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Abstract 1,3-Enynes are hardly amenable to trans-hydrometalation
reactions, because they tend to bind the standard ruthenium catalysts
too tightly. However, catalysts comprising a [Cp*Ru–Cl] unit allow such
compounds to be used, provided they contain an OH group next to the
triple bond. This aspect is illustrated by a formal synthesis of the lichen-
derived macrolide aspicilin. The required macrocyclic enyne precursor
was formed by an efficient ring-closing alkyne metathesis reaction.

Key words alkyne metathesis, enynes, hydrostannation, molybde-
num alkylidynes, natural products, ruthenium, trans-reduction

Ever since the structure of (+)-aspicilin (1) has been elu-
cidated,1,2 this lichen-derived macrolide3 serves as a popu-
lar testing ground for methodological innovations.4–21 In
line with this tradition, we saw an opportunity to scruti-
nize two catalytic transformations under investigation in
our laboratory by implementing them into a formal synthe-
sis of this prominent target.

Of particular interest to us was the question whether a
diene of type A can be reached by trans-reduction of an
enyne precursor C,22 which in turn could be made by ring-
closing alkyne metathesis (RCAM)23,24 of a readily available
substrate of type D (Scheme 1). If successful, this approach
intercepts the total synthesis of 1 reported by Oppolzer and
co-workers, who showed that diene A (R = H) can be effi-
ciently converted into the final target by a sequence of hy-
droxyl-directed epoxidation followed by acetate-assisted
epoxide opening.6 Interestingly, the more conventional cis-
reduction of C to diene B also provides access to 1, as the
historically first total synthesis of aspicilin by Quinkert et
al. passed through this particular intermediate: however,
the osmylation of B had proven only modestly effec-
tive.4,20,25

Scheme 1  Retrosynthetic analysis of (+)-aspicilin (1) involving a 
RCAM/semi-reduction sequence

The envisaged key step C → A, however, bore consider-
able risk. Classical methods for the trans-reduction of
alkynes using dissolving metal conditions are obviously in-
adequate in this case. Ruthenium-catalyzed trans-hydro-
metalation22,26–32 and trans-hydrogenation33 reactions, as
the best current alternatives, show a broad scope, but in-
variably encounter limitations when applied to substrates
capable of serving as potential 4- or 6-electron donors. 1,3-
Enynes E and related compounds, as well as the derived 1,3-
diene products, fall into this category and have therefore
proven problematic in the past (Scheme 2). Their inertia is
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most likely caused by the formation of stable adducts of
type F and/or G, which trap the catalyst,34,35 especially
when working with [Cp*Ru(MeCN)]PF6 or related cationic
complexes that have dominated the field until recently.27

Scheme 2  Top: 1,3-enynes and 1,3-dienes interfere with catalyst turn-
over, especially when using cationic [Cp*Ru]+ fragments; bottom: inter-
ligand hydrogen bonding between a 1,3-enyne flanked by a hydroxyl 
group and the polarized bond [Ru–Cl] might provide access to a reac-
tive coordination mode and hence allow catalytic trans-hydrometala-
tion to proceed; M = Si, Ge, Sn

In this context, our recent discovery might prove rele-
vant that substrates bearing protic substituents synergize
with catalysts comprising an intact [Ru–Cl] bond.31 Experi-
mental evidence suggests that this effect is due to an ensu-
ing interligand hydrogen bonding, which imposes direc-
tionality on the actual hydrometalation step. In the case of
1,3-enyne substrates H with a flanking OH group, this fa-
vorable interaction might help to avoid the unproductive
chelate I, but rather enforce a reactive coordination mode J
and hence allow trans-addition with formation of products
K to proceed. As the envisaged key intermediate C en route
to 1 contains this exact substructure, it provides a stringent
test to probe this aspect.

The synthesis started from the cheap decane-1,10-diol
(2), which was transformed on multigram scale into 10-
bromodecanal (4) in two straightforward steps; it is em-
phasized that the copper-catalyzed Stahl oxidation of 3
proved highly effective and convenient on scale (Scheme
3).36 Although only few cases are documented in the litera-
ture in which propyne had been used as nucleophile in
asymmetric Carreira alkynylation reactions,32a,37,38 this
transformation proceeded well to afford product 5 with
high optical purity (94% ee). As this transformation relies
on the use of (+)-N-methylephedrine, the compatibility of

substrate 4 comprising a primary alkyl bromide is notewor-
thy; yet, one might suspect that the yield of only 65% indi-
cates some material loss by competing N-alkylation of this
chiral ligand.

