Directed Amination of Non-Acidic Arene C–H Bonds by a Copper– Silver Catalytic System**

Ly Dieu Tran, James Roane, and Olafs Daugulis*

New methods for direct arylation, alkylation, and oxygenation of C(sp²)-H bonds in directing-group-containing benzenes have resulted in efficient synthetic routes to functionalized arenes.^[1] In contrast, direct amination reactions that do not proceed through nitrenoid intermediates^[2] are relatively rare. In most cases, palladium catalysis is used for aminations.^[3a-p] Furthermore, the majority of publications describe intramolecular C-N bond formation.^[3a-i] Typically, protected amines or hydroxylamine derivatives are used to install the nitrogen moiety; simple amine coupling partners are employed only rarely. Several deprotonative, copper-catalyzed thiazole and oxazole aminations have been reported.^[4b,c,e] Yu et al. have reported a method for palladiumcatalyzed benzamide amination by employing a removable auxiliary.^[3k] Herein, we disclose a method for the auxiliaryassisted amination of non-acidic benzamide β -C-H bonds and benzylamine derivative γ -C-H bonds, which is catalyzed by copper(II) acetate.

Notably, the first copper-catalyzed directed amination of arene C–H bonds was reported by Yu et al. in 2006 [Eq. (1)].^[5a] Subsequently, several other groups have shown that 2-phenylpyridine derivatives can be *ortho* aminated by employing copper salts.^[5]

However, the scope of these reactions is limited by the presence of a non-removable pyridine moiety. We hypothesized that 8-aminoquinoline and picolinic acid auxiliaries^[3g,6] would effect *ortho*-amination of $C(sp^2)$ -H bonds based on the following considerations: 1) copper promotes amination and sulfenylation of 2-phenylpyridine derivatives,^[5] and 2) sulfenylation can be directed by 8-aminoquinoline and picolinic acid moieties.^[6c] The reaction of 8-aminoquinoline *p*-methoxybenzamide and morpholine was investigated with respect to oxidant, additives, and amount of copper(II) acetate (Table 1). Use of $Cu(OAc)_2$ (1 equiv) gave 39% conversion into the product (entry 1). Higher conversion was obtained by employing of $Cu(OAc)_2$ (0.5 equiv) in the presence of oxygen

[a] Yield determined by ¹H NMR analysis of crude reaction mixtures.
[b] Yield of isolated product. NMO = N-methylmorpholine oxide.

(entry 2). If *N*-methylmorpholine oxide (NMO) oxidant was used in the presence of a catalytic amount of Ag_2CO_3 additive, 74% conversion into the product was observed (entry 4). It was possible to decrease the catalyst loading to 10 mol% (entry 5). A control experiment showed that $Cu(OAc)_2$ is essential for the amination reaction (entry 7).

The reaction of morpholine with 8-aminoquinoline benzamides is presented in Table 2. The amination is successful for both electron-rich (entries 1, 3, 5, 7, 8) and electron-poor amides (entries 2, 4, 6). In contrast with copper-promoted sulfenylation, amination selectively delivers monofunctionalization products at the less sterically demanding position (entries 5, 6, 8). Diamination products were not detected in crude reaction mixtures. The reaction shows good functional group tolerance. Ethers (entries 1 and 5), fluoride (entry 2), and ester substituents (entry 4) are tolerated. Moreover, the reaction is successful for five- and six-membered ring heterocycles. Pyridine (entry 9) and furan (entry 10) derivatives are aminated in good yields. Substrates possessing electronwithdrawing groups require higher catalyst loading. Reactions can be scaled up at least tenfold without significant loss of yield (entry 3).

Angew. Chem. Int. Ed. 2013, 52, 1-5

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

🕅 WILEY 师

^[*] L. D. Tran, J. Roane, Prof. Dr. O. Daugulis Department of Chemistry, University of Houston Houston, TX 77204-5003 (USA) E-mail: olafs@uh.edu

^[**] We thank the Welch Foundation (E-1571), NIGMS (R01GM077635), Camille and Henry Dreyfus Foundation, and Norman Hackerman Advanced Research Program for supporting this research.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201300135.

