CHEMISTRY A European Journal

Title: The Reactivity of NHC Alane Adducts towards N-Heterocyclic Carbenes and Cyclic (Alkyl)(Amino) Carbenes: Ring Expansion, Ring Opening, and Al-H Bond Activation

Accepted Article

Authors: Udo Radius, Heidi Schneider, Andreas Hock, and Rüdiger Bertermann

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Chem. Eur. J. 10.1002/chem.201702166

Link to VoR: http://dx.doi.org/10.1002/chem.201702166

Supported by ACES

The Reactivity of NHC Alane Adducts towards *N*-Heterocyclic Carbenes and Cyclic (Alkyl)(Amino) Carbenes: Ring Expansion, Ring Opening, and Al-H Bond Activation

Heidi Schneider, Andreas Hock, Rüdiger Bertermann, and Udo Radius *[a]

Dedicated to Professor Dieter Fenske on the occasion of his 75th birthday

Abstract: The synthesis of the mono NHC alane adducts of the type (NHC)·AIH₃ (NHC = Me₂Im 1, Me₂Im^{Me} 2, iPr_2 Im 3 and 3-d₃, iPr_2 Im^{Me} 4, Dipp₂Im 10) and (NHC)·Al*i*Bu₂H (NHC = *i*Pr₂Im 11, Dipp₂Im 12) as well as their reactivity towards different types of carbenes is presented. While the mono NHC adducts remain stable at elevated temperatures, ring expansion reaction occurs when (*i*Pr₂Im)·AIH₃ 3 is reacted with a second equivalent of the carbene iPr2Im to give (*i*Pr₂Im)·AIH(RER-*i*Pr₂ImH₂) 6. In 6, {(*i*Pr₂Im}AIH} is inserted into the NHC ring. In contrast, ring opening is observed with sterically more demanding Dipp₂Im with formation of (*i*Pr₂Im)·AIH₂(ROR- $Dipp_2ImH_2)H_2AI \cdot (iPr_2Im)$ 9. In 9, two {(iPr_2Im)·AIH_2} moieties stabilize the ring opened Dipp₂Im. If two hydridic sites are blocked, the adducts are stable with respect to further ring expansion or ring opening, as exemplified by the adducts (*i*Pr₂Im)·Al*i*Bu₂H 11 and (Dipp₂Im)·Al*i*Bu₂H 12. The reaction of $(NHC) \cdot AIH_3$ and $(iPr_2Im) \cdot AIiBu_2H$ with $cAAC^{Me}$ yields instead of ligand substitution, ring expansion or ring opening the products of an insertion of the carbone carbon atom into the AI-H bond (NHC) \cdot AIH₂/*i*Bu₂(cAAC^{Me}H) **13–18**.

Introduction

Research on *N*-Heterocyclic Carbenes (NHCs) and related molecules ^[1] demonstrated in the last decade clearly that their application is not limited to the use as (spectator) ligands in transition metal chemistry and catalysis or to their application as stabilizers for subvalent main group element compounds ^[2-4]. Carbenes themselves show a rich diversity in their reaction pattern towards main group element hydrides and organyls.^[5] We and others demonstrated earlier, that in dependence on the electronic and steric properties of the carbene and on the main group element compound used, various reaction channels are observed. With simple Brønsted acids like alcohols and hydrogen halides usually the basic character of the carbene dominates and deprotonation to the corresponding imidazolium salts occurs.^[6] However, the carbene carbon atom combines a *Lewis* acidic (empty vacant p_z orbital) and a *Lewis* basic '

 H. Schneider, Andreas Hock, Dr. R. Bertermann, Prof. Dr. U. Radius Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland, D-97074 Würzburg (Germany)
 E-mail: <u>u.radius@uni-wuerzburg.de</u>

Supporting information for this article is given via a link at the end of the document.

Scheme 1. Carbene-mediated reactions of main-group element hydrides

(occupied sp_2 orbital) site which enables singlet carbenes to undergo element element bond activation reactions beyond simple deprotonations (Scheme 1).

It was demonstrated earlier, for example, that cyclic (alkyl)(amino) carbenes (cAACs) provide a robust environment for Si–H, B–H, and P–H bond activation, and most recently we and others reported that even C–H and C– $F^{[7]}$ bond activation occurs with formation of the E–H respectively E–E bond cleavage products. In addition, we also showed recently that insertion of cAACs into the B-C bond of selected arylboronate esters is reversible and this reversibility may lead to the development of novel carbon centered organocatalysts.^[8]

We currently assume that E–H (E = H, B, C, N, Si, P) or E–E bond activation is also the key step for any further reactivity of NHCs and cAACs. In the last few years reactions of NHCs with *Lewis* acidic hydrides such as silanes^[9], boranes^[10] and beryllium hydrides^[11] have been reported, which lead to ring expansion of the NHC, while the E–H or E–E bond activation is considered to be the crucial step of the reaction sequence.^[12] We also provided lately the first example of a ring expansion reaction of a cAAC, using aryl catechol boronate esters. The *Lewis* acid/base adduct (cAAC)-BcatAr was observed, which subsequently reacts with

ring expansion of the cAAC. Furthermore, we have also shown for group 15 element hydrides that secondary and primary phosphines may be converted with NHCs into diphosphines or cyclooligophosphines by reductive dehydrocoupling,^[9b] and closely related dehydrocoupling was also observed for organo tin hydrides. ^[13] E-H bond cleavage is likewise considered to be the initial step for this reaction channel, leading to an instable E-H activation product, which in turn leads to further reactions. Bertrand and coworkers demonstrated earlier, that alkyl(amino)carbene mediated P-H bond activation of phosphines provides the stable E-H oxidative addition products without any further reaction. [14] This example demonstrates nicely, that the progress after E-H bond activation at a carbene center depends strongly on the stability of the E-H oxidative addition product and thus on the main group element hydride employed. However, the result of the reaction between a carbene and a main group element hydride also depends on the nature of the carbene. We investigated recently, for example, in some detail the reactivity of different carbenes with catechol borane HBcat. This borane forms with backbone unsaturated NHCs (nPr₂Im, *i*Pr₂Im, *i*Pr₂Im^{Me} and Dipp₂Im) *Lewis* acid-base adducts, which are stable at higher temperatures and no E-H bond cleavage or ring expansion reaction (RER) was observed for these molecules. In contrast, E-H bond activation occurs for the reaction of HBcat with the cyclic alkyl(amino)carbene cAAC^{Me}, but no RER of the cAAC occurs. If the backbone saturated NHC Dipp₂H₂Im is used, adduct formation is followed by B-H activation and subsequent ring expansion reaction (vide infra) takes place. ^[10f]

Donor stabilized aluminum compounds have been of interest for several years, mainly due to the manifold application of alanes in organic and inorganic synthesis and lately also because of the potential of aluminum compounds as hydrogen storage systems. Besides the well-established chemistry of amine or phosphine stabilized mono alane adducts and adducts with oxygen based ligands, homoleptic (amine donors) as well as heteroleptic (amin/phosphor donors) bis alane adducts are established.^[15] NHC aluminum chemistry is developed to some extend^[15q, 16] and it is known that Lewis acid-base adducts of aluminum hydrides are rather unstable. Besides simple decomposition of the compounds to unidentified molecules, NHC to aNHC rearrangement in the coordination sphere of aluminum^[17] and ring expansion reaction of a NHC in β -diketiminato aluminum dihydrides was observed.^[16i] However, the utilization of carbenes in aluminum chemistry also facilitate the isolation of interesting with new molecular structures substances such as (Dipp₂Im)·H₂Al-AlH₂·(Dipp₂Im), obtained by magnesium(I) mediated dehydrogenative coupling of (Dipp₂Im)·AIH₃^[16f, 18] or a cAAC stabilized neutral aluminum radical^[19] and the NHC

stabilized aluminum cation [(Dipp₂Im)·AlH₂][B(C₆F₅)₃]^[20]. Due to our experience on the reactivity of carbenes with phosphines, silanes, tin hydrides and especially boranes and the existing reports on the instability of some NHC aluminum compounds, we decided to take a closer look on the behavior of carbenes with different aluminum hydrides and we wish to report first results here.

Results and Discussion

Lewis acid-base adducts^[15] with AIH₃ are known for guite a while now. There are several approaches to synthesize such Lewis acid-base adducts: One method involves the reaction of AlH₃ (usually obtained from the reaction of LiAlH₄ with H₂SO₄) with a two electron donor (e.g. amines and phosphines). These adducts are in some cases also accessible using the reaction of LiAlH₄ directly and the ligand (or the ligand salt) with salt elimination. A third important method is the substitution of the trimethylamine ligand of the adduct NMe3·AIH3.[15b-g, 15i-w, 21] In dependence on the basicity and the steric demand of the ligand used, formation of the alane adducts stabilized by one or two bases (two electron donor ligands) may occur.[15w] Known examples ^[15q, 16a-f, 16h, 16i, 18, 22] show that NHC stabilized alanes have been synthesized so far mainly via salt elimination from the reaction of NHCs with lithium aluminum hydride or from base substitution of NMe3·AIH3.[15q, 16a-e, 16i, 18, 21-22] For the presented study we opt to synthesize the (NHC)·AIH₃ adducts via the LiAIH₄ route.

The adducts (Me₂Im)·AlH₃ **1**, (Me₂Im^{Me})·AlH₃ **2**, (*i*Pr₂Im)·AlH₃ **3** and (*i*Pr₂Im^{Me})·AlH₃ **4** are readily accessible from the reaction of lithium aluminum hydride with the corresponding *N*-heterocyclic carbene at 0 °C in diethyl ether (Scheme 2). In course of the reaction, lithium hydride precipitates and can be separated by filtration. Further workup gave the adducts **1** to **4** as colorless crystalline solids in excellent purity and in fair to good overall yield (**1**: 56 %, **2**: 62 %, **3**: 73 %, **4**: 63 %). This method is also perfectly suitable to synthesize the corresponding deuterated adducts, as exemplified by the synthesis of (*i*Pr₂Im)·AlD₃ **3**-*d*₃ is obtained starting from commercially available LiAlD₄ as a colorless solid in 57 % yield.