Scheme 3  Preparation of the alcohol building block

The derived TBS-ether 6 was converted into the corre-
sponding functionalized Grignard reagent, which served
well in the subsequent copper-catalyzed opening of (S)-
propylene oxide. Esterification of the resulting alcohol 7
with the readily available acid 10 furnished product 11 in
readiness for macrocyclization (Scheme 4).

Alkyne metathesis in general and ring-closing alkyne
metathesis (RCAM) in particular have witnessed consider-
able progress in recent years.23 Molybdenum alkylidyne
complexes endowed with triarylsilanolate ligands have a
significant share for their high activity and remarkable
functional group tolerance;39,40 at the same time, they al-
lowed the substrate scope to be considerably increased.41 In
this context, it is noteworthy that earlier catalyst genera-
tions had failed with propargyl alcohol derivatives as well
as with electron-deficient alkyne substrates,42 whereas
complex 12 and relatives proved effective in a number of
exigent cases.43 Compound 11, however, is the first sub-
strate to comprise both of these demanding structural ele-
ments. Therefore, it is deemed rewarding that cyclization of
11 proceeded quantitatively within 10 minutes reaction
time44 on treatment with catalytic amounts of 12 in reflux-
ing toluene to give the 18-membered lactone 13 in 91%
yield on a 500 mg scale. This favorable result, however, is
critically dependent on the proper reaction conditions:
while the chosen catalyst is fully operative at ambient tem-
perature, only the corresponding cyclic head-to-tail dimer
was formed. This divergent outcome is thought to reflect
the entropic component of the cyclization process and has
precedent in previous work from our laboratory.45
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With the cyclic enyne 13 in hand, the stage was set to
probe the critical trans-reduction manifold. In line with our
expectation, an effective trans-hydrostannation took place
only after deprotection of the propargylic alcohol group.
Thus, reaction of 14 with Bu3SnH in the presence of catalyt-
ic amounts of [Cp*RuCl]4 in CH2Cl2 cleanly furnished the de-
sired product 15; only traces of an undesired isomer were
detected. The high fidelity with which the tin residue is de-
livered to the proximal C-atom of the reacting triple bond is
confidently ascribed to the steering effect of the free OH
group, which has precedent in our earlier work on rutheni-
um-catalyzed trans-hydrometalation reactions;31 more im-
portantly, the current example advocates the notion that
the protic substituent can render otherwise unreactive sub-
strates amenable to trans-addition. This aspect is deemed
relevant for the further advancement of this field and is
therefore subject to detailed investigations.

Treatment of 15 with CuTC [copper(I) thiophene-2-car-
boxylate] in DMF led to the E,E-configured dienoate 16 that
intercepts the efficient total synthesis of (+)-aspicilin (1)
described by Oppolzer and co-workers.6 In concord with a
rapidly growing number of examples from the literature,
this application shows that RCAM in combination with
alkyne semi-reduction provides a selective and predictable
access to alkenes, dienes, and polyenes of all stereochemical
formats.46–48 This includes conjugated dienes as present in

16, which are often subject to ring contraction and/or isom-
erization when approached by olefin metathesis.49 The abil-
ity of complex 12 to rigorously distinguish between alkenes
and alkynes precludes any such complication.50

All reactions using anhyd solvents were carried out under argon in
flame-dried glassware. The solvents were purified by distillation over
the drying agents indicated and were transferred under Ar: THF, Et2O
(Mg/anthracene), CH2Cl2, toluene (Na/K), MeOH (Mg, stored over MS
3Å); DMF, MeCN, and Et3N were dried by an adsorption solvent puri-
fication system based on molecular sieves. TLC: Macherey-Nagel pre-
coated plates (POLYGRAM® SIL/UV254); Flash chromatography:
Merck silica gel 60 (40–63 μm) with predistilled or HPLC grade sol-
vents. Analytic HPLC: Shimadzu LC-2020, Column: 50 mm Eclipse
Plus C8, 3.0 mm. NMR: Spectra were recorded on a Bruker AV 400
spectrometer in the solvents indicated; chemical shifts (δ) are given
in ppm relative to TMS, coupling constants (J) in Hz. The solvent sig-
nals were used as references and the chemical shifts converted to the
TMS scale (CDCl3: δC = 77.16; residual CHCl3 in CDCl3: δH = 7.26). IR:
Spectrum One (PerkinElmer) spectrometer, wavenumbers in cm–1.
MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ3000 (Bruker), accu-
rate mass determinations: Bruker APEX III FT-MS (7 T magnet) or Mat
95 (Finnigan). Optical rotations [α]D

20 were measured with a Perkin-
Elmer Model 343 polarimeter. Unless stated otherwise, all commer-
cially available compounds (Alfa Aesar, Aldrich, Fluka, TCI) were used
as received.

