuticals.

� 2012 Elsevier Ltd. All rights reserved.
Peroxisome proliferator-activated receptors (PPAR) are ligand-
activated transcription factors which belong to the nuclear recep-
tor gene family.1–3 PPARs bind to endogenous ligands including
eicosanoids, free fatty acids, leukotrienes, and prostaglandins and
are classified into three subtypes: PPAR-a, PPAR-b/d and PPAR-
c.1,3 Ligand-activated PPARs bind to the retinoid X receptor (RXR)
to form heterodimer complexes that trigger PPAR-response ele-
ments (PPRE) which modulate lipid, glucose, or cholesterol associ-
ated metabolic pathways, depending on the nature of ligand.3,4

PPAR-a plays a vital role in regulating cellular fatty acid b-oxida-
tion and ketogenesis and is activated by a wide range of fibrate
drugs; this activation induces proliferation of peroxisomes. PPAR-
a is highly expressed in tissues with significant breakdown of fatty
acids including liver, heart, brown adipose tissue, kidney and intes-
tine.5–8 Due to its critical role in lipid metabolism, drugs which can
modulate PPAR-a are being evaluated as targeted therapeutic
strategies against cardiovascular diseases including type 2 diabetes
mellitus, lipodistropy, and atherosclerosis.9

PPAR-a agonists have been studied extensively as therapeutic
candidates for atherosclerosis because they down-regulate pro-
duction of the adhesion molecule VCAM-1, which is responsible
ll rights reserved.

: +1 314 362 0039.
).
for endothelial cell activation in the arterial wall during
atherosclerotic disease progression.10,11 PPAR-a agonists may be
involved in prevention of HDL cholesterol accumulation espe-
cially in cardiocytes and could affect the body weight by regulat-
ing fatty acid oxidation, thus also playing a potentially important
role in diabetic cardiomyopathy.11,12 Hypolipidemic fibrate drugs
are an important class of PPAR-a ligands; however, fibrates
which are considered highly selective in vivo activators of
hepatic PPAR-a in rodents, often do not express the same level
of selectivity in humans; many are also only moderately selec-
tive for PPAR-a over the PPAR-c and PPAR-d subtypes.3 Attempts
to identify more potent PPAR-a ligands have led to synthesis of
ureidofibrates that are active at lower concentrations in rodent
models of hyperlipidemia. The ureido thioisobutyric acid (TiBA)
derivative GW9578 was observed to be a more potent and selec-
tive PPAR-a agonist with lipid-lowering activity when compared
to traditional fenofibrate derivatives.13 However, difficulties in
handling GW9578, which is a viscous oil, and its poor selectivity
for human PPAR-a led to development of GW7647, which dem-
onstrated �200-fold selectivity towards human PPAR-a over
PPAR-c and PPAR-d.14 Considerable literature evidence suggests
that sufficient PPAR-a density exists in cardiac cells for the eval-
uation of agonists in imaging studies.10,12 Transgenic mice with
cardiac-specific overexpression of PPAR-a display a phenotype
similar to that of human diabetic cardiomyopathy. Furthermore,

http://dx.doi.org/10.1016/j.bmcl.2012.08.010
mailto:rhmach@mir.wustl.edu
http://dx.doi.org/10.1016/j.bmcl.2012.08.010
http://www.sciencedirect.com/science/journal/0960894X
http://www.elsevier.com/locate/bmcl


F

F

N
H

O

N

S CO2H

N

O

O

CO2H

HN

O

MeO

GW7845

GW9578

N
H

O

N

S CO2 H

GW7647

N
H

O

N

S CO2 HMeO

KSM-01

Figure 1. Structures of the ureido-TiBA PPAR-a agonists.
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several diabetic metabolic abnormalities, including higher fatty
acid and lower glucose uptake were observed in a transgenic
mouse model with cardiac-specific overexpression of PPAR-
a.10,12,15