Angewandte Communications

Cu(OAc)₂ (10-25 mol %) product Ag₂CO₃ (12-25 mol %) NMO, NMF 110 °C, 11–25 h Entry Product Yield [%] Ar Product Yield [%] Entry Ar 1 4-MeOC₆H₄ 87 6 3-CF₃C₆H₄ HN 67 $4-FC_6H_4$ 70 7 2-MeC₆H₄ 70 2 81 4-tBuC₆H₄ 3 8 2-naphthyl 66 80^[b] 4 4-MeO₂CC₆H₄ 68 9 3-(2-Me-pyridyl) 56 CO₂Me 3-MeOC₆H₄ 57 5 82 10 3-(2-Me-furyl) OMe

Table 2: Copper-catalyzed reaction of morpholine with carboxylic acid derivatives.^[a]

[a] 0.5 mmol scale, NMP (2 mL), NMO (2 equiv), morpholine (2 equiv), $Cu(OAc)_2$ (10–25 mol%), Ag_2CO_3 (12–25 mol%), 110°C, 14–25 h. Yields shown are of isolated products (please see the Supporting Information for details). [b] 5 mmol scale.

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

 α,α -Disubstituted benzylamine picolinamides can also be aminated, albeit in moderate yields (Scheme 1). Thus, α,α dimethylbenzylamine picolinamide and its *p*-fluoroderivative were reacted with morpholine, and the amination products were isolated in moderate yields. Benzylamine picolinamide amination reactions require relatively high temperatures to achieve reasonable conversions.

The reaction scope with respect to amines is presented in Table 3. Simple secondary amines, such as methylbenzyl- and methylpropylamine, are reactive and the products are obtained in good yields (entries 1 and 2). The reaction tolerates many functional groups on the amine coupling component. Ethyl isonipecotate (entry 3), 4-cyanopiperidine

Scheme 1. Benzylamine picolinamide amination.

(entry 4), the ethylene ketal of 4-ketopiperidine (entry 5), and Boc-protected 4-aminopiperidine (entry 6) afforded products in good yields. Selective coupling with amine NH in the presence of an amide NH was observed (entry 6). Reactions with primary amines were also successful, albeit with somewhat reduced yields. Thus, coupling with cyclohexyl-(entry 7), cyclooctyl- (entry 8), and neopentylamine (entry 9) afforded products in moderate yields. Straightchain primary amines afford low yields (entry 10).

The aminoquinoline directing group can be efficiently removed by base hydrolysis. Thus, **4** was heated with NaOH in ethanol for 72 h to afford 4-*tert*-butyl-2-morpholinobenzoic acid in high yield (Scheme 2).

The amination mechanism is unclear at this point. However, activation of an aryl C–H bond by a Cu^{II} complex to form aryl–Cu^{III} species has been reported in a highly geometrically constrained system.^[7] Additionally, welldefined Cu^{III} complexes react with N-nucleophiles to form carbon–nitrogen bonds.^[8] Furthermore, an early report by Reinaud showed that copper(II) mediates aromatic hydroxylation by trimethylamine *N*-oxide.^[9] The reaction presumably proceeds via a Cu^{III} intermediate.

These are not the final page numbers!

www.angewandte.org

2

Table 3: Copper-catalyzed amination of 8-amino-quinoline amides.^[a]

[a] 0.5 mmol scale, NMP (2 mL), NMO (2 equiv), amine (2 equiv), $Cu(OAc)_2$ (12–25 mol%), Ag_2CO_3 (12–25 mol%), 110°C, 12 h. Yields shown are of isolated products (please see the Supporting Information for details). [b] Pyridine solvent. Boc = *tert*-butyloxycarbonyl.

Scheme 2. Directing group removal.

In conclusion, we have developed a method for direct, auxiliary-assisted amination of β -C(sp²)–H bonds of benzoic acid derivatives and γ -C(sp²)–H bonds of benzylamine derivatives. The reaction employs Cu(OAc)₂ as catalyst in conjunction with a Ag₂CO₃ cocatalyst, an amine coupling partner, NMP or dimethylsulfoxide solvent, and NMO as an oxidant. The utilization of an inexpensive copper acetate catalyst and removable directing group are advantages that allow for a favorable comparison with previous direct amination reactions. The reaction shows high generality and

Experimental Section

intermediates are in progress.

N-(2-Morpholino-4-*tert*-butylbenzoyl)-8-aminoquinoline (Table 2, entry 3): *N*-4-*tert*-butylbenzoyl-8-aminoquinoline (152 mg, 0.5 mmol), Cu(OAc)₂ (11 mg, 0.06 mmol), and Ag₂CO₃ (17 mg, 0.06 mmol) were added to a 1-dram vial equipped with a stir bar. Inside a glove box, NMO (117 mg, 1.0 mmol) was added to the vial. Outside the glove box, NMP (2 mL) and morpholine (0.09 mL, 1.03 mmol) were added to the resulting mixture. The vial was wrapped with aluminum foil and stirred at 110 °C for 11 h and 15 min. After completion, the reaction mixture was cooled down to room temperature and dry absorbed on silica gel. Purification by column chromatography in hexanes/ethyl acetate (4:1) gave 158 mg (81%) of product as a tan solid. R_f = 0.40 (SiO₂, hexanes/EtOAc, 3:1), mp 142– 144 °C (from hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ =

functional group tolerance, as well as providing a straightfor-

ward means for the preparation of ortho-aminobenzoic acid

derivatives. Attempts to isolate and characterize reaction

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!