10-Bromodecan-1-ol (3)51,52

HBr (48% in H2O, w/w, 16.3 mL, 138 mmol) was added to a mixture of
decane-1,10-diol (2; 20 g, 115 mmol) and toluene (250 mL). The re-
sulting mixture was stirred at reflux temperature for 16 h. After
reaching r.t. and careful addition of sat. aq Na2S2O3 (50 mL), the aque-
ous layer was extracted with EtOAc (3 × 200 mL). The combined ex-
tracts were dried (MgSO4), filtered, and the solvent was evaporated.
Purification of the residue by flash chromatography (silica gel, hex-
anes/EtOAc, 4:1 to 2:1) afforded the title compound as a colorless oil
(19.8 g, 73%).
IR (ATR): 3328, 2924, 2853, 1463, 1437, 1371, 1352, 1256, 1242, 1129,
1055, 899, 756, 722, 644, 562, 505, 465, 445, 428, 417 cm–1.
1H NMR (400 MHz, CDCl3): δ = 3.63 (t, J = 6.6 Hz, 2 H), 3.40 (t, J = 6.9
Hz, 2 H), 1.88–1.80 (m, 2 H), 1.60–1.51 (m, 2 H), 1.46–1.24 (m, 13 H).
13C NMR (100 MHz, CDCl3): δ = 63.2, 34.2, 32.92, 32.89, 29.6, 29.49,
29.48, 28.9, 28.3, 25.8.
HRMS-ESI: m/z calcd for [C10H21BrO + Na]+: 259.0669; found:
259.0668.

10-Bromodecanal (4)53

10-Bromodecan-1-ol (3; 10.0 g, 42 mmol) and TEMPO (312 mg, 2.0
mmol) were added to a mixture of [Cu(MeCN)4]PF6 (744 mg, 2.0
mmol), 2,2′-bipyridine (312 mg, 2.0 mmol), and 1-methylimidazole
(328 mg, 4.0 mmol) in MeCN (200 mL). The resulting red brown mix-
ture was stirred for 14 h at r.t. under air, causing a color change to
blue. The mixture was filtered through a pad of silica gel and the fil-
trate was evaporated. Purification of the residue by flash chromatog-
raphy (silica gel, hexanes/EtOAc, 20:1 to 10:1) afforded the title com-
pound as a pale red oil (9.0 g, 91%).
IR (ATR): 2926, 2854, 2716, 1723, 1463, 1409, 1390, 1245, 1111, 846,
723, 643, 560 cm–1.

Scheme 4  Completion of the formal synthesis of (+)-aspicilin (1); Ar = 
p-MeOC6H4
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1H NMR (400 MHz, CDCl3): δ = 9.77 (t, J = 1.8 Hz, 1 H), 3.42 (t, J = 6.8
Hz, 2 H), 2.44 (td, J = 7.4, 1.8 Hz, 2 H), 1.90–1.81 (m, 2 H), 1.68–1.59
(m, 2 H), 1.47–1.37 (m, 2 H), 1.36–1.27 (m, 8 H).
13C NMR (100 MHz, CDCl3): δ = 202.7, 43.9, 33.9, 32.8, 29.21, 29.18,
29.1, 28.7, 28.1, 22.1.
HRMS-ESI: m/z calcd for [C10H19BrO + Na]+: 257.0510; found:
257.0512.