Previous attempts have been made to measure PPAR-a activity
using PPRE luciferase transgenic mice through in vivo and ex vivo
bioluminescence imaging.16 However, to date, no PET tracer has
been reported for the in vivo imaging of PPAR-a in the heart. A
PPAR-a agonist as a PET radiotracer would thus become a pivotal
tool to fill critical gaps in understanding the pathogenesis of dia-
betic cardiomyopathy triggered by PPAR-a. The ureido-TiBA deriv-
ative GW7647 (Fig. 1) has been investigated as potent PPAR-a
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Scheme 1. Reagents and conditions: (a) LiAlH4, THF, 67%; (b) a-bromoisobutyrate, K
bromobutane, DIPEA, 68%; (f) 2/3/4-methoxy-phenylisocyanate, TFA. Yields: KSM-03, 65
agonist in connection with metabolic syndromes like dyslipidemia
and atherosclerosis.14

GW7647 was used as a lead in designing a PET tracer by
replacing the cyclohexyl group with a methoxyphenyl group; we
synthesized the -2, -3, and -4-methoxyphenyl isomers of tert-
butyl-2-(4-(2-(1-(4-cyclohexylbutyl)-3-methoxyphenyl)ureido)
ethyl)phenylthio)-2-methylpropanoate as potential PPAR-a radio-
tracers. The structure–activity relationships derived through
in vitro binding assay results indicated the p-methoxyphenyl ure-
idothiobutyric derivative KSM-01 (Fig. 1) IC50 = 0.28 ± 0.09 nM had
the highest affinity to activate PPAR-a among the -o,-m,-p-
methoxyphenyl isomers. This report describes the synthesis,
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Table 1
In vitro binding affinities of ureido-TiBAs for PPAR-a

Compound IC50 (nM)

KSM-01 0.28 ± 0.09
KSM-02 0.59 ± 0.22
KSM-03 1.93 ± 0.99
GW7647 0.46 ± 0.19
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Figure 2. Representative Focus 220 microPET image of [11C]KSM-01 in male MHC-
PPAR-a transgenic and wild type (WT) mice. The images were summed from
0–60 min after iv injection of 170 lCi [11C]KSM-01.
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radiolabeling and initial in vivo microPET evaluation of [11C]KSM-
01 to image PPAR-a in cardiac-specific PPAR-a overexpressing
mice.

The syntheses of KSM-01, 02, 03 are shown in Scheme 1 and de-
scribed in detail in the online Supplemental Methods. Reduction of
4-mercaptobenzoic acid 1 with LiAlH4 in THF resulted in the pri-
mary alcohol 2.17 The sulfur group on 2 was alkylated with a-bro-
moisobutyrate in KOH-EtOH13 to give compound 3 after which the
hydroxyl group in 3 was converted to the corresponding chloro
analog 4 using PPh3 in CCl4.18 Cyanation and reductive amination
of compound 4 using KCN and BH3�THF, respectively gave the
amine analog 5.19 Further reaction with 4-cyclohexyl-1-bromobu-
tane20 in DIPEA and THF gave the secondary amine 6,21 which was
coupled with 2-methoxy, 3-methoxy, or 4-methoxy phenylisocya-
nate followed by TFA-assisted t-butyl ester deprotection to give
analogs KSM-03, KSM-02 and KSM-01, respectively.13 The precur-
sor KSM-01A for 11C-radiolabeling was obtained from the second-
ary amine 6 coupled with 1,11-dicarbonyl imidazole followed by
4-amino phenol in THF.13

PPAR-a binding affinity of KSM-01, KSM-02 and KSM-03 was
assessed to identify the most potent PPAR-a agonist. Using a
beta-lactamase reporter-gene under control of the PPAR-a re-
sponse element, a cell-based assay developed by Invitrogen was
used to determine the IC50 values of the novel PPAR-a ligands. No-
vel PPAR-a compounds were measured for their ability to inhibit
reporter gene activity. The assay utilizing GeneBLAzer PPAR-a
UAS-bla HEK293T cells is described in detail in the online Supple-
mental Methods. The fluorescence intensity was measured using a
Victor3 plate reader after addition of the LiveBLAzer™-FRET B/G
(CCF4-AM) substrate. Concentration-response titration points for
each compound were fitted to the Hill equation yielding concentra-
tions of half-maximal inhibition (IC50) and maximal response (effi-
cacy) values. The IC50 values of the analogs are shown in
Table 1.16,21 Compound KSM-01 showed higher potency towards
PPAR-a compared to the two isomers and the previously reported
PPAR-a agonist GW7647, suggesting that KSM-01 could be a suit-
able PPAR-a PET imaging agent.

