Synthesis and Biological Evaluation of N²-Substituted 2,4-Diamino-6-cyclohexylmethoxy-5-nitrosopyrimidines and Related 5-Cyano-NNO-azoxy Derivatives as Cyclin-Dependent Kinase 2 (CDK2) Inhibitors

Daniela Cortese,^[a] Konstantin Chegaev,^[a] Stefano Guglielmo,^[a] Lan Z. Wang,^[b] Bernard T. Golding,^[c] Céline Cano,^[c] and Roberta Fruttero*^[a]

The potent and selective cyclin-dependent kinase 2 (CDK2) inhibitor NU6027 (6-cyclohexylmethoxy-5-nitroso-2,4-diaminopyrimidine) was used as the lead for the synthesis of a series of analogues in order to provide further insight into the structure-activity relationships for 2,4-diaminopyrimidine CDK2 inhibitors. Aliphatic amino substituents were introduced at position 2. The use of linear or less sterically hindered amines gave rise to compounds endowed with slightly better activity than the lead; on the other hand, the compounds were less active if a bulkier amino substituent was used. Substitution of the 5-nitroso group with a 5-cyano-NNO-azoxy moiety afforded a new class of inhibitors, the activity of which against CDK2 was found to be similar to that of the nitroso series. The most active nitroso compound was 8b ((2S)-2-[(4-amino-6-cyclohexylmethoxy-5-nitrosopyrimidin-2-yl)amino]propan-1-ol; $IC_{50} =$ 0.16 μм), while in the 5-cyano-NNO-azoxy series the most active compound was 9b (4-amino-5-[(Z)-cyano-NNO-azoxy]-2-{[(2S)-1-hydroxypropan-2-yl]amino}-6-cyclohexylmethoxypyrimidine; $IC_{50} = 0.30 \ \mu$ M). Taken together, these new analogues of NU6027 enhance our understanding of the structure-activity relationships for 2,4-diaminopyrimidine CDK2 inhibitors.

Cyclin-dependent kinases (CDKs) are serine/threonine kinases that display abnormal activity in many kinds of tumors.^[1] This family of kinases is represented by eleven members (CDK1–CDK11) and related cyclins.^[2] Today, there is a great interest in small-molecule CDK inhibitors as potential anticancer drugs. Over the past decade, many such compounds belonging to different chemical classes have been developed.^[3] Among

```
[a] Dr. D. Cortese, Dr. K. Chegaev, Dr. S. Guglielmo, Prof. R. Fruttero
Department of Drug Science and Technology,
Università degli Studi di Torino, Via P. Giuria 9, 10125 Turin (Italy)
E-mail: roberta.fruttero@unito.it
[b] L. Z. Wang
Northern Institute for Cancer Research, Paul O'Gorman Building,
Medical School, Newcastle University,
Framlington Place, Newcastle Upon Tyne, NE2 4HH (UK)
[c] Prof. B. T. Golding, Dr. C. Cano
Northern Institute for Cancer Research, Bedson Building,
School of Chemistry, Newcastle University,
Newcastle Upon Tyne, NE1 7RU (UK)
Supporting information and the ORCID identification number(s) for the
author(s) of this article can be found under http://dx.doi.org/10.1002/
cmdc.201600108.
```

these inhibitors, an interesting type is represented by 2,4-diamino-6-cyclohexylmethoxy-5-nitrosopyrimidine (1, NU6027) (Figure 1), a competitive inhibitor of CDK1 and CDK2 isoforms

Figure 1. Reference compounds 1-3.

with respect to ATP (CDK2 $IC_{50} = 2.2 \ \mu M$).^[3-5] Owing to the intramolecular hydrogen bond between the adjacent 5-nitroso and 4-amino groups, this compound assumes a pseudo-purine geometry, which is reminiscent of the structure of 6-(cyclohexylmethoxy)-9H-purine (2, NU2058; Figure 1), an early relatively potent CDK1 and CDK2 inhibitor (CDK2 $K_i = 12 \,\mu\text{M}$).^[6] Compound 1 can interact with the ATP binding site of the enzymes by a triplet of hydrogen bonds (for CDK2: 2-NH₂ to Leu83 (CO), N3 to Leu83 (NH), 4-NH₂ to Glu81 (CO)).^[4] These interactions exactly reproduce those of 2. An extended series of analogues of 1 modified at the 2-, 5- and 6-position(s) were synthesized in order to shed light on the structure-activity relationships (SARs) in this lead compound.^[3,4] In a recent paper we described a new pyrimidine scaffold, the 2,4-diamino-5-(cyano-NNO-azoxy)-6-(cyclohexylmethoxy)pyrimidine (3; Figure 1), endowed with potent CDK2 inhibitory activity.^[7] This substance can be formally obtained by substitution of the nitroso group of 1 with the cyano-NNO-azoxy moiety, which is present in the antibiotic "calvatic acid" (4-[(Z)-cyano-NNO-azoxy]benzoic acid) initially isolated from the culture broth of Calvatia lilacina.^[8] This unusual functional group has been used to design several bioactive compounds, such as antimicrobial and antitumor agents, enzyme inhibitors, and calcium channel blockers.^[9-13] The cyano-NNO-azoxy moiety displays an electron-withdrawing property very similar to that of the nitroso group ($\sigma_{pNO} = 0.91$, $\sigma_{\text{pONNCN}} = 0.89$), whereas it is endowed with different lipophilicity ($\pi_{\rm NO}\!=\!-1.20$, $\pi_{\rm ONNCN}\!=\!-0.26$) and steric properties.^[14, 15]