The adducts **1** to **4** were characterized using multinuclear NMR and IR spectroscopy and elemental analyses. The characteristic Al–H bond stretching vibrations of the compounds **1** – **4** were observed in the range between 1644 to 1784 cm⁻¹ (see SI).^[15g, 15i, 15k, 15q, 15r, 15w, 21, 23] For example, two IR bands were recorded for (*i*Pr₂Im)·AlH₃ **3** as a broad signal at 1719 cm⁻¹ and a shoulder at 1776 cm⁻¹ in the solid state. Three sharp IR bands were calculated for gas phase (*i*Pr₂Im)·AlH₃ **3** at 1762, 1767 and 1787cm⁻¹ (scaling factor 0.9914 ^[24]) using DFT at the BP86/def2-SVP level. This assignment was further proven by a comparison of the Al-H/D IR bands of (*i*Pr₂Im)·AlH₃ **3** and its deuterated isotope (*i*Pr₂Im)·AlD₃ **3**-*d*₃, which are significantly shifted to lower wavenumbers at 1250 cm⁻¹. This is in agreement with the observation made for the amine adducts NMe₃·AlH₃ (the Al-H stretch was detected as a broad band at 1792 cm⁻¹) and

	AI- <i>H</i> ¹ H{ ²⁷ AI} NMR	N <i>C</i> N ¹³ C{ ¹ H} NMR	²⁷ Al{ ¹ H} NMR
(Me₂Im)·AlH₃ 1	4.39	172.2	105.8 ^[a]
Me ₂ Im ^{Me})·AIH ₃ 2	4.48	168.7	106.4 ^[a] 104.4 [^{b]}
(<i>i</i> Pr₂lm)∙AlH₃ 3	4.53	170.3	106.3 ^[a] 105.3/105.8 ^[b]
(<i>i</i> Pr₂Im ^{Me})⋅AlH₃ 4	4.60	170.0	107.8 ^[a] 103.6/103.8 ^[b]
(Dipp ₂ Im)·AIH ₃ 10	3.67	178.2	107.9 ^[b]
(<i>i</i> Pr₂lm)⋅Al <i>i</i> Bu₂H 11	4.71	173.1	139.4 ^[a] 138.9 ^[b]
(Dipp₂lm)·Al <i>i</i> Bu₂H 12	3.97	180.5	137.0 ^[b]

 $^{[a]\,27}Al\{^1H\}$ NMR resonance in solution, $^{[b]\,27}Al\{^1H\}$ NMR resonance in the solid state.

 $NMe_3{\cdot}AID_3$ (the AI-D stretch was detected as a broad band at 1304 $cm^{-1}).^{[25]}$

The most important NMR shifts of the compounds 1 - 4 are summarized in Table 1. The proton NMR spectra of the NHC·AIH₃ adducts 1-4 in solution reveal sharp, significantly shifted resonances for the NHC ligand, whereas the aluminum bound hydrogen atoms appear as very broad peaks (range > 2.5 ppm) due to the direct binding to the 27 Al atom (I = 5/2) and the resulting splitting in combination with the quadrupole moment (q = 14.7 fm²) of the aluminum nucleus. However, the aluminum bound hydrogen atoms of the adducts 1 to 4 can be detected in the ¹H{²⁷Al} NMR spectrum in the range from 4.39 to 4.60 ppm. The proton NMR of the adduct 3 shows, for example, a doublet at 0.94 ppm for the methyl groups and a septet at 5.25 ppm for the methine protons of the iso-propyl substituent. The singlet of the backbone protons arises at 6.23 ppm, whereas the aluminum bound hydrides were detected as a broad singlet in the ¹H²⁷Al} NMR spectrum at 4.53 ppm.

In the ¹³C{¹H} NMR spectrum, the signals of (*i*Pr₂Im)·AlH₃ 3 were detected at 22.9 (iPr-CH₃), 51.6 (iPr-CH) and 117.0 (NCHCHN) ppm. The carbone carbon resonances of the (NHC)·AlH₃ adducts are usually also difficult to detect due to the quadrupole moment of the ²⁷Al core and appear as strongly broadened signals. The carbone carbon atom of $(iPr_2Im) \cdot AIH_3$ 3, for example, gives rise to a signal at 170.3 ppm, significantly shifted compared to the resonance of uncoordinated /Pr2lm at 211.6 ppm. In general, the NHC-AIH₃ adducts 1 - 4 with alkyl substituted NHCs reveal carbone carbon resonances in the range between 168.7 and 173.1 ppm. ²⁷Al{¹H} NMR resonances of the alane adducts are typically observed in a region between 100 and 140 ppm. (tBu₃P)·AlH₃, for example, reveals a signal at 121.8 ppm^[15i], whereas the resonance of (Me₃N)·AIH₃ is detected at 139.8 ppm.^[15s] Compounds (Me₂Im)·AIH₃ 1, (Me₂Im^{Me})·AIH₃ 2, (*i*Pr₂Im)·AIH₃ 3, and (*i*Pr₂Im^{Me})·AIH₃ 4 show broad singlets in solution between 105.8 and 107.8 ppm and are thus in good agreement to the know NHC·AlH₃ adducts reported so far, (iPr_2Im^{Me}) ·AlH₃ ($\delta = 106 \text{ ppm})^{[16b]}$ and (Mes_2Im) ·AlH₃ ($\delta = 107 \text{ ppm})^{[16a]}$.

In addition to the NMR spectra in solution, we recorded the solid state NMR spectra of selected complexes (see SI). The resonances of the adducts 2 - 4 observed in the ¹³C{¹H} and ²⁷Al{¹H} solid state NMR spectra are in good agreement to those detected in solution. These results provide some evidence that the Lewis acid-base adducts 1 to 4 adopt the same structures in both solution and solid state (for the X-ray crystal structures see below). The ²⁷Al{¹H} HPDec/MAS NMR spectrum of (*i*Pr₂Im)·AlH₃ 3 shows, for example, a signal with an isotropic shift at 105.8 ppm with the typical line shape (MAS second-order quadrupole powder pattern) for a tetrahedral sp³-Al atom with a quadrupolar coupling constant of 9967 kHz and a quadrupolar asymmetry parameter of 0.07. A second isotropic shift for a conformer is detected at 105.3 ppm with a guadrupolar coupling constant of 9710 kHz and a quadrupolar asymmetry parameter of 0.07 (see Figure 1). The signals of both conformers are in perfect agreement with the resonance at 106.3 ppm found in solution for (*IPr*₂Im)·AIH₃ 3. The ¹⁵N VACP/MAS NMR spectrum shows one resonance at -167.3 ppm for the nitrogen atoms of the NHC.

²⁷Al{¹H} NMR spectra in the solid state of the compounds (Me₂Im^{Me})·AlH₃ **2** and (*i*Pr₂Im^{Me})·AlH₃ **4** are likewise in perfect accordance with the resonances observed in the solution NMR spectra, which are compared to each other in Table 1, and show a similar line shape as presented for compound **3**.

The molecular structure of $(Pr_2|m)$ ·AlH₃ **3** was confirmed by X-Ray diffraction and is shown in Figure 2. The hydrogen atoms bound to the aluminum atom of compound **3** have been located on the electron density map and were refined isotropically. The aluminum center is in a tetrahedral environment and coordinated by one NHC ligand and three hydrogen atoms. The angles spanned by the ligands are in a range between 104.1(8) and 113.5(10) °. The NHC aluminum as well as the aluminum hydride bond lengths of 2.0375(17) and 2.0405(17) Å for Al–C_{NHC} and 1.492(19) to 1.56(2) Å for Al–H are in good agreement to the bond lengths of (Dipp₂Im)·AlH₃ (Al–NHC: 2.0556(13) Å; Al–H: 1.510(17) to 1.546(17) Å) [^{16d}] reported earlier.

Figure 1.²⁷Al{¹H} HPDec/MAS NMR spectrum of (*i*Pr₂Im)·AlH₃ 3.

Figure 2. Molecular structure of (iPr_2Im)·AIH₃ 3 in the solid state (ellipsoids set at 50% probability level). Selected bond lengths [Å] and angles [°]: Al1–C1 2.0405(17), Al1–H1 1.54(2), Al1–H2 1.56(2), Al1–H3 1.492(19), Al2–C11 2.0375(17), Al2–H4 1.53(2), Al2–H5 1.52(2), Al2–H6 1.53(2). C1-Al1-H1 108.5(7), C1-Al1-H2 1.04.1(8), C1-Al1-H3 105.4(8), H1-Al1-H2 112.1(11), H1-Al1-H3 113.5(10), H2-Al1-H3 112.5(11), C11-Al2-H4 104.5(8), C11-Al2-H5 109.2(7), C11-Al2-H6 106.5(8), H4-Al2-H5 112.2(10), H4-Al2-H6 111.4(11), H5-Al2-H6 112.5(11).

The NHC adducts 1 to 4 are thermally stable in solution at least to the boiling point of toluene. Thus, a flame sealed NMR tube of 3 in toluene-d₈ was kept at 110 °C for several days without a change of its ¹H NMR spectrum. However, in course of our work we became aware of instabilities that already occur at room temperature. If an excess (more than one equivalent) of the NHC *i*Pr₂Im was added to a suspension of lithium aluminum hydride, a side product was observed in significant amounts with a rather complicated NMR spectrum. The proton NMR spectra of these solutions reveal aside from the symmetric resonance pattern of the *i*Pr₂Im moiety of **3** additional resonances, indicating an unsymmetrical *i*Pr₂Im species. In a following stoichiometric reaction of isolated (iPr2Im)·AIH3 3 with one equivalent iPr2Im at 70 °C for 16 h, a change of the color of the solution from colorless (color of 3) to bright orange was observed. After workup, a bright yellow solid was isolated, highly soluble in commonly used organic solvents like n-hexane, toluene, diethyl ether and thf and reactive towards chlorinated solvents such as CH₂Cl₂ and CHCl₃. The yellow product, which was obtained in yields up to 63 %, is highly sensitive towards air and moisture. This compound was then identified as the ring expansion product (iPr₂Im)-AIH(RER*i*Pr₂ImH₂) 6 (RER = ring expansion reaction) using multinuclear NMR spectroscopy, high resolution mass spectrometry and elemental analysis. Heating of a *d*₆-benzene solution containing equimolar amounts of (*I*Pr₂Im)·AIH₃ 3 and *I*Pr₂Im to 70 °C for 9 h (see Figure 3) demonstrated that the reaction proceeds quantitative to the reaction product (*i*Pr₂Im)·AIH(RER-*i*Pr₂ImH₂) 6. Immediately after addition of the NHC iPr2lm to the adduct (*i*Pr₂Im)·AIH₃ 3 only one set of protons of *i*Pr₂Im and (*i*Pr₂Im)·AIH₃ 3 is detected at room temperature, which either indicates the initial formation of the bis NHC aluminum hydride adduct trans-(*i*Pr₂Im)₂·AIH₃ 5 with intact NHC moieties at the aluminum center or a rapid exchange of the NHCs on the NMR time scale. The major difference between the NMR spectrum of 3 and that of this

Scheme 3. Ring expansion and ring opening reaction of $(iPr_2Im) \cdot AIH_3$ **3** with iPr_2Im and $Dipp_2Im$.

mixture lies in the resonance of the isopropyl methine protons, which shifts from 5.25 ppm in **3** to 4.86 ppm and appears as a broad resonance at higher temperatures (e.g. at 70°C). Similarly, the ¹³C{¹H} NMR spectrum of the solution reveals only one set of signals and, most significantly, a distinct down field shift of the NHC carbene carbon atom from 170.3 ppm for (*I*Pr₂Im)·AIH₃ **3** to 188.9 ppm, while the aluminum resonance is detected at 107.2 ppm.