(R)-13-Bromotridec-2-yn-4-ol (5)
Et3N (3.90 mL, 27.9 mmol) was added dropwise to a suspension of
Zn(OTf)2 (10.1 g, 27.9 mmol) and (+)-N-methylephedrine (5.0 g, 27.9
mmol) in toluene (120 mL). The colorless suspension was stirred for 2
h at r.t. before the mixture was cooled to –78 °C and liquid propyne
(ca. 4 mL) was added via cannula from a Schlenk tube at –78 °C. The
mixture was allowed to reach r.t. over the course of 1 h. A solution of
aldehyde 4 (5.48 g, 23.3 mmol) in toluene (10 mL) was added drop-
wise over 4 h and stirring continued for 14 h at r.t. before the reaction
was quenched with sat. aq NH4Cl (20 mL). The aqueous layer was ex-
tracted with EtOAc (3 × 150 mL). The remaining aqueous layer was
acidified to pH 2 by the addition of aq 2 M HCl and extracted with
EtOAc (150 mL). The combined extracts were dried (MgSO4), filtered,
and the solvent was evaporated. Purification of the residue by flash
chromatography (silica gel, hexanes/EtOAc, 10:1) afforded the title
compound as a colorless oil (4.15 g, 65%, 94% ee); [α]D

20 –0.8 (c = 1,
CHCl3).
IR (ATR): 3434, 2924, 2854, 2219, 1734, 1674, 1454, 1441, 1352, 1323,
1260, 1200, 1135, 1119, 1076, 1022, 988, 904, 868, 811, 723, 543, 428
cm–1.
1H NMR (400 MHz, CDCl3): δ = 4.35–4.29 (m, 1 H), 3.42 (t, J = 6.9 Hz, 2
H), 1.85 (d, J = 2.1 Hz, 3 H), 1.89–1.80 (m, 2 H), 1.72–1.60 (m, 3 H),
1.47–1.36 (m, 4 H), 1.35–1.25 (m, 8 H).
13C NMR (100 MHz, CDCl3): δ = 81.1, 80.6, 62.9, 38.3, 34.2, 33.0, 29.6,
29.5, 29.4, 28.9, 28.3, 25.3, 3.7.
HRMS-ESI: m/z calcd for [C13H23BrO + Na]+: 297.0825; found:
297.0826.

(R)-[(13-Bromotridec-2-yn-4-yl)oxy](tert-butyl)dimethylsilane (6)
TBSCl (2.86 g, 19.0 mmol) was added to a solution of alcohol 5 (3.6 g,
13.1 mmol) and imidazole (2.66 g, 39.0 mmol) in CH2Cl2 (100 mL) at
0 °C. The cooling bath was removed and the mixture stirred for 2 h at
r.t. before the reaction was quenched with sat. aq NH4Cl (30 mL). The
aqueous layer was extracted with CH2Cl2 (3 × 50 mL), the combined
extracts were dried (MgSO4), filtered, and the solvent was evaporated.
Purification of the residue by flash chromatography (silica gel, hex-
anes/EtOAc, 50:1) afforded the title compound as a colorless oil (4.57
g, 90%); [α]D

20 +24.5 (c = 1, CHCl3).
IR (ATR): 2927, 2855, 2238, 1716, 1586, 1463, 1389, 1360, 1341, 1250,
1154, 1075, 1005, 939, 834, 775, 723, 666, 647, 563 cm–1.
1H NMR (400 MHz, CDCl3): δ = 4.36–4.28 (m, 1 H), 3.40 (t, J = 6.9 Hz, 2
H), 1.82 (d, J = 21.0 Hz, 3 H), 1.88–1.81 (m, 2 H), 1.65–1.55 (m, 2 H),
1.46–1.34 (m, 4 H), 1.33–1.24 (m, 8 H), 0.90 (s, 9 H), 0.11 (s, 3 H), 0.09
(s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 81.3, 79.9, 63.3, 39.1, 34.2, 33.0, 29.6,
29.5, 29.4, 28.9, 28.3, 26.0, 25.4, 18.4, 3.7, –4.3, –4.9.
HRMS-ESI: m/z calcd for [C19H37BrOSi + Na]+: 411.1691; found:
411.1689.