A molecular modeling study has suggested a role for a conserved water molecule in stabilizing the bioactive pose of **3** in its interaction with the ATP binding site of the enzyme. Preliminary SARs showed that the substitution of the cyano group of

3 with other electron-withdrawing moieties induced a significant decrease in activity, whilst introduction of a *p*-methylaminosulfonyl-substituted phenyl ring at the 2-amino group gave rise to a product with potency in the nanomolar range.^[7] In this study a detailed description of the synthetic routes to a series of new N²-substituted examples of this structural class (**9a**–**i**) and of their 5-nitroso precursors (**8a**–**i**) is reported, and the influence of the lateral chain at this position on the their CDK2 inhibitory activity is discussed.

A series of N²-substituted 2,4-diamino-6-cyclohexylmethoxy-5-nitrosopyrimidines (**8**a-**i**) was prepared by using a synthetic strategy (Scheme 1) similar to that described previously by Marchetti et al.^[3,4] Some modifications improved the reported reaction conditions. Alkylation of 6-amino-2-thioxo-2,3-dihydropyrimidin-4(1*H*)-one (**4**) was performed using (bromomethyl)cyclohexane. At variance with the previous synthetic strategy, (bromomethyl)cyclohexane was used to enable the concomitant alkylation at the 2- and 4-positions. In addition, the use of

microwave heating (μ W) afforded the desired product 5 in 16 min at 140°C. Oxidation of 5 with mCPBA gave the corresponding cyclohexylmethylsulfone 6. The nucleophilic displacement of the cyclohexylsulfonyl group in 6 with diverse aliphatic amines was performed in an organic solvent (diglyme or THF) using microwave heating, and in some cases a Lewis acid such as Yb(OSO₂CF₃)₃ was added to improve the yield. The N²-substituted 4-amino-6-cyclohexylmethoxypyrimidines 7 a-i were thus obtained in moderate yield. Subsequent nitrosation at the 5-position with alkyl nitrites (menthyl nitrite or amyl nitrite) gave the desired nitroso compounds 8a-i. The 5nitroso derivative 8g was obtained after (Boc)₂O protection of compound 7 g, followed by nitrosation and subsequent deprotection of the amino group (Scheme 2). The final products 9ai were prepared by treating the nitroso derivatives 8a-i with (diacetoxyiodo)benzene (IBA) and cyanamide (NH₂CN) in dry CH₃CN.^[16]

Scheme 1. Reagents and conditions: a) (bromomethyl)cyclohexane, 140 °C μW heating, 16 min; b) mCPBA, CH₂Cl₂, RT, 18 h; c) RNH₂, 120 °C μW heating; d) R²ONO, DMSO, RT; e) NH₂CN, (diacetoxyiodo)benzene (IBA), CH₃CN, RT, 2 h.

Scheme 2. Reagents and conditions: a) (Boc)₂O, THF, RT, 2 h; b) menthyl nitrite, DMSO, RT, 18 h; c) TFA, CH₂Cl₂, RT, 2 h.