Once we realized that trans-(iPr2Im)2·AIH3 5 might be an important intermediate for this reaction, we synthesized and isolated this compound. Starting from iPr_2Im and $(iPr_2Im) \cdot AIH_3$ 3, trans-(iPr₂Im)₂·AIH₃ 5 was isolated in 40 % yield as a colorless solid. The resonances observed in the ¹H and ¹³C{¹H} NMR spectra were identical to those observed in solutions investigated for the ring opening process (vide supra). The aluminum resonance was found at 107.2 ppm, only marginally shifted from the resonance of **3** at 106.3 ppm. Trans-(*i*Pr₂Im)₂·AIH₃ **5** rearranges even in the solid state slowly to 6, which is recognizable by the change of the color of the solid from colorless to yellow. (*i*Pr₂Im)·AIH(RER-*i*Pr₂ImH₂) **6** was also synthesized in solution from isolated 5. The formation of 6 can be easily spotted in the ¹H NMR spectrum (Figure 3 and Figure S43 in the SI), since the resonance of the NHC backbone at 6.45 ppm splits into one resonance at 6.38 ppm for the intact NHC attached to aluminum and into two doublets at 4.85 and 5.33 ppm for the asymmetrical NHC backbone of the ring expanded NHC. The resonances of the methine protons at 4.86 ppm also split into one set at 5.61 ppm (intact NHC) and into two septets at 3.12 ppm and 3.30 ppm (methine protons of the ring expanded /Pr2Im moiety). The diastereotopic AICH2N protons are detected as two broad doublets at 70°C (Figure 3) at 1.86 ppm and 2.37 ppm, but lead to sharp roofed doublets at room temperature with a geminal coupling constant of 12.3 Hz (see Figure S37, SI). The ²⁷Al{¹H} NMR resonance of 6 is detected as a broad singlet at 119.9 ppm, significantly shifted from the resonance of (*i*Pr₂Im)·AIH₃ 3 in solution at 106.3 ppm. The ¹³C{¹H} NMR spectrum shows a characteristic high field resonance for the former carbene carbon atom AICH₂N at 29.7 ppm and two signals for the endocyclic methine carbon atoms at 53.1 and 57.6 ppm as well as for the methyl groups of the iso-propyl arms of the ring expanded NHC moiety at 18.9 ppm. The intact iPr2Im moiety gives rise to a broad

resonance of the carbone carbon atom at 169.8 ppm, marginally shifted from 170.3 ppm observed for (iPr_2Im)·AIH₃ **3**. As can be seen in Figure 3, no further intermediate was detected in solution. The infrared spectrum of isolated **6** reveals only *one* characteristic band for the AI–H stretching vibration at 1747 cm⁻¹.

A conversion vs. time diagram of the ring expansion reaction (Figure S100) was created from the time dependent NMR study by integration of the resonances of the starting material (integral of the backbone of **3** minus integral of the splitted methine protons at 3.12 and 3.30 ppm of the ring opened NHC in 6) and of the product (integral of the splitted methine protons at 3.12 and 3.30 ppm of 6). The analysis of the kinetics (Figure S100-S103) reveals that the monomolecular decrease of the concentration of (*i*Pr₂Im)₂·AIH₃ **5** and the formation of **6** follows a first order rate law (Figure S101). In accordance with our NMR studies (formation of a bis NHC aluminum adduct 5 after addition of iPr₂Im to a solution of (*I*Pr₂Im)·AIH₃ 3 in C₆D₆) and the kinetics presented here we propose a monomolecular reaction mechanism (Scheme 4) starting from the bis NHC adduct 5 and leading to (*i*Pr₂Im)·AIH(RER-*i*Pr₂ImH₂) 6 via an intramolecular insertion of the {(iPr_2Im)·AIH} moiety into the ring of the second iPr_2Im unit. The rate constant is calculated to $k = 7.32 \cdot 10^{-5} \text{ s}^{-1}$ with a half-life of 158 min at 70 °C. In addition to the kinetics we performed experiments with the deuterated adduct (*i*Pr₂Im)·AID₃ 3-d₃. The reaction of this compound with *i*Pr₂Im afforded (*i*Pr₂Im)·AID(RERiPr₂ImD₂) 6-d₃, exclusively deuterated at the former NHC carbene carbon atom. This demonstrates that the hydrogen atoms transferred originate exclusively from (*i*Pr₂Im)·AID₃ 3-d₃ and that the solvent is not involved in the reaction process. The reaction of iPr2Im performed with a 1:1 ratio of (iPr2Im)·AIH3 3 and (*i*Pr₂Im)·AID₃ 3-d₃ led to the formation of (*i*Pr₂Im)·AIH(RERiPr2ImH2) 6, (iPr2Im)·AID(RER-iPr2ImD2) 6-d3 and the H/D cross product (*i*Pr₂Im)·AIH/D(RER-*i*Pr₂ImHD) 6-[H/D]. The appearance of the H/D cross product (iPr2Im)H/D(RER-iPr2ImHD) 6-[H/D]

WILEY-VCH

might be explained by a bimolecular reaction mechanism, which would contrast our conclusions drawn from time dependent NMR experiment. However, 6-[H/D] may also originate from H/D exchange between the adducts (*i*Pr₂Im)·AIH₃ 3 and (*i*Pr₂Im)·AID₃ 3-d₃ before the bis NHC adduct trans-(iPr2Im)2·AIH3 5 is even formed. This is indeed the case, and was verified by the independent reaction of $(i Pr_2 Im) \cdot AIH_3$ 3 and $(i Pr_2 Im) \cdot AIH_3$ **3**-*d*₃ in a 2:1 ratio in C₆D₆. Immediately after addition of the solvent a new set of signals was detected, which is shifted from the resonances of 3 and 3-d₃. The resonances of the aluminum bound protons arise marginally shifted 4.52 ppm at compared those of (*i*Pr₂Im)·AlH₃ 3 at 4.53 ppm, while the other resonances are detected at 0.98 (iPr-CH₃, 3: 0.94 ppm, 3-d3: 0.95 ppm), 5.22 (iPr-

CH, 3: 5.25 ppm, 3-d₃: 5.23 ppm), and 6.39 (NCHCHN, 3: 6.23 ppm, 3-d₃: 6.30 ppm). The same behavior is observed for the resonance of the deuterated compound 3-d₃ in the deuterium NMR spectra. The signal of (*i*Pr₂Im)·AIH₂D 3-d₁ is observed at 4.55 ppm, while the deuterium resonance of (*i*Pr₂Im)·AID₃ 3-d₃ arises at 4.57 ppm. In the ¹³C{¹H} NMR spectrum the signal of the carbene carbon atom appears slightly shifted at 169.7 ppm (3: 170.3 ppm, 3-d₃: 170.3 ppm). The most significant evidence is found in the infrared spectra of the compound, where the broad, intensive bands of (*i*Pr₂Im)·AIH₃ 3 at 1719 cm⁻¹ and (*i*Pr₂Im)·AID₃ 3-d₃ at 1250 cm⁻¹ are missing. Thus, we strongly believe that the emergence of the cross product originates from H/D exchange already between the starting material (*i*Pr₂Im)·AIH₃ 3 and $(iPr_2Im)\cdot AIH_3$ **3-***d*₃. Furthermore, we assume a reaction mechanism as provided in Scheme 4: [9a, 12a] In the first step the bis NHC adduct is formed, followed from NHC insertion into one of the AI-H bonds of (NHC)-AIH₃ to give intermediate A. Subsequent amido transfer from the NHC carbon atom to the aluminum atom leads to intermediate B, which finally reacts with a hydride shift from the aluminum atom to the (former) carbene carbon atom with formation of the product 6.

We tried several times to obtain single crystals suitable for Xray diffraction of (iPr_2Im)-AlH(RER- iPr_2ImH_2) **6** from saturated solutions of the compound in different solvents, but failed. Usually, the crystal quality of the material obtained was even too poor to establish the connectivity properly. However, in one case we isolated the hydrolyzed form of **6** as good quality crystals. The result of the X-ray analysis of these crystals of the compound [{(iPr_2Im)-Al(RER- iPr_2ImH_2)}₂(μ^2 -O)] **7** is shown in Figure 4 (left). The central aluminum atom is coordinated in a distorted tetrahedral environment by the carbene carbon atom and the nitrogen atom of the ring expanded iPr_2Im moiety, the intact NHC molecule and the bridging oxygen atom. The NHC aluminum bond

Scheme 4. Proposed mechanism for the ring expansion reaction of $(iPr_2lm) \cdot AlH_3$ **3** with iPr_2lm to give $(iPr_2lm) \cdot AlH(RER - iPr_2lmH_2)$ **6** via the bis-NHC adduct *trans*- $(iPr_2lm) \cdot AlH_3$ **5**.

distance corresponds with 2.0709(18) Å to the one observed(iPr_2Im)·AIH₃ **3** in with 2.0405(17) Å. The AI–C_{RER-NHC} bond length of 1.999(2) Å and the AI–N_{RER-NHC} of 1.8514(17) Å do not deviate from the literature known data of aluminum carbon (1.99 Å ^[26]) and aluminum nitrogen (1.88 Å ^[16i]) single bonds.