(2S,13R)-13-(tert-Butyldimethylsilyloxy)hexadec-14-yn-2-ol (7)
Mg turnings (250 mg, 10.3 mmol) and I2 (20 mg) were vigorously
stirred under argon atmosphere for 14 h at 90 °C. After reaching r.t.,
the activated Mg powder was suspended in THF (5 mL) and the sus-
pension stirred at reflux temperature for 1 h. A solution of bromide 6
(2.0 g, 5.14 mmol) in THF (2 mL) was added over 2 min and stirring
continued at reflux temperature for 1 h. The resulting mixture was
cooled to –40 °C and Li2CuCl4 (0.1 M in THF, 2 mL, 0.2 mmol, 4 mol%)
was introduced. (S)-Propylene oxide (407 mg, 7.0 mmol, 0.49 mL) was
added dropwise over 5 min and the mixture was allowed to reach r.t.
over 14 h. The reaction was quenched with sat. aq NH4Cl (5 mL), the
aqueous layer was extracted with EtOAc (3 × 50 mL), the combined
extracts were dried (MgSO4), filtered, and the solvent was evaporated.
Purification of the residue by flash chromatography (silica gel, hex-
anes/EtOAc, 50:1 to 20:1) afforded the title compound as a colorless
oil (1.35 g, 71%); [α]D

20 +32.6 (c = 1, CHCl3).
IR (ATR): 3355, 2925, 2854, 1744, 1463, 1407, 1389, 1361, 1341, 1250,
1083, 1005, 939, 834, 775, 721, 666, 559 cm–1.
1H NMR (400 MHz, CDCl3): δ = 4.32–4.25 (m, 1 H), 3.84–3.74 (m, 1 H),
1.82 (d, J = 2.1 Hz, 3 H), 1.65–1.55 (m, 2 H), 1.49–1.33 (m, 5 H), 1.32–
1.23 (m, 14 H), 1.18 (d, J = 6.2 Hz, 3 H), 0.90 (s, 9 H), 0.11 (s, 3 H), 0.09
(s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 81.3, 79.9, 68.4, 63.4, 39.5, 39.1, 29.8,
29.7, 29.4, 26.0, 26.0, 25.9, 25.4, 23.6, 18.5, 3.7, –4.3, –4.9.
HRMS-ESI: m/z calcd for [C22H44O2Si + Na]+: 391.3000; found:
391.3003.

Ethyl (E)-Hex-2-en-4-ynoate (9)54

[PdCl2(MeCN)2] (60.8 mg, 0.21 mmol) was added to a solution of ethyl
(E)-3-iodoacrylate (8;55 1.20 g, 5.0 mmol) and tributyl(prop-1-yn-1-
yl)stannane (1.71 g, 5.2 mmol) in DMF (10 mL) and the resulting mix-
ture was stirred for 14 h at r.t.. Aq KF (0.5 M, 20 mL) and EtOAc (20
mL) were added and stirring was continued for 2 h. After filtration,
the aqueous layer was extracted with EtOAc (3 × 30 mL). The com-
bined extracts were dried (MgSO4), filtered, and the solvent was
evaporated. Purification of the residue by flash chromatography (sili-
ca gel, hexanes/EtOAc, 50:1 to 20:1) afforded the title compound as a
colorless oil (630 mg, 91%).
1H NMR (400 MHz, CDCl3): δ = 6.72 (dq, J = 15.8, 2.5 Hz, 1 H), 6.13 (dd,
J = 15.8, 0.6 Hz, 1 H), 4.20 (q, J = 7.1 Hz, 2 H), 2.02 (dd, J = 2.5, 0.6 Hz, 3
H), 1.29 (t, J = 7.1 Hz, 3 H).
13C NMR (100 MHz, CDCl3): δ = 166.3, 129.4, 126.2, 96.3, 77.2, 60.8,
14.3, 4.9.
HRMS-ESI: m/z calcd for [C8H10O2 + Na]+: 161.0575; found: 161.0573.

(E)-Hex-2-en-4-ynoic Acid (10)
LiOH (479 mg, 20.0 mmol) was suspended in a mixture of THF (10
mL), H2O (10 mL) and EtOH (2 mL). Ester 9 (950 mg, 6.88 mmol) was
added and the mixture was stirred for 1 h at r.t. After the addition of
sat. aq NH4Cl (10 mL), the pH was adjusted to 2 by addition of aq 2 M
HCl. The aqueous layer was extracted with EtOAc (3 × 50 mL), the
combined extracts were dried (MgSO4), filtered, and the solvent was
evaporated. The title compound was isolated as a colorless solid (690
mg, 91%); mp 175–177 °C.
IR (ATR): 2925, 2582, 2216, 1674, 1614, 1452, 1421, 1310, 1279, 1210,
1172, 1033, 962, 921, 865, 677, 539, 422 cm–1.
1H NMR (400 MHz, CDCl3): δ = 11.92 (br s, 1 H), 6.82 (dq, J = 15.8, 2.5
Hz, 1 H), 6.14 (d, J = 15.8 Hz, 1 H), 2.05 (d, J = 2.5 Hz, 3 H).
13C NMR (100 MHz, CDCl3): δ = 171.7, 129.0, 128.6, 98.6, 77.1, 5.1.
© Georg Thieme Verlag  Stuttgart · New York — Synthesis 2016, 48, A–G
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HRMS-ESI: m/z calcd for [C6H5O2]–: 109.0295; found: 109.0295.