www.angewandte.org

12.75–12.67 (s, 1 H) 9.13 (dd, J = 7.8 Hz, J = 1.4 Hz, 1 H) 8.87 (dd, J = 4.1 Hz, J = 1.8 Hz, 1 H) 8.19 (dd, J = 8.2 Hz, J = 1.4 Hz, 1 H) 8.13 (d, J = 8.2 Hz, 1 H) 7.63–7.51 (m, 2 H) 7.48 (dd, J = 8.2 Hz, J = 4.1 Hz, 1 H) 7.31–7.26 (m, 2 H) 4.03–3.93 (m, 4 H) 3.21–3.15 (m, 4 H) 1.37 ppm (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): δ = 166.0, 156.3, 151.2, 148.4, 139.2, 136.7, 136.1, 132.3, 128.7, 127.9, 126.3, 121.9, 121.8, 118.0, 116.4, 66.5, 54.3, 35.6, 31.3 ppm. The signal for one carbon could not be located. FT-IR (neat): $\tilde{\nu}$ =2961, 1660, 1526, 1486, 1112 cm⁻¹. HRMS (ESI +): Calculated for C₂₄H₂₇N₃O₂ [*M*+H]⁺ 390.2182, Found 390.2184.

Received: January 8, 2013 Published online:

Keywords: amination · arenes · C-H activation · copper

- Reviews: a) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624; b) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. 2009, 121, 9976; Angew. Chem. Int. Ed. 2009, 48, 9792; c) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. 2009, 121, 5196; Angew. Chem. Int. Ed. 2009, 48, 5094; d) I. V. Seregin, V. Gevorgyan, Chem. Soc. Rev. 2007, 36, 1173; e) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; f) O. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074; g) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174; h) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215; i) C.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Commun. 2010, 46, 677; j) C.-J. Li, Acc. Chem. Res. 2009, 42, 335.
- [2] a) K.-H. Ng, A. S. C. Chan, W.-Y. Yu, J. Am. Chem. Soc. 2010, 132, 12862; b) D. N. Zalatan, J. Du Bois in Topics in Current Chemistry, Vol. 292 (Eds.: J.-Q. Yu, Z. Shi), Springer, Berlin, 2010, pp. 347-378; c) C. W. Hamilton, D. S. Laitar, J. P. Sadighi, Chem. Commun. 2004, 1628; d) Y. M. Badiei, A. Dinescu, X. Dai, R. M. Palomino, F. W. Heinemann, T. R. Cundari, T. H. Warren, Angew. Chem. 2008, 120, 10109; Angew. Chem. Int. Ed. 2008, 47, 9961; e) H.-Y. Thu, W.-Y. Yu, C.-M. Che, J. Am. Chem. Soc. 2006, 128, 9048; f) H. Lu, V. Subbarayan, J. Tao, X. P. Zhang, Organometallics 2010, 29, 389; g) M. Ichinose, H. Suematsu, Y. Yasutomi, Y. Nishioka, T. Uchida, T. Katsuki, Angew. Chem. 2011, 123, 10058; Angew. Chem. Int. Ed. 2011, 50, 9884; h) A. N. Vedernikov, K. G. Caulton, Chem. Commun. 2004, 162; i) H. J. Kim, J. Kim, S. H. Cho, S. Chang, J. Am. Chem. Soc. 2011, 133, 16382; j) A. A. Kantak, S. Potavathri, R. A. Barham, K. M. Romano, B. DeBoef, J. Am. Chem. Soc. 2011, 133, 19960.
- [3] For intramolecular C-N bond formation, see: a) W. C. P. Tsang, N. Zheng, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 14560;