We also tried several times to obtain single crystals suitable for X-ray diffraction of *trans*-(iPr_2Im)_2·AIH_3 **5** from saturated solutions of the compound in different solvents, but weren't successful likewise. Instead we characterized the compound $[(iPr_2Im)_4 \cdot AIH_2][(H_3AI^{a}iPr_2Im) \cdot AIH_3]$ **8** (Figure 4, right) crystallographically, which was obtained from the reaction of $(iPr_2Im) \cdot AIH_3$ **3** with iPr_2Im in Et₂O repeatedly. Similarly, we repeatedly crystallized $[(iPr_2Im)_4 \cdot AIH_2] [(iPr_2Im)_2Li(AIH_4)_2]$ with one molecule $(iPr_2Im) \cdot AIH_3$ **3** in the unit cell starting from lithium

aluminum hydride and 2 equivalents of *i*Pr₂Im in Et₂O (Figure S104 in the SI). In the cationic part [(IPr2Im)4·AIH2]+ of these ionic compounds, the aluminum cation is surrounded by four NHC ligands and two transconfigured hydride ligands, which span an almost ideal octahedral coordination polyhedron around the metal ion. In the anionic part of 8, one {AlH₃} unit is coordinated in a Lewis acid-base interaction by the NHC in 2-position, while another {AIH₃} moiety is bound to the 4-position at the backbone of the same NHC, i.e. one *i*Pr₂Im ligand coordinates in its "normal" and "abnormal" mode and thus bridges two {AIH₃} units. The bond distances between the aluminum

atom and the NHCs in the cation of approximately 2.179 Å are larger compared to (*i*Pr₂Im)·AlH₃ **3** (Al–C_{NHC}: 2.039 Å), as expected for higher coordination numbers, whereas the Al-C distances of the anionic part of **8** (2.048(3) Å and 2.006(3) Å) are in perfect agreement to those observed for **3**. Aluminum hydride cations are relatively scarce and Stephan *et al.* presented only recently the closely related compounds [(Dipp₂Im)·AlH₂][B(C₆F₅)₄] and [(Cy₂Im)₂AlH][B(C₆F₆)₄], which are the first examples of NHC stabilized aluminum cations.^[16h] To our knowledge **8** is the first example of a NHC stabilized cationic aluminum center in the coordination number six. However, if crystals of **8** were dissolved in solvents like benzene, toluene, diethyl ether or THF, we isolated the adduct (*i*Pr₂Im)₂·AlH₃ **5** as the main component, usually contaminated with traces of **6**. NMR investigations in C₆D₆

Figure 4. Molecular structure of the hydrolyses product of [{(*i*Pr₂Im)·Al(RER-*i*Pr₂ImH₂)}₂(*μ*²-O)] **7** (left) and of [(*i*Pr₂Im)₄·AlH₂][(H₃Al^a/Pr₂Im)·AlH₃] **8** (right) in the solid state (ellipsoids set at 50% probability level). Selected bond lengths [Å] and angles [°]: **7**: Al–C1 2.0709(18), Al–C11 1.999(2), Al–N4 1.8514(17), Al–O1 1.6996(6). C1-Al1-C11 108.01(8), C1-Al1-O1 108.38(6), C11-Al1-O1 114.48(6), N4-Al1-O1 118.69(6), C1-Al1-N4 104.10(7), C11-Al1-N4 102.29(8). **8**: Al1–C1 2.181(3), Al1–C11 2.189(3), Al1–C21 2.170(3), Al1-C31 2.176(3), Al1–H101 1.62(2), Al1–H100 1.60(3); C1-Al1-C11 91.43(11), C1-Al1-C21 179.23(12), C1-Al1-C31 89.94(11), C11-Al1-C21 88.88(11), C11-Al1-C31 177.97(12), C21-Al1-C31 89.77(11), C1-Al1-H100 88.7(9), C1-Al1-H101 90.4(9), C11-Al1-H100 91.8(9), C11-Al1-H101 89.4(8), C21-Al1-H101 90.6(9), C21-Al1-H101 90.3(9), C31-Al1-H100 89.7(9), C31-Al1-H101 89.1(8), H100-Al1-H101 178.5(13). Anion: Al2–C41 2.048(3), Al2–H104 1.52(3), Al2–H103 1.55(3), Al2–H102 1.55(3), Al3–H103 11.1(16) H102-Al2-H104 115.1(17), H103-Al2-H104 110.0(15).

WILEY-VCH

FULL PAPER

revealed the formation of **3**, **5**, **6**, and some hydrogenated NHC iPr_2ImH_2 from these crystals in solution. Thus, complex **5** seems to be in a rather complicated equilibrium with other species in solution, from which ionic **8** seems to crystallize preferentially.

The reaction of $(iPr_2Im) \cdot AIH_3$ 3 with the sterically more demanding NHC Dipp₂Im follows a different pathway (Scheme 3). Instead of a ring expansion reaction the ring opening of the Dipp2Im carbene was observed at 70 °C. The isolated product (*i*Pr₂Im)·AIH₂(ROR-Dipp₂ImH₂)H₂AI·(*i*Pr₂Im) 9 was identified via solution and solid state NMR spectroscopy, high resolution mass spectrometry and X-ray diffraction. Compound 9 is, similar to 6, highly sensitive towards air and moisture. The molecular structure of 9 confirms the ring opening of the sterically more demanding NHC Dipp₂Im with two molecules (*i*Pr₂Im)·AIH₃ in combination with formation of one AI-C and one AI-N bond and migration of two hydrogen atoms (one hydrogen atom of each aluminum atom) to the former carbone carbon atom of Dipp₂Im (Figure 5). Both aluminum atoms adopt a tetrahedral structure, in which Al1 is coordinated by one *i*Pr₂Im, two hydrogen atoms and the former carbene carbon atom C1, whereas the second aluminum atom Al2 is bound to the nitrogen atom of the ring opened Dipp₂Im, to an *i*Pr₂Im ligand and two hydrogen atoms. The AI-NHC bond lengths of 2.0518(4) and 2.066(4) Å are similar to those found in (*i*Pr₂Im)·AIH₃ **3** (AI–NHC 2.0375(17) & 2.0405(17) Å). The unsaturated backbone of Dipp₂Im remains in the ring opening product intact, as can be seen from the C2-C3 bond length of 1.337(5) Å, which is characteristic for a C–C double bond.

In the proton NMR spectrum of **9**, the characteristic resonance for the AlC H_2 N protons is detected as a singlet at 2.85 ppm, whereas the signals of the backbone of the ring opened Dipp₂Im are detected as two roofed doublets at 5.70 and 6.05 ppm. The resonances of each *i*Pr₂Im moiety are well separated from each other, those of the {(*i*Pr₂Im)·AI¹H₂-CH₂} unit are slightly high field

Different reactivity of group 13 element hydrides towards bulky NHCs have been reported so far. While the catechol borane adduct (Dipp₂Im).BcatH is stable even at higher temperatures, the adduct (Dipp₂H₂Im)·BcatH undergoes at room temperature ring expansion reaction to afford (RER-Dipp₂H₂Im(H₂))B-cat-Bcat (Dipp2H2Im). Bertrand et al. observed for the reaction of pinacol borane with the backbone saturated NHC Dipp₂H₂Im the formation of the dimeric ring opened compound pinB(ROR-Dipp₂H₂Im)₂Bpin,^[14] similarly as we reported the formation of a ring opening product for the reaction with Dipp₂H₂Im. The saturated NHC Dipp₂H₂Im reacts in a 2:2 ratio to yield a NHC ring expansion product at room temperature via C-N bond cleavage and further migration of the hydrides from two HBcat molecules to the former carbene-carbon atom. When equimolar amounts of (*i*Pr₂Im)·AIH₃ 3 and Dipp₂Im were used for the reaction, (*i*Pr₂Im)·AIH₂(ROR-Dipp₂ImH₂)H₂AI·(*i*Pr₂ Im) 9 and free Dipp₂Im

Figure 5. Molecular structure of (*P*r₂Im)-AlH₂(ROR-Dipp₂ImH₂)H₂Al-(*P*r₂Im) **9** in the solid state (ellipsoids set at 50% probability level). Selected bond lengths [Å] and angles [°]: Al1–C1 1.983(4), Al1–C11 2.051(4), Al1–H1 1.41(4), Al1–H2 1.59(4), C1–N1 1.449(4), N1–C2 1.394(4), C2–C3 1.337(5), N2–C3 1.415(4), N2–Al2 1.839(3), Al2–C21 2.066(4), Al2–H3 1.48(4), Al2 H4 1.60(4). C1-Al1-C11 112.39(17), C1-Al1-H1 120.9(15), C1-Al1-H2 101.5(13), C11-Al1-H1 104.0(15), C11-Al1-H2 101.4(14), C11-Al1-H2 101.4(14), H1-Al1-H2 105(2), C21-Al2-N2 114.97(14), C21-Al2-H3 105.7(14), C21-Al2-H4 100.4(14), N2-Al2-H3 114.2(14), N2-Al2-H4 109.7(14), H3-Al2-H4 114.6(19).

were isolated in a ratio of 1:1, and no further ring expansion or ring opening or exchange of the Lewis base NHC at aluminum occurs. We assume that the ring opening of Dipp₂Im is due to the steric demand of the NHC. In contrast to this, the reaction of (*i*Pr₂Im)·AIH₃ 3 with Mes₂Im gives even at higher temperatures no ring expansion or ring opening reaction. When other Lewisbases like amines (NEt₃) or phosphines (PPh₃) were reacted with (*i*Pr₂Im)·AIH₃ 3 at 70 °C for 2 days, no reaction was observed, ligand neither exchange or ring expansion/opening of the NHC.