The radiochemical synthesis of [11C]KSM-01 is described in de-
tail in the online Supplemental Methods. It was achieved by first
alkylating the corresponding p-phenol precursor KSM-01A with
[11C]MeI in DMF using NaOH at 90 �C for 5 min and then deprotect-
ing the t-butyl ester group with trifluoroacetic acid at 90 �C for
3 min as depicted in Scheme 2. The total time required for the syn-
thesis of [11C]KSM-01, including [11C]MeI production, purification
and formulation was approximately 50 min. The radiochemical
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Scheme 2. Reagents and conditions: (a) [11C]MeI, 5 N
purity of [11C]KSM-01 was >98% and was confirmed by co-elution
with non-radioactive KSM-01. The chemical purity of [11C]KSM-01
determined by the HPLC UV mass was >97%. The calculated radio-
chemical yield was �19% and the final product had a specific activ-
ity of 987 mCi/lmol (decay-corrected to end of synthesis).

The uptake of [11C]KSM-01 was compared in transgenic mice
with cardiac-specific overexpression of PPAR-a (PPAR-a +/+) and
wild type littermates (PPAR-a �/�) through microPET imaging
and post-PET biodistribution studies as described in the online
Supplemental Methods. Transgenic mice were produced as previ-
ously described.10 PPAR-a protein levels are approximately 15-fold
more abundant in the cardiac ventricles of these transgenic ani-
mals when compared with wild-type littermates; this model has
been used to evaluate the role of PPAR-a mediated lipid metabo-
lism in the development of diabetic cardiomyopathy.10

Dynamic PET imaging was performed for 0–60 min post intra-
venous injection of [11C]KSM-01. Standard uptake values (SUVs)
analysis of the PET data revealed a twofold greater accumulation
of radioactivity in PPAR-a overexpressing transgenic mice
(0.68 ± 0.007) over the control animals (0.37 ± 0.09). Although liver
uptake is significant, microPET images show higher [11C]KSM-01
accumulation in the heart of PPAR-a overexpressing transgenic
mice compared to wild-type mice (Fig. 2).

A post-PET biodistribution study was also conducted and the re-
sults are presented in Table 2. Radiotracer accumulation was
observed to be high in liver tissue, which is a primary organ for
PPAR-a expression5–8 in both transgenic and control animals:
%ID/g = 55.031 ± 4.926 and 60.699 ± 0.774, respectively. Addition-
ally, the radiotracer demonstrated �2.5-fold greater distribution
in the cardiac tissue of PPAR-a overexpressing transgenic mice
(1.09 ± 0.246) when compared to the wild type littermates
(0.479 ± 0.007) (Fig. 3). The biodistribution results were consistent
with the microPET imaging data.
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NaOH, DMF, 90 �C, 5 min; (b) TFA, 90 �C, 3 min.



Figure 3. Post-PET uptake of [11C]KSM-01 in cardiac tissue (%ID/g) of male MHC-
PPAR-a transgenic (TG) and wild type mice (WT).

Table 2
Post-PET biodistribution of [11C]KSM-01 in non-target tissues of male MHC PPAR-a
overexpressing transgenic (TG) and wild type mice (WT). Results are expressed as
%ID/g ± standard deviation

Organ TG WT

Blood 0.42 ± 0.14 0.42 ± 0.10
Lung 2.65 ± 0.34 2.11 ± 0.31
Liver 55.30 ± 4.92 60.69 ± 0.77
Spleen 1.33 ± 0.29 1.55 ± 0.14
Kidney 2.58 ± 0.56 2.01 ± 0.21
Muscle 0.36 ± 0.15 0.35 ± 0.18
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In summary, the ureido TiBAC analog KSM-01, a PPAR-a agonist
with high potency (IC50 = 0.28 nM) was synthesized and [11C]-radi-
olabeled for the first time. MicroPET imaging data comparing
transgenic mice which selectively over-express PPAR-a in the
heart with wild-type littermates indicate the potential utility of
PPAR-a agonists as PET radiopharmaceuticals. Although liver up-
take is high due to the normal expression of PPAR-a, elevated car-
diac uptake can be clearly visualized in PPAR-a over-expressing
transgenic mice. Further experiments evaluating this strategy with
18F-radiolabled PPAR-a agonists are currently underway.
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