ChemMedChem **2016**, 11, 1 – 5

www.chemmedchem.org

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

In the ¹H NMR experiments reported for the 5-nitroso derivatives (8 a - i), the resonance of the 4-NH₂ group was split into two neat signals, which were observed at ~8 and 10 ppm, respectively. This observation was previously reported,^[7] and confirms the formation of an intramolecular hydrogen bond between the nitroso oxygen atom and one hydrogen atom of the NH₂ group at the 4-position. In contrast, for the cyano-NNO-azoxy derivatives **9a-i**, the signal of the 4-NH₂ group was reported as a broad singlet. In addition, ¹H and ¹³C NMR spectra of both nitroso and cyano-NNO-azoxy derivatives presented two sets of resonances. This can be ascribed to the significant π component of the C2–N bond, as a consequence of strong conjugation between the electrondonating N groups (e.g., NHCH₃ $\sigma_{p} = -0.84$)^[14] and the strong electron-withdrawing groups, the cyano-NNO-azoxy and the nitroso group, respectively, with consequent restricted rotation around the C2-N bond at room temperature (Figure 2). This hypothesis was confirmed by a variable-temperature NMR experiment (VT-NMR) performed on compound 8a for which coalescence of the two sets of signals was observed at 125 °C.

The new series of the 5-(cyano-NNO-azoxy)-substituted compounds and of the related 5-nitroso precursors were evaluated for their CDK2 inhibitory activity using published procedures.[18] The results, expressed as IC₅₀ values, are listed in Table 1 together with the inhibitory potency of compounds 1 and 3 as references. The potency in the 5-nitroso series exhibits the order $8b\!>\!8f\!\ge\!8a\!>\!8c\!>\!1\!>\!8d\!>\!8e\!>$ $8i \ge 8g > 8h$. Analysis of the data shows that introduction of a hydroxyethyl group at the 2-NH₂ of 1 (8a) increases the inhibitory potency by about threefold, whilst the introduction of a hydroxypropyl substructure gives rise to 8 f, which is about fourfold more potent than the reference. Also, the presence of the 2-hydroxy-1-methylethyl moiety (as in 8b, 8c) induces a potency increase that is particularly evident in the S stereoisomer (8b). As for compounds 8d,e,g, the activity decreases with growth of the substituent at the 2-position. This is probably due to the steric-based weakening of the hydrogen bond between the 2-NH group of the compounds and the CO group of the Leu83 residue in the enzyme, and to the fact that given the partially hindered rotation

CHEM

 $\begin{array}{c} & & & & \\ & & & \\ & & & \\ &$

Figure 2. Electronic conjugation between the electron-releasing N group and the electron-withdrawing NO or cyano-NNO-azoxy groups

ChemMedChem 2016, 11, 1-5 www.chemmedchem.org 3 These are not the final page numbers! 77

around C2–NH bond, one of the two conformers is unable to give this interaction. As expected, compounds **8h**,**i** displayed very weak activity due to the absence of NH. The potencies and SAR in the 5-(cyano-NNO-azoxy) series **9a**–**i** closely paralleled what was found in the 5-nitroso series. Again, the most active substance **9b** bears the 2-hydroxy-1-methylethyl moiety at the 2-position and is about threefold more active than the reference compound **3**.

The study reported herein extends the findings of the previous investigation.^[7] A series of N²-substituted derivatives of the reference compound 1 was synthesized in order to explore structure-activity relationships concerning the substitution at this nitrogen position with aliphatic amino substituents present in relevant CDK inhibitors. Although no significant improvements were achieved in terms of biological activity, the SARs and understanding of the criteria for achieving CDK2 inhibitory activity were enhanced. Introduction of the 5-(cyano-NNO-azoxy) function gave no significant improvement over the corresponding 5-nitroso derivatives. However, the cyano-NNO-azoxy group is a suitable replacement for the nitroso group at the 5-position, able to maintain CDK2 inhibitory activity. Because these two moieties are endowed with different chemical and physicochemical properties, they should give rise to two different classes of inhibitors, which should display different ADMET profiles worthy of additional investigation.

Acknowledgements

This study was supported by the Università degli Studi di Torino, Ricerca Locale 2014. The authors thank Cancer Research UK for financial support, the EPSRC National Mass Spectrometry Service at the University of Wales (Swansea) for mass spectrometric determinations, and Prof. Alberto Gasco (Università degli Studi di Torino) for helpful discussions.

Keywords: antitumor agents · cyclin-dependent kinases · inhibitors · nitrosation · substituted pyrimidines

