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Abstract: The titanium-mediated cyclopropanation of an easily
prepared chiral a-siloxylactone leads efficiently to an enantiomeri-
cally pure cyclopropanol derivative. The trimethylsilyl trifluoro-
methane sulfonate induced pinacol rearrangement allows high level
of chirality transfer into a cyclobutanone, which is a useful interme-
diate in the total synthesis of (+)-grandisol.
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Grandisol (1) is a natural monoterpenic pheromone isolat-
ed in 19671 presenting two chiral centers on a cyclobutane
ring. Used as the major component of grandlure to protect
cotton crops against various insects, grandisol is a sex at-
tractant of the cotton boll weevil (anthonomis grandis).
Over the years, various research groups2 have tried to pre-
pare grandisol (1; Scheme 1) in enantiomerically pure
form, but, for the most part, these syntheses require a large
number of steps, sometimes difficult, and the enantiomer-
ic excess can be disappointing.

Scheme 1 Retrosynthetic synthesis of (+)-(1R,2S)-grandisol

Retrosynthetically, the chiral cyclobutanone 2 constitutes
an efficient precursor for the enantioselective synthesis of
(+)-grandisol (Scheme 1). Indeed, in our previous work,
we showed that the racemic cyclobutanone 2 can be trans-
formed into (±)-grandisol.3 Thus, access to enantiomeri-
cally pure cyclobutanone 2 would provide a formal
synthesis of (+)-grandisol (1). We decided to apply the
method described by Cha4 for the preparation of optically
enriched 2-substituted cyclobutanones. Thus acidic con-
densation of the commercially available (S)-citramalic
acid (3) with tribromoacetaldehyde5 afforded the corre-
sponding acid as a unique diastereomer 4 (Scheme 2). The

relative configuration was determined by NOESY two-di-
mensional NMR experiments.

Reduction of acid 4 using borane dimethylsulfide
complex6 directly afforded without basic treatment7 the
pure a-hydroxylactone 58 according to the mechanism de-
picted in the Scheme 3.

Scheme 3 Reagents and conditions: (a) 2 M BH3·SMe2 in THF (0.5
equiv), THF, –10 °C, 1 h, then MeOH, 20 °C, overnight.

Attempts to perform the intermolecular cyclopropanation
reaction9 on the lactone 5 did not lead to the expected
cyclopropanol 6, but returned the lactone practically un-
changed, only the isopropyl ester 7 was isolated in very
low yield (10%) possibly resulting from the nucleophilic
attack of isopropyl anion on the lactone function. Such
titanium tetraisopropoxide promoted trans-esterification
has been previously reported in the Kulinkovich
reaction10 (Scheme 4).

To overcome this problem, the hydroxyl group of the lac-
tone 5 was protected as a silyl ether giving the a-(silyl-
oxy)lactone 88 which successfully underwent the
intermolecular cyclopropanation reaction using excess of
ethylmagnesium bromide in the presence of titanium
tetraisopropoxide. The cyclopropanol 9 was isolated as an
enantiomerically pure product in 88% yield (Scheme 5)
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Scheme 2 Reagents and conditions: (a) bromal (1.2 equiv), H2SO4–
AcOH (1:1, 0.3 mL/mmol), 0 °C, 2 h.
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and the structure was confirmed by X-ray crystal-struc-
ture analysis (Figure 1).11

Surprisingly, efforts to induce the pinacol-type rearrange-
ment using BF3 etherate as Lewis acid in dichloromethane
furnished not only the cyclobutanone 10 but additionally
the chiral dioxolane 11 through an internal cyclization
(Scheme 6). Unfortunately, the two products were found
to be inseparable by chromatography on silica gel.

To avoid hemiacetal formation, benzylation12 was carried
out on the primary hydroxyl group of the diol 913 to give

the protected cyclopropanol 1213 which underwent pina-
col rearrangement to yield the desired chiral cyclo-
butanone 2.3 In order to examine the scope of this
transformation with a view to optimize enantioselectivity,
several attempts were effected in varying Lewis acids and
conditions were studied. Thus, a 95% ee was obtained by
performing the reaction with tert-butyldimethylsilyl tri-
fluoromethane sulfonate in dichloromethane at –78 °C
(Table 1).

In conclusion, we have developed a new and concise ac-
cess to useful chiral intermediate 213 for the efficient prep-
aration of (+)-grandisol. Two key steps allowed efficient
access to this compound: firstly, the reduction of a tribro-
modioxalane by borane dimethyl sulfide complex led to
an enantiomerically pure lactone and secondly the re-
markable transfer of chirality was induced by the tert-
butyldimethylsilyl trifluoromethane sulfonate–lutidine
couple at low temperature. Finally, starting from commer-
cially available (R)-citramalic acid, the same reaction
scheme should lead to the other antipode of grandisol.
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Figure 1 ORTEP plot of X-ray crystal structure of cyclopropanol 9

Scheme 6 Reagents and conditions: (a) BF3·OEt2, –40 °C, CH2Cl2.
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Table 1 Transformation of Diol 9 into Cyclobutanone 2 via Pinacol 
Rearrangement of Cyclopropanol 12a

Entry Lewis acid Solvent Temp 
(°C)

Yield 
(%)

ee 
(%)

1 SiO2 MeOH–CH2Cl2 20 97 80

2 BF3·OEt2 CH2Cl2 –40 95 65

3 BF3·OEt2 CH2Cl2 –78 91 78

4 BF3·OEt2–lutidine CH2Cl2 –78 92 75

5 TBSOTf–lutidine CH2Cl2 –78 89 95

6 TBSOTf–lutidine pentane –100 – –

a Reaction conditions: (a) NaH (1 equiv), TBAI (3 equiv), BnBr (1 equiv), 
0 °C, then 50 °C, 2 h; (b) Lewis acid.
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