(2S,13R)-13-[(tert-Butyldimethylsilyl)oxy]hexadec-14-yn-2-yl (E)-
Hex-2-en-4-ynoate (11)
Alcohol 7 (1.50 g, 4.07 mmol), DCC (887 mg, 4.3 mmol), and DMAP
(10 mg, 0.82 mmol) were successively added at 0 °C to a solution of
acid 10 (473 mg, 4.07 mmol) in CH2Cl2 (10 mL). After stirring for 2 h at
0 °C, the mixture was filtered through a pad of silica gel. Sat. aq NH4Cl
(5 mL) was added and the aqueous layer was extracted with CH2Cl2
(2 × 20 mL). The combined extracts were dried (MgSO4), filtered, and
the solvent was evaporated. Purification of the residue by flash chro-
matography (silica gel, hexanes/EtOAc, 100:1 to 50:1) afforded the ti-
tle compound as a colorless oil (1.75 g, 93%); [α]D

20 +35.9 (c = 1, CHCl3).
IR (ATR): 2926, 2854, 2222, 2120, 1712, 1463, 1359, 1300, 1256, 1180,
1164, 1078, 1005, 961, 835, 776, 720, 667, 516 cm–1.
1H NMR (400 MHz, CDCl3): δ = 6.71 (dq, J = 15.8, 2.4 Hz, 1 H), 6.12 (d,
J = 15.8 Hz, 1 H), 5.00–4.90 (m, 1 H), 4.32–4.25 (m, 1 H), 2.02 (d, J = 2.4
Hz, 3 H), 1.81 (d, J = 2.1 Hz, 3 H), 1.66–1.54 (m, 3 H), 1.54–1.24 (m, 17
H), 1.23 (d, J = 6.3 Hz, 3 H), 0.90 (s, 9 H), 0.11 (s, 3 H), 0.09 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 166.0, 130.1, 125.9, 96.1, 81.3, 79.9,
77.3, 71.6, 63.4, 39.1, 36.1, 29.70, 29.66, 29.59, 29.4, 26.0, 25.5, 25.4,
20.1, 18.4, 4.9, 3.7, –4.4, –4.9.
HRMS-ESI: m/z calcd for [C28H48O3Si + Na]+: 483.3266; found:
483.3265.

(7R,18S,E)-7-[(tert-Butyldimethylsilyl)oxy]-18-methyloxacyclooc-
tadec-3-en-5-yn-2-one (13)
Diyne 11 (500 mg, 1.09 mmol) was added to a suspension of molecu-
lar sieves 5Å (flame dried, 8 g) in toluene (800 mL) and the resulting
mixture was stirred for 1 h at r.t. The mixture was then warmed to
110 °C before a solution of complex 12 (110 mg, 0.106 mmol, 10
mol%) in toluene (2 mL) was added over 2 min. After stirring for 10
min at this temperature, the suspension was filtered through a plug of
Celite, which was carefully rinsed with EtOAc (50 mL). The combined
filtrates were evaporated and the residue was purified by flash chro-
matography (silica gel, hexanes/EtOAc, 100:1 to 50:1) to give the title
compound as a colorless oil (400 mg, 91%); the product contained ca.
8% of the dimeric macrocycle and was used without further purifica-
tion for the next step. 
IR (ATR): 2927, 2855, 1715, 1619, 1462, 1360, 1299, 1254, 1178, 1153,
1125, 1083, 1006, 982, 960, 940, 835, 777, 717, 669 cm–1.
1H NMR (400 MHz, CDCl3): δ = 6.75 (dd, J = 15.8, 2.1 Hz, 1 H), 6.21 (d,
J = 15.8 Hz, 1 H), 5.06–4.93 (m, 1 H), 4.54 (ddd, J = 7.5, 4.8, 2.1 Hz, 1
H), 1.77–1.62 (m, 3 H), 1.61–1.17 (m, 17 H), 1.23 (d, J = 6.3 Hz, 3 H),
0.92 (s, 9 H), 0.12 (s, 3 H), 0.10 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 165.5, 131.8, 124.9, 101.2, 82.1, 72.8,
63.6, 37.6, 34.2, 29.9, 29.8, 29.5, 29.2, 28.6, 25.9, 25.8, 25.5, 23.8, 20.3,
–4.5, –4.8.
HRMS-ESI: m/z calcd for [C24H42O3Si + Na]+: 429.2799; found:
429.2795.