- [1] M. Malumbres, A. Carnero, Nat. Rev. Cancer 2009, 9, 153-166.
- [2] M. Malumbres, M. Barbacid, Trends Biochem. Sci. 2005, 30, 630-641.
- [3] F. Marchetti, K. L. Sayle, J. Bentley, W. Clegg, N. J. Curtin, J. A. Endicott, B. T. Golding, R. J. Griffin, K. Haggerty, R. W. Harrington, V. Mesguiche, D. R. Newell, M. E. M. Noble, R. J. Parsons, D. J. Pratt, L. Z. Wang, I. R. Hardcastle, *Org. Biomol. Chem.* **2007**, *5*, 1577–1585.
- [4] F. Marchetti, C. Cano, N. J. Curtin, B. T. Golding, R. J. Griffin, K. Haggerty, D. R. Newell, R. J. Parsons, S. L. Payne, L. Z. Wang, I. R. Hardcastle, *Org. Biomol. Chem.* **2010**, *8*, 2397–2407.
- [5] V. Krystof, S. Uldrijan, Curr. Drug Targets 2010, 11, 291-302.
- [6] C. E. Arris, F. T. Boyle, A. H. Calvert, N. J. Curtin, J. A. Endicott, E. F. Garman, A. E. Gibson, B. T. Golding, S. Grant, R. J. Griffin, P. Jewsbury, L. N. Johnson, A. M. Lawrie, D. R. Newell, M. E. M. Noble, E. A. Sausville, R. Schultz, W. Yu, J. Med. Chem. 2000, 43, 2797–2804.
- [7] D. Boschi, P. Tosco, N. Chandra, S. Chaurasia, R. Fruttero, R. J. Griffin, L. Z. Wang, A. Gasco, *Eur. J. Med. Chem.* 2013, 68, 333–338.
- [8] A. Gasco, A. Serafino, V. Mortarini, E. Menziani, M. A. Bianco, J. Ceruti Scurti, *Tetrahedron Lett.* **1974**, *15*, 3431–3432.
- [9] R. Fruttero, R. Calvino, A. Di Stilo, A. Gasco, I. Galatulas, R. Bossa, Pharmazie 1988, 43, 499-500.
- [10] R. Fruttero, C. Tironi, R. Calvino, Pharmazie 1988, 43, 551-552.
- [11] A. M. Caccuri, G. Ricci, A. Desideri, M. Buffa, R. Fruttero, A. Gasco, P. Ascenzi, Biochem. Mol. Biol. Int. 1994, 32, 819–829.
- [12] A. M. Gasco, A. Di Stilo, R. Fruttero, G. Sorba, A. Gasco, R. Budriesi, A. Chiarini, Med. Chem. Res. 1993, 3, 34–43.
- [13] F. G. Hansske, W. Simon (Biofrontera Discovery GmbH), Ger. Pat. No. DE102004017174, 2005.
- [14] C. Hansch, A. J. Leo in Substituent Constants for Correlation Analysis in Chemistry and Biology, Chapter VI, John Wiley & Sons, New York, 1979, 49–50.
- [15] R. Calvino, R. Fruttero, A. Garrone, A. Gasco, Quant. Struct.-Act. Relat. 1988, 7, 26–30.
- [16] R. Fruttero, G. Mulatero, R. Calvino, A. Gasco, J. Chem. Soc. Chem. Commun. 1984, 323-324.
- I. R. Hardcastle, C. E. Arris, J. Bentley, T. Boyle, Y. Chen, N. J. Curtin, J. A. Endicott, A. E. Gibson, B. T. Golding, R. J. Griffin, P. Jewsbury, J. Menyerol, V. Mesguiche, D. R. Newell, M. E. M. Noble, D. J. Pratt, L. Z. Wang, H. Whitfield, J. Med. Chem. 2004, 47, 3710-3722.
- [18] J. Vesely, L. Havlicek, M. Strnad, J. J. Blow, A. Donella-Deana, L. Pinna, D. S. Letham, J. Y. Kato, L. Detivaud, S. Leclerc, L. Meijer, *Eur. J. Biochem.* 1994, 224, 771–786.

Received: February 19, 2016 Revised: June 7, 2016 Published online on ■■ ■, 0000

ChemMedChem **2016**, 11, 1 – 5

www.chemmedchem.org

4

 $\ensuremath{\mathbb{C}}$ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

COMMUNICATIONS

Say yes to NNO! Starting from compound NU6027, a series of 2,4-diamino-5-nitrosopyrimidines were synthesized. Structure–activity relationship studies of this compound class led to an improved understanding of the criteria for inhibitory activity toward cyclin-dependent kinase 2. The cyano-NNO-azoxy substituent was confirmed to be a valuable alternative to a 5-nitroso group.

D. Cortese, K. Chegaev, S. Guglielmo, L. Z. Wang, B. T. Golding, C. Cano, R. Fruttero*

Synthesis and Biological Evaluation of N²-Substituted 2,4-Diamino-6cyclohexylmethoxy-5nitrosopyrimidines and Related 5-Cyano-NNO-azoxy Derivatives as Cyclin-Dependent Kinase 2 (CDK2) Inhibitors