Since we observed ring expansion or ring opening, respectively, for the reactions of (iPr_2Im)·AIH₃ **3** with the small, alkyl substituted NHC iPr_2Im and the sterically more demanding aryl substituted Dipp₂Im, we became interested in (i) the stability of AIH₃ base adducts of sterically more demanding NHCs and (ii) the stability of NHC aluminum hydride base adducts, if we

FULL PAPER

Scheme 5. Synthesis of the compounds (Dipp₂Im)·AlH₃ 10, (*i*Pr₂Im)·Al*i*Bu₂H 11 and (Dipp₂Im)·Al*i*Bu₂H 12.

block two of the hydridic positions. Therefore, the adducts (Dipp₂Im)·AIH₃ 10, (*i*Pr₂Im)·AI*i*Bu₂H 11 and (Dipp₂Im)·AI*i*Bu₂H 12 were synthesized (Scheme 5). (Dipp₂Im)·AIH₃ 10 was prepared from the reaction of the NHC with lithium aluminum hydride, as described earlier by Jones et al.[16d] (Dipp2Im)·AIH3 was isolated in yields of 65 % as a colorless solid and was identified using multinuclear NMR spectroscopy, elemental analysis and IR spectroscopy. The AI-H signals of (Dipp2Im)·AIH3 10 were recorded at 3.67 ppm, slightly shifted compared to those of (*i*Pr₂Im)·AIH₃ 3 at 4.53 ppm. The ¹³C{¹H} NCN resonance of Dipp2Im in 10 was observed at 178.2 ppm, at lower field compared to 1 - 4, which is in accordance with the comparatively deep field shifted NCN resonance of uncoordinated Dipp2Im (220.5 ppm). (Dipp₂Im)·AIH₃ 10 reveals with our settings no detectable resonance in the ²⁷Al{¹H} solution NMR spectrum, while in the solid-state ²⁷Al{¹H} HPDec/MAS NMR spectrum of the compound a signal with an isotropic shift at 107.9 ppm was detected. This resonance reveals the typical line shape (MAS second-order quadrupolar powder pattern) for a tetrahedral sp³-Al atom with a quadrupolar coupling constant of 11943 kHz and a quadrupolar asymmetry parameter of 0.1. The ¹⁵N VACP/MAS NMR spectrum shows one resonance at -180.0 ppm for the two nitrogen atoms of the symmetrical (Dipp₂Im)·AIH₃ conformer. In the IR spectrum of adduct 10 the characteristic AI-H stretching vibrations were detected at 1725, 1741 and 1777 cm⁻¹.

In contrast to the observations made for the alkyl substituted NHC adduct (*i*Pr₂Im)·AlH₃ **3**, the bulkier (Dipp₂Im)·AlH₃ **10** shows no reaction towards Dipp₂Im. However, immediately after addition of Dipp₂Im to solutions of (Dipp₂Im)·AlH₃ **10** only one set of protons for the two NHCs were detected and the methine protons of the Dipp substituents broadened significantly in the ¹H-NMR spectrum, which accounts either for an rapid coordination equilibrium or the formation of a compound (Dipp₂Im)₂·AlH₃. However, despite many efforts, the resonance of the carbene carbon atom was not detected in the ¹³C{¹H} NMR spectra. Heating of these solutions up to 110°C for several days in toluene*d*₈ did not lead to any further reaction.

For a closer investigation of the reactivity if two hydridic sites of the alane are blocked, the NHC adducts (iPr_2Im)·Al iBu_2H **11** and (Dipp₂Im)·Al iBu_2H **12** were synthesized from the reaction of di-*iso*-butyl aluminum hydride with the corresponding *N*heterocyclic carbene in diethyl ether at 0 °C (Scheme 5). After all

volatiles were removed in vacuo, both adducts were isolated by crystallization from n-hexane at -60 °C as colorless solids in yields of 56 % (11) and 57 % (12). Important NMR data of both compounds are summarized in Table 1. These data fit well into the general picture as described previously. However, the aluminum resonance of (*i*Pr₂Im)·Al*i*Bu₂H **11** in the solution ²⁷Al{¹H} NMR spectrum at 139.4 ppm is significantly shifted compared to the AIH₃ adducts (cf. 3: 106.3), and are in perfect agreement with the resonance detected in the solid state ²⁷Al{¹H} HPDec/MAS NMR spectrum at 138.9 ppm. Compound 12, however, shows similar to 10 no detectable resonance in the ²⁷Al{¹H} NMR spectrum, while in the solid state ²⁷Al{¹H} HPDec/MAS NMR spectrum of the compound a signal with an isotropic shift at 137.0 ppm was observed. The quadrupolar coupling constant was determined to 15860 kHz with a quadrupolar asymmetry parameter of 0.29. A. The AI-H stretching vibrations of 11 and 12 were detected at 1681 cm⁻¹ (11) and at 1702 cm⁻¹ (12) in the IR spectrum of the complexes.

The addition of *i*Pr₂Im to a solution of (*i*Pr₂Im)·Al*i*Bu₂H **9** leads to either the formation of a compound (*i*Pr₂Im)₂·Al*i*Bu₂H or to a rapid exchange of the NHC ligands on an NMR time scale, similar as observed for the formation of (*i*Pr₂Im)₂·AlH₃ **5**. Only one set of protons is detected for the NHC in these solutions, However, in contrast to the ring expansion reaction observed for (*i*Pr₂Im)·AlH₃ **3** / *i*Pr₂Im to give (*i*Pr₂Im)·AlH(RER-*i*Pr₂ImH₂) **6**, no further ring expansion was detected for (*i*Pr₂Im)·Al*i*Bu₂H / *i*Pr₂Im up to a temperature of 110 °C (for several days). Similar observations were made for the reaction of (Dipp₂Im)·Al*i*Bu₂H **12** with one equivalent of *i*Pr₂Im. Thus, blocking of two hydridic sites leads to adducts that seem to remain stable with respect to ring expansion.

Another class of stable carbenes, cyclic (alkyl)(amino) carbenes (cAACs) have attracted an enormously growing attention lately. These cAACs arise from the formal replacement of one of the electronegative amino substituents of NHCs by a stronger σ -donor alkyl group ^[27] Compared to NHCs, cAACs have a smaller HOMO-LUMO gap and are thus stronger electrophiles and nucleophiles. ^[28] These features enable cAACs to activate

FULL PAPER

small molecules such as CO, H_2 , P_4 and other enthalpically strong single bonds, such as B-H, B-C, C-H, and C-F. ^[7-8, 29]

Surprisingly, the reaction of lithium aluminum hydride with cAAC^{Me} affords in our hands just the starting material and the adduct (cAAC^{Me})·AIH₃ was not formed. An alternative procedure for the synthesis of cAAC alane adducts would be ligand substitution starting from (NHC)-AIH₃ with cAAC^{Me}. However, in this case insertion of the cAAC into the AI-H bond is observed, i. e. the reaction of (NHC)-AIH₃ with cAAC^{Me} leads to AI-H bond activation to afford compounds of the type (NHC)·AIH₂(cAAC^{Me}H) (Scheme 6). These compounds represent the products of an oxidative addition of (NHC)·AIH₃ to cAAC^{Me}, which seems to be independent on the steric demand of the NHC bound to the aluminum atom. The reaction of cAAC^{Me} with (NHC)·AIH₃ (NHC = Me₂Im 1, Me₂Im^{Me} 2, *i*Pr₂Im 3, *i*Pr₂Im^{Me} 4), coordinated with small alkyl substituted NHCs, leads already at room temperature to $(NHC) \cdot AIH_2(cAAC^{Me}H)$ (NHC = Me₂Im **13**, Me₂Im^{Me} **14**, *i*Pr₂Im **15**, *i*Pr₂Im^{Me} **16**) in form of colorless solids in good yield after workup (13: 58 %, 14: 66 %, 15: 78 %, 16: 66 %), NMR spectroscopic studies on the reaction of $(IPr_2Im) \cdot AIH_3$ 3 with an equimolar amount of cAAC^{Me} revealed that product formation proceeds already at temperatures as low as -78 °C quantitatively to give (*i*Pr₂Im)·AIH₂(cAAC^{Me}H) **15**. The formation of a likely bis carbene adduct (IPr2Im)(cAAC)·AIH3 was not observed at these temperatures. For the reaction of cAAC^{Me} with the adduct of the sterically more demanding NHC Dipp₂Im, (Dipp₂Im)·AIH₃ 10, AI-H bond activation also occurs at room temperature and the product (Dipp₂Im)·AIH₂(cAAC^{Me}H) 17 was isolated as a colorless solid in 49 % yield. The compound (*i*Pr₂Im)·AIH₂(cAAC^{Me}H) 15 is stable up to 105 °C for several days. Similarly to the E-H bond activation product (cAAC^{Me}H)Bcat ^[10f] no ring expansion reaction or ring opening reaction was observed up to this temperature. Furthermore, (*i*Pr₂Im)·AIH₂(cAAC^{Me}H) **15** does not react with an additional equivalent of cAACMe, i.e. the two remaining AI-H bonds are stable with respect to further attack.

Compounds 13 - 17 were characterized by multinuclear NMR spectroscopy, elemental analyses, infrared spectroscopy and high resolution mass spectrometry. Important data are summarized in Table 2. The ¹H and ¹³C{¹H} NMR spectra of 13 -17 reveal resonances for each set of hydrogen atoms and carbon atom of the cAAC separately due to the chirality of the former carbene carbon atom. For example, the methyl groups of the cAAC backbone of (*i*Pr₂Im)·AIH₂(cAAC^{Me}H) **15** were detected as four separate singlets at 1.14, 1.31, 1.47 and 1.48 ppm and the diastereotopic CH₂ protons as roofed doublets of an AB spin system at 1.95 and 2.04 ppm. The resonances of the cAAC Dipp iso-propyl methyl protons emerge as doublets at 1.18 and 1.38 ppm, and the methine protons as two septets at 3.73 and 4.50 ppm. The resonances of the NHC ligand methine and backbone protons remain magnetic equivalent, which accounts for free rotation around the AI-C_{NHC} axis. The aluminum bound protons, which are diastereotopic in 13 - 17, were detected as two broad singlets (e.g. at 3.90 and 4.33 ppm for 15) in the $^1\text{H}\{^{27}\text{AI}\}$ NMR spectra of the compounds. In the $^{13}\text{C}\{^1\text{H}\}$ NMR spectra the resonance of the former cAAC^{Me} carbene carbon atom is shifted significantly from 313.5 ppm in the cAAC itself to a signal in the range between 65.8 ppm and 72.2 ppm, which is