b) K. Inamoto, T. Saito, M. Katsuno, T. Sakamoto, K. Hiroya, Org. Lett. 2007, 9, 2931; c) M. Wasa, J.-Q. Yu, J. Am. Chem. Soc. 2008, 130, 14058; d) J. A. Jordan-Hore, C. C. C. Johansson, M. Gulias, E. M. Beck, M. J. Gaunt, J. Am. Chem. Soc. 2008, 130, 16184; e) T.-S. Mei, X. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2009, 131, 10806; f) Y. Tan, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 3676; g) E. T. Nadres, O. Daugulis, J. Am. Chem. Soc. 2012, 134, 7; h) G. He, C. Lu, Y. Zhao, W. A. Nack, G. Chen, Org. Lett. 2012, 14, 2944; i) G. He, Y. Zhao, S. Zhang, C. Lu, G. Chen, J. Am. Chem. Soc. 2012, 134, 3; for intermolecular C-N bond formation, see: j) K. Sun, Y. Li, T. Xiong, J. Zhang, Q. Zhang, J. Am. Chem. Soc. 2011, 133, 1694; k) E. J. Yoo, S. Ma, T.-S. Mei, K. S. L. Chan, J.-Q. Yu, J. Am. Chem. Soc. 2011, 133, 7652; 1) B. Xiao, T.-J. Gong, J. Xu, Z.-J. Liu, L. Liu, J. Am. Chem. Soc. 2011, 133, 1466; m) G. Yin, Y. Wu, G. Liu, J. Am. Chem. Soc. 2010, 132, 11978; n) G. T. Rice, M. C. White, J. Am. Chem. Soc. 2009, 131, 11707; o) H. Du, B. Zhao, Y. Shi, J. Am. Chem. Soc. 2008, 130, 8590; p) J. Pan, M. Su, S. L. Buchwald, Angew. Chem. 2011, 123, 8806; Angew. Chem. Int. Ed. 2011, 50, 8647; for Pt catalysis, see: q) B. D. Dangel, J. A. Johnson, D. Sames, J. Am. Chem. Soc. 2001, 123, 8149.

- [4] a) G. Brasche, S. L. Buchwald, Angew. Chem. 2008, 120, 1958; Angew. Chem. Int. Ed. 2008, 47, 1932; b) Q. Wang, S. L. Schreiber, Org. Lett. 2009, 11, 5178; c) T. Kawano, K. Hirano, T. Satoh, M. Miura, J. Am. Chem. Soc. 2010, 132, 6900; d) S. H. Cho, J. Yoon, S. Chang, J. Am. Chem. Soc. 2011, 133, 5996; e) D. Monguchi, T. Fujiwara, H. Furukawa, A. Mori, Org. Lett. 2009, 11, 1607; f) Q. Michaudel, D. Thevenet, P. S. Baran, J. Am. Chem. Soc. 2012, 134, 2547; for azidation reactions, see: g) C. Tang, N. Jiao, J. Am. Chem. Soc. 2012, 134, 18924.
- [5] a) X. Chen, X.-S. Hao, C. E. Goodhue, J.-Q. Yu, J. Am. Chem. Soc. 2006, 128, 6790; b) T. Uemura, S. Imoto, N. Chatani, Chem. Lett. 2006, 35, 842; c) A. John, K. M. Nicholas, J. Org. Chem. 2011, 76, 4158; d) Q. Shuai, G. Deng, Z. Chua, D. S. Bohle, C.-J. Li, Adv. Synth. Catal. 2010, 352, 632.
- [6] a) V. G. Zaitsev, D. Shabashov, O. Daugulis, J. Am. Chem. Soc. 2005, 127, 13154; b) D. Shabashov, O. Daugulis, J. Am. Chem. Soc. 2010, 132, 3965; c) L. D. Tran, I. Popov, O. Daugulis, J. Am. Chem. Soc. 2012, 134, 18237.
- [7] X. Ribas, D. A. Jackson, B. Donnadieu, J. Mahía, T. Parella, R. Xifra, B. Hedman, K. O. Hodgson, A. Llobet, T. D. P. Stack, *Angew. Chem.* **2002**, *114*, 3117; *Angew. Chem. Int. Ed.* **2002**, *41*, 2991.
- [8] a) L. M. Huffman, S. S. Stahl, J. Am. Chem. Soc. 2008, 130, 9196;
 b) A. E. King, L. M. Huffman, A. Casitas, M. Costas, X. Ribas,
 S. S. Stahl, J. Am. Chem. Soc. 2010, 132, 12068.
- [9] O. Reinaud, P. Capdevielle, M. Maumy, J. Chem. Soc. Chem. Commun. 1990, 566.

www.angewandte.org

These are not the final page numbers!

Communications

L. D. Tran, J. Roane, O. Daugulis* _____

Directed Amination of Non-Acidic Arene C-H Bonds by a Copper-Silver Catalytic System

Amine meets arene: A method for direct amination of β -C(sp²)-H bonds of benzoic acid derivatives and γ -C(sp²)-H bonds of benzylamine derivatives has been developed. The reaction is catalyzed by Cu(OAc)₂ and a Ag₂CO₃ cocatalyst,

and shows high generality and functionalgroup tolerance, as well as providing a straightforward means for the preparation of *ortho*-aminobenzoic acid derivatives.