(7R,18S,E)-7-Hydroxy-18-methyloxacyclooctadec-3-en-5-yn-2-
one (14)
TBAF (1 M in THF, 2 mL, 2 mmol) was added at 0 °C to a solution of
compound 13 (400 mg, 0.98 mmol) in THF (5 mL) and the mixture
was stirred for 2 h till r.t. was reached The reaction was quenched
with sat. aq NH4Cl (1 mL) and H2O (1 mL) and the aqueous layer was
extracted with EtOAc (3 × 30 mL). The combined extracts were dried
(MgSO4), filtered, and the filtrate was evaporated. Purification of the

residue by flash chromatography (silica gel, hexanes/EtOAc, 20:1 to
4:1) afforded the title compound as a colorless solid (243 mg, 85%);
mp 62−63 °C; [α]D

20 +61.1 (c = 1, CHCl3).
IR (ATR): 3266, 2922, 2850, 2215, 1702, 1622, 1611, 1460, 1378, 1351,
1302, 1271, 1188, 1155, 1128, 1107, 1077, 1021, 979, 871, 755, 719,
585, 499, 410 cm–1.
1H NMR (400 MHz, CDCl3): δ = 6.75 (dd, J = 15.9, 2.1 Hz, 1 H), 6.24 (d,
J = 15.9 Hz, 1 H), 5.04–4.94 (m, 1 H), 4.61–4.54 (m, 1 H), 2.05–1.16 (m,
24 H).
13C NMR (100 MHz, CDCl3): δ = 165.3, 132.3, 124.4, 99.9, 82.8, 72.9,
63.1, 36.6, 34.2, 29.8, 29.7, 29.5, 29.2, 29.1, 28.5, 25.4, 23.9, 20.2.
HRMS-ESI: m/z calcd for [C18H28O3]–: 291.1668; found: 291.1966.

(3E,5E,7R,18S)-7-Hydroxy-18-methyl-6-(tributylstannyl)oxacy-
clooctadeca-3,5-dien-2-one (15)
[{Cp*RuCl}4] (10 mg, 9.0 μmol, 2 mol%) was added to a solution of
compound 14 (150 mg, 0.51 mmol) in CH2Cl2 (2.5 mL). A solution of
Bu3SnH (163 mg, 0.56 mmol) in CH2Cl2 (1 mL) was then added drop-
wise over 5 min. After stirring for 2 h at r.t., the solvent was evaporat-
ed. Purification of the residue by flash chromatography (silica gel,
hexanes/EtOAc, 20:1 to 10:1) afforded the title compound as a pale
yellow oil (196 mg, 66%). A second fraction containing the cis-isomer
was also isolated and purified by preparative HPLC (8 mg, 3%); [α]D

20

–31.7 (c = 1, CHCl3).
IR (ATR): 3464, 2953, 2922, 2852, 1707, 1688, 1619, 1565, 1460, 1376,
1354, 1258, 1186, 1125, 1072, 1019, 976, 903, 863, 757, 716, 666,
595, 536, 504 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.25 (dd, J = 15.1, 11.5 Hz, 1 H), 6.81 (d,
J = 11.6 Hz, JSn–H = 54.8 Hz, 1 H), 5.78 (d, J = 15.0 Hz, 1 H), 5.05 (dqd,
J = 9.3, 6.3, 2.9 Hz, 1 H), 4.31 (dt, J = 9.3, 3.4 Hz, JSn–H = 26.1 Hz, 1 H),
1.71–1.58 (m, 2 H), 1.54–1.38 (m, 9 H), 1.35–1.06 (m, 22 H), 1.05–0.91
(m, 9 H), 0.84 (t, J = 7.3 Hz, 9 H).
13C NMR (100 MHz, CDCl3): δ = 167.7, 166.8, 144.5, 137.0, 123.2, 80.3,
71.3, 36.1, 35.2, 29.9, 29.8, 29.5, 29.28, 29.25, 29.01, 28.96, 27.6, 25.2,
23.9, 20.6, 13.8, 11.8.
119Sn NMR (186 MHz, CDCl3): δ = –56.0.
HRMS-ESI: m/z calcd for [C30H56O3Sn + H]+: 585.3329; found:
585.3324.