broadened by the interaction with the ²⁷Al nucleus. The resonance of the NHC carbene carbon atom lies in the range observed for the (NHC)·AlH₃ adducts, e. g. at 171.8 ppm for **15** compared to 170.3 ppm in 3. In general, the aluminum resonances of the compounds (NHC)·AIH₂(cAAC^{Me}H) are difficult to detect in the spectrum $^{27}AI\{^{1}H\}$ NMR to our experience. For (Me₂Im)·AIH₂(cAAC^{Me}H) 13, (Me₂Im^{Me})·AIH₂(cAAC^{Me}H) 14 and (*i*Pr₂Im)·AIH₂(cAAC^{Me}H) **15** the resonances appear as very broad signals at 116.5 ppm (13), 117.3 ppm (14) and 115.0 ppm (15). For the compounds (*i*Pr₂Im^{Me})·AIH₂(cAAC^{Me}H) **16** and (Dipp₂Im)·AIH₂(cAAC^{Me}H) 17 we could not detect signals in the solution ²⁷Al{¹H} NMR spectra. The chemical shifts of the resonances of 13 in the solid-state ¹³C{¹H} and ²⁷Al{¹H} HPDec/MAS NMR spectra match very good with those recorded in solution, which shows that solid-state and solution structure agree. For example, the resonance of **13** arises with an isotopic shift at 117.5 ppm in the ²⁷Al{¹H} HPDec/MAS NMR spectrum, a quadrupolar coupling constant of 11380 kHz and a quadrupolar asymmetry parameter of 0.48. In the ¹⁵N VACP/MAS the resonance of the NHC ligand is observed at -192.8 ppm, whereas the nitrogen atom of the former cAAC substituent emerges at -316.5 ppm. All the compounds (NHC)·AIH₂(cAAC^{Me}H) 13 - 17 show AI-H stretching vibrations in the infrared spectrum in the characteristic region between 1688 and 1804 cm⁻¹ (see Table 2 and SI).

The molecular structure of 14, 16 and 17 were determined by Xdiffraction (see Figure and Table 3). rav 6 (Me₂Im^{Me})·AIH₂(cAAC^{Me}H) 14 crystallizes in the triclinic space group $P\overline{1}$, (*i*Pr₂Im^{Me})·AIH₂(cAAC^{Me}H) **16** in the monoclinic space group $P2_1/n$ and (Dipp_2Im)·AIH₂(cAAC^{Me}H) **17** in the orthorhombic space group P212121. These molecules adopt a tetrahedral structure at the aluminum atom, spanned by the NHC (Me₂Im^{Me} for 14, *i*Pr₂Im^{Me} for 16 and Dipp₂Im for 17), the cyclic (alkyl)(amino)carbene rest and the two remaining hydrogen

	AIC <i>H</i> ¹ H{ ²⁷ AI} NMR	AI <i>H</i> 2 ¹ H{ ²⁷ AI} NMR	_{CAAC} AICH ¹³ C{ ¹ H} NMR	NHCN <i>C</i> N ¹³ C{ ¹ H} NMR	Al- <i>H</i> stretching vibration
13	3.35	4.00, 4.25	66.6	173.6	1688, 1796
14	3.39	4.07, 4.36	66.7	170.9	1749, 1797, 1687
15	3.39	3.90, 4.33	67.3	171.8	1739, 1773
16	3.44	3.89, 4.37	67.3	171.9	1721, 1772
17	3.02	3.02, 3.47	65.8	179.8	1779, 1804
18	3.12	_	72.2	174.4	_

10.1002/chem.201702166

WILEY-VCH

FULL PAPER

Figure 6. Molecular structure of (Me₂Im^{Me})·AlH₂(cAAC^{Me}H) 14, (*i*Pr₂Im^{Me})·AlH₂(cAAC^{Me}H) 16 and (Dipp₂Im)·AlH₂(cAAC^{Me}H) 17 in the solid state (ellipsoids set at 50% probability level). Selected bond lengths [Å] and angles [°]: 14 (left): Al–C1 2.064(2), Al–C11 2.039(2), Al–C31 2.020(8) Al–H1 1.52(2), Al–H2 1.52(2). C1-Al-C11 104.89(9), C1-Al-C31 114.5(2), C1-Al-H1 104.3(8), C1-Al-H2 104.0(8), C11-Al-H1 120.7(8), C11-Al-H2 107.0(8), C31-Al-H1 93.0(9), C31-Al-H2 125.1(9), H1-Al-H2 114.2(12). 16 (middle): Al–C1 2.0868(19), Al–C21 2.0309(19), Al–H1 1.58(2), Al–H2 1.53(2). C1-Al-C21 107.74(8), C1-Al-H1 102.0(7), C1-Al-H2 103.8(8), C21-Al-H1 112.6(7), C21-Al-H2 114.7(8), H1-Al-H2 114.5(11). 17 (right): Al–C1 2.1011(19), Al–C31 2.0226(19), Al–H1 1.50(2), Al–H2 1.52(3). C1-Al-C31 111.44(7), C1-Al-H1 100.1(9), C1-Al-H2 102.2(9), C31-Al-H1 115.1(9), C31-Al-H2 114.1(9), H1-Al-H2 112.2(13).

atoms. The Al–C_{NHC} bond length of **14** (2.064(2) Å) and **16** (2.0868(19) Å) differ only marginally from aluminum carbene carbon atom bond distance observed in (*i*Pr₂Im)-AlH₃ **3** (2.0405(17) Å). The Al–C_{cAAC} bond lengths of 2.039(2) Å (**14**), 2.0309(19) Å (**16**) and 2.0226(19) Å (**17**) fall in the same range, but are slightly longer compared to other typical NHC stabilized aluminum alkyl compounds (1.9 to 2.0 Å)^[17, 26, 30]

We also tried to react the compounds (iPr_2Im)·Al iBu_2H **11** and (Dipp₂Im)·Al iBu_2H **12** with cAAC^{Me} (Scheme 7). The compound with the sterically more demanding carbene (Dipp₂Im)·Al iBu_2H **12** proved to be unreactive, while the reaction of (iPr_2Im)·Al iBu_2H **11** with cAAC led to (iPr_2Im)·AlH₂(cAAC^{Me}H) **18**, which was isolated as a colorless solid in 41 %.

Compound **18** was characterized using multinuclear NMR spectroscopy, elemental analysis, and infrared spectroscopy. NMR and IR spectroscopy of this compound is in accordance with the other AI-H oxidative addition adducts (see Table 2 and SI). ¹H and ¹³C{¹H} NMR spectra reflect as described above the asymmetry of the compound, which is also reflected in the proton resonances of the *iso*-butyl substituent. The *I*Bu-CH₃ groups give

Table 3. Selected bond lengths of the compounds (Me_2Im^{Me})·AIH2(cAAC^{Me}H) 14, (iPr_2Im^{Me})·AIH2(cAAC^{Me}H) 16, and (Dipp2Im)·AIH2(cAAC^{Me}H)17.

	14	16	17
AI-C _{NHC}	2.064(2)	2.0868(19)	2.1011(19)
AI-CCAAC	2.039(2)	2.0309(19)	2.0226(19)
AI–H1	1.52(2)	1.58(2)	1.50(2)
AI-H2	1.52(2)	1.53(2)	1.52(3)

Figure 7. Molecular structure of (*i*/Pr₂Im)·Al*i*Bu₂(cAAC^{Me}H) **18** in the solid state (ellipsoids set at 50% probability level). Selected bond lengths [Å] and angles [°]: Al–C1 2.1419(18), Al–C10 2.0423(17), Al–C30 2.0056(18), Al–C34 2.0131(18). C1-Al-C10 106.48(7), C1-Al-C30 105.27(7), C1-Al-C34 113.74(7), C10-Al-C30 107.59(7), C10-Al-C34 109.09(7), C30-Al-C34 114.22(8).

rise to 4 doublets at 0.80, 1.06, 1.28 and 1.43 ppm, whereas the methine protons give rise to two multiplets at 2.02 and 2.36 ppm. The *i*Bu-CH₂ protons were detected as multiplets at - 0.45, -0.17, 0.53 and 1.08 ppm. Similar splitting of the *i*Bu-CH₃ carbon resonances occurs in the ¹³C{¹H} NMR spectrum. The molecular structure of (*i*Pr₂Im)·AIH₂(cAAC^{Me}H) **18** (Figure 7) confirms the connectivity of the compound, which adopts a slightly distorted tetrahedron at aluminum. The AI–C_{NHC} bond of 2.1419(18) Å is slightly longer then the bond lengths found in **14**, **16** and **17**, whereas the AI–C_{CAAC} and AI–*i*Bu distances (2.0423(17), 2.0056(18) and 2.0131(18) Å) are similar to those observed before.

Conclusions

NHC alane adducts (NHC)·AIH₃ (NHC = Me₂Im 1, Me₂Im^{Me} 2, iPr2Im 3 and 3-d₃, iPr2Im^{Me} 4, Dipp2Im 10) are readily accessible from the reaction of the NHC with lithium aluminum hydride/deuteride with lithium hydride/deuteride elimination. The secondary alane adducts (*i*Pr₂Im)·Al*i*Bu₂H 11 and (Dipp₂Im)·Al/Bu₂H 12 have been synthesized from the reaction of the NHC carbenes with di-iso-butylaluminum hydride. These adducts are stable at 110 °C for several days in solvents like toluene. However, if an excess of the NHC is present, NHC ring expansion or NHC ring cleavage occurs, depending on the NHC used. The reaction of (*i*Pr₂Im)·AlH₃ **3** with *i*Pr₂Im was investigated in some detail. Upon addition of the NHC, a bis(carbene) alane adduct (*i*Pr₂Im)₂·AIH₃ **5** forms, which decomposes to (*i*Pr₂Im)·AIH(RER-*i*Pr₂ImH₂) 6. NMR studies reveal that this is a process of first order kinetics, presumably a reaction along the sequence (i) insertion of an NHC into one of the AI-H bonds of (NHC)·AIH₃, (ii) subsequent intramolecular amido transfer from the NHC carbon atom to the Lewis acidic aluminum, and (iii) a hydride shift from the aluminum atom to the (former) carbene carbon atom with formation of the final product 6. The reaction of the deuterated adduct (*i*Pr₂Im)·AID₃ **3-d₃** with *i*Pr₂Im led exclusively to $(iPr_2Im) \cdot AID(RER - iPr_2ImD_2)$ 6-d₃, which supports the idea of an intramolecular concerted reaction pathway. However, the cross experiment using a 1:1 mixture of 3 and 3-d₃ and *i*Pr₂Im as starting material led to some deuterium scrambling in the ring expanded product 6, but we could also demonstrate that the deuterium scrambling already takes place in the starting materials (i.e. in a mixture of 3 and 3-d₃). The reaction of (*i*Pr₂Im)·AIH₃ 3 with the sterically more demanding *N*-heterocyclic carbene Dipp₂Im follows a different pathway and the ring opening of Dipp2Im was observed at 70 °C to give (iPr2Im)·AIH2(ROR- $Dipp_2ImH_2)H_2AI \cdot (iPr_2Im)$ 9. The NHC adducts of the (*i*Pr₂Im)·Al*i*Bu₂H **11** and (Dipp₂Im)·Al*i*Bu₂H **12** were stable with respect to NHC ring expansion or NHC ring opening.

Compared to NHCs, cAACs possess a smaller HOMO-LUMO gap and are thus stronger electrophiles and nucleophiles. The reaction of (NHC)·AIH₃ with cAAC^{Me} leads to Al–H bond cleavage and insertion of the cAAC into the Al–H bond to afford compounds of the type (NHC)·AIH₂(cAAC^{Me}H) (NHC = Me₂Im **13**, Me₂Im^{Me} **14**, *i*Pr₂Im **15**, *i*Pr₂Im^{Me} **16**, Dipp₂Im **17**). These Al–H oxidative addition

WILEY-VCH

products remain stable at higher temperatures and no cAAC ring expansion occurs. The reaction of (iPr2lm)·AliBu2H 11 with cAAC^{Me} leads also to AI-H bond activation, whereas the compound of the sterically more demanding Dipp₂Im ligand, (Dipp₂Im)·AliBu₂H 12, proofed to be unreactive with respect to Al-H bond activation. In total, three major decomposition pathways of carbene alane adducts have been identified here, i.e. carbene ring expansion and ring opening as well as carbene insertion into the AI-H bond. These reactions require an excess of the carbene (i.e. NHC:Al > 1:1), 1:1 Lewis acid-base adducts NHC·AlH₃ are stable. Furthermore, our results also show that ring expansion and ring opening may be easily suppressed just by blocking two of the AI-H sites, as demonstrated here for (NHC)·AI/Bu₂H, which is unreactive with respect of NHC ring destruction. However, Al-H bond activation with cAAC^{Me} still happens for (*i*Pr₂Im)·Al*i*Bu₂H 11. In this case it is helpful to additionally increase the steric demand of the NHC employed, i.e. using the more bulky (Dipp2Im)·Al/Bu2H 12, which also suppresses the insertion of cAAC^{Me} into the AI-H bond. Further investigations to substantiate these concepts are currently underway.

Acknowledgements

This work was supported by the Julius-Maximilians-Universität Würzburg and the Deutsche Forschungsgemeinschaft (DFG RA 720/13-1). Christoph Mahler is acknowledged for the measurement of the high resolution mass spectra.

Keywords: Aluminum • *N*-heterocyclic Carbene • cAAC • E–H Bond Activation • Ring Expansion Reaction

- a) M. Asay, C. Jones, M. Driess, *Chem. Rev.* 2011, *111*, 354-396; b) F.
 E. Hahn, M. C. Jahnke, *Angew. Chem. Int. Ed.* 2008, *47*, 3122-3172; c)
 M. Melaimi, M. Soleilhavoup, G. Bertrand, *Angew. Chem. Int. Ed.* 2010, *49*, 8810-8849; d) O. Schuster, L. Yang, H. G. Raubenheimer, M. Albrecht, *Chem. Rev.* 2009, *109*, 3445-3478; e) J. Vignolle, X. Cattoën, D. Bourissou, *Chem. Rev.* 2009, *109*, 3333-3384.
- a) A. C. Filippou, O. Chernov, G. Schnakenburg, Angew. Chem. 2009, [2] 121, 5797-5800, Angew. Chem. Int. Ed. 2009, 48, 5687-5690; b) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, Angew. Chem. 2009, 121, 5793-5796, Angew. Chem. Int. Ed. 2009, 48, 5683-5686; c) Y. Xiong, S. Yao, M. Driess, J. Am. Chem. Soc. 2009, 131, 7562-7563; d) R. Kinio, B. Donnadieu, M. A. Celik, G. Frenking, G. Bertrand, Science 2011, 333, 610-613; e) K. C. Mondal, H. W. Roesky, M. C. Schwarzer, G. Frenking, B. Niepötter, H. Wolf, R. Herbst-Irmer, D. Stalke, Angew. Chem. 2013, 125, 3036-3040, Angew. Chem. Int. Ed. 2013, 52, 2963-2967; f) K. C. Mondal, H. W. Roesky, M. C. Schwarzer, G. Frenking, I. Tkach, H. Wolf, D. Kratzert, R. Herbst-Irmer, B. Niepötter, D. Stalke, Angew. Chem. 2013, 125, 1845-1850, Angew. Chem. Int. Ed. 2013, 52, 1801-1805; g) Y. Xiong, S. Yao, S. Inoue, J. D. Epping, M. Driess, Angew. Chem. 2013, 125, 7287-7291, Angew. Chem. Int. Ed. 2013, 52, 7147-7150; h) M. Soleilhavoup, G. Bertrand, Acc. Chem. Res. 2015, 48. 256-266; i) D. Lutters, C. Severin, M. Schmidtmann, T. Müller, J. Am. Chem. Soc. 2016. 138. 6061-6067; j) Y. Xiong, S. Yao, G. Tan, A. Inoue, M. Driess, J. Am Chem. Soc. 2013, 135, 5004-5007.
- a) Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer, P. von R. Schleyer, G. H. Robinson, *Science* 2008, *321*, 1069-1071; b) Y. Wang, G. H. Robinson, *Chem. Commun.* 2009, 5201-5213; c) H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki, A. Vargas, *Science*

FULL PAPER

2012, 336, 1420-1422; d) C. Jones, A. Sidiropoulos, N. Holzmann, G. Frenking, A. Stasch, *Chem. Commun.* **2012**, *48*, 9855-9857.

- [4] a) K. C. Mondal, P. P. Samuel, H. W. Roesky, R. R. Aysin, L. A. Leites, S. Neudeck, J. Lübben, B. Dittrich, N. Holzmann, M. Hermann, G. Frenking, J. Am. Chem. Soc. 2014, 136, 8919-8922; b) K. C. Mondal, S. Roy, B. Dittrich, D. M. Andrada, G. Frenking, H. W. Roesky, Angew. Chem. 2016, 128, 3210-3213, Angew. Chem. Int. Ed. 2016, 128, 3158-3161; c) M. Arrowsmith, H. Braunschweig, T. E. Stennett, Angew. Chem. 2017, 129, 100-120; Angew. Chem Int. Ed. 2017, 129, 100-120; d) G. Bertrand, M. Sioleilhavoup, M. Melaimi, R. Jazzar, Angew. Chem. Int. Ed. 2017, DOI: 10.1002/anie.201702148.
- [5] S. Würtemberger-Pietsch, U. Radius, T. B. Marder, *Dalton Trans.* 2016, 45, 5880-5895.
- [6] a) V. Jancik, L. W. Pineda, J. Pinkas, H. W. Roesky, D. Neculai, A. M. Neculai, R. Herbst-Irmer, *Angew. Chem.* 2004, *116*, 2194-2197, *Angew. Chem. Int. Ed.* 2004, *43*, 2142-2145; b) L. W. Pineda, V. Jancik, H. W. Roesky, D. Neculai, A. M. Neculai, *Angew. Chem.* 2004, *116*, 1443-1445, *Angew. Chem. Int. Ed.* 2004, *43*, 1419-1421; c) A. Jana, I. Objartel, H. W. Roesky, D. Stalke, *Inorg. Chem.* 2009, *48*, 798-800; d) A. C. Filippou, O. Chernov, B. Blom, K. W. Stumpf, G. Schnakenburg, *Chem. Eur. J.* 2010, *16*, 2866-2872; e) S. Inoue, C. Eisenhut, *J. Am. Chem. Soc.* 2013, *135*, 18315-18318, f) S. Ahmad, T. Szilvási, S. Inoue, *Chem. Commun.* 2014, *50*, 12619-12622.
- a) U. S. D. Paul, U. Radius, *Chem. Eur. J.* 2017, *23*, 3993-4009; b) Z. R. Turner, *Chem. Eur. J.* 2016, *22*, 11461-11468.
- [8] A. F. Eichhorn, S. Fuchs, M. Flock, T. B. Marder, U. Radius, Angew. Chem. 2017, DOI: 10.1002/ange.201701679, Angew. Chem. Int. Ed. 2017, DOI: 10.1002/anie.201701679
- [9] a) D. Schmidt, J. H. J. Berthel, S. Pietsch, U. Radius, *Angew. Chem.* 2012, *124*, 9011-9015; b) H. Schneider, D. Schmidt, U. Radius, *Chem. Commun.* 2015, *51*, 10138-10141.
- [10] a) S. M. I. Al-Rafia, R. McDonald, M. J. Ferguson, E. Rivard, *Chem. Eur. J.* 2012, *18*, 13810-13820; b) D. Franz, S. Inoue, *Chem. Asian J.* 2014, *9*, 2083-2087; c) T. Wang, D. W. Stephan, *Chem. Eur. J.* 2014, *20*, 3036-3039; d) S. Pietsch, U. S. D. Paul, I. A. Cade, M. J. Ingleson, U. Radius, T. B. Marder, *Chem. Eur. J.* 2015, *21*, 9018-9021; e) M. Eck, S. Würtemberger-Pietsch, A. Eichhorn, J. H. J. Berthel, R. Bertermann, U. S. D. Paul, H. Schneider, A. Friedrich, C. Kleeberg, U. Radius, T. B. Marder, *Dalton Trans.* 2017, *46*, 3661-3680; f) S. Würtemberger-Pietsch, H. Schneider, T. B. Marder, U. Radius, *Chem. Eur. J.* 2016, *22*, 13032-13036.
- a) M. Arrowsmith, M. S. Hill, G. Kociok-Köhn, D. J. MacDougall, M. F. Mahon, *Angew. Chem. Int. Ed.* 2012, *51*, 2098-2100; b) M. Arrowsmith, M. S. Hill, G. Kociok-Köhn, *Organometallics* 2015, *34*, 653-662.
- [12] a) K. J. Iversen, D. J. D. Wilson, J. L. Dutton, *Dalton Trans.* 2013, *42*, 11035-11038; b) K. J. Iversen, D. J. D. Wilson, J. L. Dutton, *Organometallics* 2013, *32*, 6209-6217; c) M. R. Momeni, E. Rivard, A. Brown, *Organometallics* 2013, *32*, 6201-6208; d) R. Fang, L. Yang, Q. Wang, *Organometallics* 2014, *33*, 53-60; e) K. J. Iversen, D. J. D. Wilson, J. L. Dutton, *Dalton Trans.* 2014, *43*, 12820-12823; f) M.-D. Su, *Inorg. Chem.* 2014, *53*, 5080-5087; g) P. Hemberger, A. Bodi, J. H. J. Berthel, U. Radius, *Chem. Eur. J.* 2015, *21*, 1434-1438; h) K. J. Iversen, D. J. D. Wilson, J. L. Dutton, *Dalton Trans.* 2015, *44*, 3318-3325.
- a) C. P. Sindlinger, L. Wesemann, *Chem. Sci.* 2014, *5*, 2739-2746; b) H.
 Schneider, M. J. Krahfuß, U. Radius, *Z. Anorg. Allg. Chem.* 2016, *642*, 1282-1286.
- [14] G. D. Frey, J. D. Masuda, B. Donnadieu, G. Bertrand, Angew. Chem. 2010, 122, 9634-9637, Angew. Chem. Int. Ed. 2010, 49, 9444-9447.
- [15] a) E. C. Ashby, J. Am. Chem. Soc. 1964, 86, 1882-1883; b) E. M. Marlett,
 W. S. Park, J. Org. Chem. 1990, 55, 2968-2969; c) J. L. Atwood, F. R.
 Bennett, F. M. Elms, C. Jones, C. L. Raston, K. D. Robinson, J. Am.
 Chem. Soc. 1991, 113, 8183-8185; d) J. L. Atwood, K. D. Robinson, C.
 Jones, C. L. Raston, Chem. Commun. 1991, 1697-1699; e) J. L. Atwood,
 F. R. Bennett, C. Jones, G. A. Koutsantonis, C. L. Raston, K. D.
 Robinson, Chem. Commun. 1992, 541-543; f) J. L. Atwood, S. G. Bott,