(3E,5Z,7R,18S)-7-Hydroxy-18-methyl-6-(tributylstannyl)oxacy-
clooctadeca-3,5-dien-2-one [(5Z)-15]
Minor isomer formed in the reaction described above, which was iso-
lated and purified by preparative HPLC (8 mg, 3%).
IR (ATR): 3500, 2953, 2923, 2854, 1710, 1691, 1569, 1460, 1419, 1376,
1357, 1337, 1268, 1186, 1125, 1072, 1021, 979, 893, 876, 845, 804,
769, 722, 665, 596, 548, 505, 435, 408 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.51 (ddt, J = 15.2, 11.0, 3.3 Hz, 1 H),
6.33 (dd, J = 11.2, 1.6 Hz, JSn–H = 30.8 Hz, 1 H), 5.81 (d, J = 15.0 Hz, 1 H),
5.18 (ddp, J = 9.5, 6.3, 3.1 Hz, 1 H), 5.03 (t, J = 7.3 Hz, JSn–H = 32.0 Hz, 1
H), 1.65–1.11 (m, 37 H), 0.99–0.92 (m, 5 H), 0.89 (t, J = 7.3 Hz, 9 H).
13C NMR (100 MHz, CDCl3) δ = 167.5, 166.5, 138.7, 134.6, 121.2, 72.2,
69.6, 37.8, 36.0, 29.8, 29.2, 28.7, 28.4, 27.7, 27.6, 26.6, 25.3, 24.2, 21.0,
13.9, 10.9.
119Sn NMR (186 MHz, CDCl3): δ = –40.2.
HRMS-ESI: m/z calcd for [C30H56O3Sn + Na]+: 607.3148; found:
607.3143.
© Georg Thieme Verlag  Stuttgart · New York — Synthesis 2016, 48, A–G
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(3E,5E,7R,18S)-7-Hydroxy-18-methyloxacyclooctadeca-3,5-dien-2-
one (16)
CuTC (65 mg, 0.34 mmol) was added to a solution of stannane 15 (100
mg, 0.17 mmol) in DMF (2 mL) and the resulting mixture was stirred
for 1 h at r.t. before H2O (5 mL) was added. The aqueous layer was ex-
tracted with EtOAc (3 × 10 mL), the combined extracts were dried
(MgSO4), filtered, and the solvent was evaporated. Purification of the
residue by flash chromatography (silica gel, hexanes/EtOAc, 10:1 to
4:1) afforded the title compound as a colorless oil (42 mg, 83%); [α]D

20

+14.2 (c = 1, CHCl3).
IR (ATR): 3412, 2925, 2854, 1701, 1644, 1618, 1460, 1355, 1296, 1260,
1178, 1124, 999, 910, 883, 730, 647, 411 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.24 (dd, J = 15.4, 10.9 Hz, 1 H), 6.32
(dd, J = 15.2, 10.9 Hz, 1 H), 6.07 (dd, J = 15.2, 7.9 Hz, 1 H), 5.85 (d,
J = 15.4 Hz, 1 H), 5.02 (dqd, J = 9.4, 6.3, 3.2 Hz, 1 H), 4.27 (td, J = 8.3,
3.7 Hz, 1 H), 1.82–1.73 (m, 1 H), 1.69–1.54 (m, 4 H), 1.50–1.37 (m, 2
H), 1.28 (d, J = 6.3 Hz, 3 H), 1.33–1.12 (m, 14 H).
13C NMR (100 MHz, CDCl3): δ = 166.6, 145.1, 143.6, 128.4, 122.6, 73.3,
71.5, 35.5, 35.4, 29.7, 29.14, 29.10, 29.05, 28.8, 24.8, 23.4, 20.6.
HRMS-ESI: m/z calcd for [C18H30O3 + Na]+: 317.2087; found: 317.2087.
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