C. Jones, C. L. Raston, Chem. Commun. 1992, 1349-1351; g) F. R. Bennett, F. M. Elms, M. G. Gardiner, G. A. Koutsantonis, C. L. Raston, N. K. Roberts, Organometallics 1992, 11, 1457-1459; h) J. S. Cha, H. C. Brown, J. Org. Chem. 1993, 58, 3974-3979; i) F. M. Elms, M. G. Gardiner, G. A. Koutsantonis, C. L. Raston, J. L. Atwood, K. D. Robinson, J. Organomet. Chem. 1993, 449, 45-52; j) I. B. Gorrell, P. B. Hitchcock, J. D. Smith, Chem. Commun. 1993, 189-190; k) J. L. Atwood, G. A. Koutsantonis, F.-C. Lee, C. L. Raston, Chem. Commun. 1994, 91-92; I) C. L. Raston, J. Organomet. Chem. 1994, 475, 15-24; m) M. M. Andrianarison, M. C. Ellerby, I. B. Gorrell, P. B. Hitchcock, J. D. Smith, D. R. Stanley, Dalton Trans. 1996, 211-217; n) C. Jones, F. C. Lee, G. A. Koutsantonis, M. G. Gardiner, C. L. Raston, Dalton Trans. 1996, 829-833; o) P. C. Andrews, C. L. Raston, B. W. Skelton, A. H. White, Chem. Commun. 1997, 245-246; p) M. G. Gardiner, C. L. Raston, Coord. Chem. Rev. 1997, 166, 1-34; q) S. G. Alexander, M. L. Cole, M. Hilder, J. C. Morris, J. B. Patrick, Dalton Trans. 2008, 6361-6363; r) S. G. Alexander, M. L. Cole, C. M. Forsyth, Chem. Eur. J. 2009, 15, 9201-9214; s) T. D. Humphries, P. Sirsch, A. Decken, G. Sean McGrady, J. Mol. Struct. 2009, 923, 13-18; t) D. Lacina, J. Reilly, J. Johnson, J. Wegrzyn, J. Graetz, J. Alloys Compd. 2011, 509, S654-S657; u) B. M. Wong, D. Lacina, I. M. B. Nielsen, J. Graetz, M. D. Allendorf, J. Phys. Chem 2011, 115, 7778-7786; v) M. Bodensteiner, A. Y. Timoshkin, E. V. Peresypkina, U. Vogel, M. Scheer, Chem. Eur. J. 2013, 19, 957-963; w) T. D. Humphries, K. T. Munroe, A. Decken, G. S. McGrady, Dalton Trans. 2013, 42, 6953-6964; x) J. M. Davidson, T. Wartik, J. Am. Chem. Soc. 1960, 82, 5506-5506.

- [16] a) A. J. Arduengo, H. V. R. Dias, J. C. Calabrese, F. Davidson, J. Am. Chem. Soc. 1992, 114, 9724-9725; b) M. D. Francis, D. E. Hibbs, M. B. Hursthouse, C. Jones, N. A. Smithies, Dalton Trans. 1998, 3249-3254;
 c) R. J. Baker, M. L. Cole, C. Jones, M. F. Mahon, Dalton Trans. 2002, 1992-1996; d) R. J. Baker, A. J. Davies, C. Jones, M. Kloth, J. Organomet. Chem. 2002, 656, 203-210; e) S. G. Alexander, M. L. Cole, M. Hilder, J. C. Morris, J. B. Patrick, Dalton Trans. 2008, 6361-6363; f) S. J. Bonyhady, D. Collis, G. Frenking, N. Holzmann, C. Jones, A. Stasch, Nature Chemistry 2010, 2, 865-869; g) S. J. Bonyhady, N. Holzmann, G. Frenking, A. Stasch, C. Jones, Angew. Chem. Int. Ed. 2016, 55, 1-6; h) S. J. Urwin, D. M. Rogers, G. S. Nichol, M. J. Cowley, Dalton Trans. 2016, 45, 13695-13699; i) M. D. Anker, A. L. Colebatch, K. J. Iversen, D. J. D. Wilson, J. L. Dutton, L. García, M. S. Hill, D. J. Liptrot, M. F. Mahon, Organometallics 2017.
- [17] G. Schnee, O. Nieto Faza, D. Specklin, B. Jacques, L. Karmazin, R. Welter, C. Silva López, S. Dagorne, *Chem. Eur. J.* 2015, 21, 17959-17972.
- [18] S. J. Bonyhady, N. Holzmann, G. Frenking, A. Stasch, C. Jones, Angew. Chem. 2016, DOI: 10.1002/ange.201610601, Angew. Chem. Int. Ed. 2016, DOI: 10.1002/anie.201610601.
- [19] B. Li, S. Kundu, A. C. Stueckl, H. Zhu, H. Keil, R. Herbst-Irmer, D. Stalke, B. Schwederski, W. Kaim, D. M. Andrada, G. Frenking, H. W. Roesky, *Angew. Chem. Int. Ed.* **2017**, *56*, 397-400.
- [20] L. L. Cao, E. Daley, T. C. Johnstone, D. W. Stephan, *Chem. Commun.* 2016, *52*, 5305-5307.
- [21] R. J. Baker, A. J. Davies, C. Jones, M. Kloth, J. Organomet. Chem. 2002, 656, 203-210.
- [22] a) S. G. Alexander, M. L. Cole, S. K. Furfari, M. Kloth, *Dalton Trans.* 2009, 2909-2911; b) C. Fliedel, G. Schnee, T. Aviles, S. Dagorne, *Coord. Chem. Rev.* 2014, 275, 63-86; c) W. W. Schoeller, G. D. Frey, *Inorg. Chem.* 2016, 55, 10947-10954.
- [23] J. Weidlein, U. Müller, K. Dehnicke, Schwingungsfrequenzen I, Hauptgruppenelemente, Thieme, Stuttgart, Germany, 1981.
- [24] M. Boronat, P. Viruela, A. Corma, J. Phys. Chem. 1996, 100, 16514-16521.
- [25] G. W. Fraser, N. N. Greenwood, B. P. Straughan, J. Chem. Soc. 1963, 3742-3749.
- [26] M. Wu. M, A. M. Gill, L. Yunpeng, L. Falivene, L. Yongxin, R. Ganguly, L. Cavallo, F. Garcia, *Dalton Trans.* **2015**, *44*, 15166-15174.

FULL PAPER

- [27] V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu, G. Bertrand, Angew. Chem. 2005, 117, 5851-5855, Angew. Chem. Int. Ed. 2005, 44, 5705-5709.
- [28] a) G. D. Frey, V. Lavallo, B. Donnadieu, W. W. Schoeller, G. Bertrand, Science 2007, 316, 439-441; b) O. Back, M. Henry-Ellinger, C. D. Martin, D. Martin, G. Bertrand, Angew. Chem. 2013, 125, 3011-3015, Angew. Chem. Int. Ed. 2013, 52, 2939-2943; c) U. S. D. Paul, C. Sieck, M. Haehnel, K. Hammond, T. B. Marder, U. Radius, Chem. Eur. J. 2016, 22,

11005-11014; d) U. S. D. Paul, U. Radius, *Organometallics* **2017**, *36*, 1398-1407.

- [29] S. Styra, M. Melaimi, C. E. Moore, A. L. Rheingold, T. Augenstein, F. Breher, G. Bertrand, *Chem. Eur. J.* 2015, 21, 8441-8446.
- [30] a) X.-W. Li, J. Su, G. H. Robinson, *Chem. Commun.* 1996, 2683-2684;
 b) A.-L. Schmitt, G. Schnee, R. Welter, S. Dagorne, *Chem. Commun.* 2010, *46*, 2480-2482.

FULL PAPER

Entry for the Table of Contents (Please choose one layout)

Layout 1:

FULL PAPER

