Sodium-Containing Spinel Zinc Ferrite as a Catalyst Precursor for the Selective Synthesis of Liquid Hydrocarbon Fuels

Yo Han Choi,^[a] Eun Cheol Ra,^[b] Eun Hyup Kim,^[b] Kwang Young Kim,^[b] Youn Jeong Jang,^[a] Kyeong-Nam Kang,^[b] Sun Hee Choi,^[a] Ji-Hyun Jang,^[b] and Jae Sung Lee*^[b]

A microwave-assisted hydrothermal synthesis produces $ZnFe_2O_4$ containing Na residue as a precursor to a CO_2 hydrogenation catalyst that displays high CO_2 conversion and high selectivity to liquid hydrocarbon products in the gasoline and diesel range with high olefin-to-paraffin ratios. Compared to reference catalysts derived from Fe_2O_3 and a $ZnO-Fe_2O_3$ physical mixture, the $ZnFe_2O_4$ -derived catalyst contains well-dis-

Introduction

Global warming caused by the greenhouse effect of anthropogenic CO₂ in the atmosphere is a serious issue that threatens the future of humankind.^[1] Carbon capture and storage (CCS) has been considered as an effective and aggressive measure to counter the problem.^[2] However, the storage of CO₂ in geological or ocean reservoirs has serious drawbacks such as possible leakage, long-term liability, and the availability of sufficient storage capacity in many regions of the world. By contrast, in carbon capture and utilization (CCU), the captured CO₂ is converted into useful products such as fuels, chemicals, plastics, and alternative building materials.^[3] Among the many possible CCU products, transportation fuels are the most attractive because of their huge market size, which could accommodate the large amount of CO2 released from industrial vent streams.^[4-6] In particular, liquid hydrocarbon fuels such as gasoline, diesel, and jet fuel are convenient for transportation and storage and readily adaptable to the current distribution infrastructure.

The synthesis of hydrocarbon fuels by CO_2 hydrogenation involves two consecutive reactions, namely, the reverse watergas shift (RWGS) and Fischer–Tropsch (FT) reactions [Eqs. (1) and (2), respectively].^[7]

[a]	Y. H. Choi, Dr. Y. J. Jang, Dr. S. H. Choi						
	Division of Advanced Nuclear Engineering						
	Pohang Accelerator Laboratory						
	Pohang University of Science and Technology (POSTECH)						
	Pohang, 790-784 (Korea)						
[b]	E. C. Ra, E. H. Kim, K. Y. Kim, KN. Kang, Prof. JH. Jang, Prof. J. S. Lee School of Energy and Chemical Engineering						
	Ulsan National Institute of Science and Technology (UNIST)						
	Ulsan, 44919 (Korea)						
	E-mail: jlee1234@unist.ac.kr						

 Supporting Information and the ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/ cssc.201701437. persed iron particles with Zn serving as a structural promoter. A profound effect of the residual Na as an electronic promoter is also observed, which improves the selectivity for C₅₊ hydrocarbons and olefins. The ZnFe₂O₄-derived catalyst exhibits excellent performance in the CO₂ Fischer–Tropsch reaction as it forms the active Hägg iron carbide (χ -Fe₅C₂) phase readily through the in situ carburization of iron.

 $CO_2 + H_2 \rightleftharpoons CO + H_2O$ $\Delta H_{298} = +41 \text{ kJ mol}^{-1}$ (1)

$$CO + 2H_2 \rightarrow (CH_2)_n + H_2O$$
 $\Delta H_{298} = -152 \text{ kJ mol}^{-1}$ (2)

Compared to the conventional CO FT reaction with synthesis gas, CO₂ hydrogenation requires one more H₂ molecule per molecule of CO₂ and produces more of the water byproduct, which is a deactivating agent for FT catalysts. In addition, the thermodynamic barrier of the RWGS reaction limits the CO₂ conversion below 300 °C and 10 bar.^[8] Thus, the major challenges in the hydrogenation of CO₂ to liquid fuels are the activation of thermodynamically and kinetically stable CO₂ molecules and the control of the product selectivity toward heavy hydrocarbons instead of undesired methane. Owing to the need for RWGS activity, catalyst selection is confined to Fe instead of other common FT catalysts such as Co, Ni, and Ru.^[1]

The hydrogenation of CO₂ over iron-based FT catalysts under typical reaction conditions produces mainly methane. There have been extensive studies to produce more useful heavier hydrocarbon products. For example, an iron catalyst derived from Fe₂O₃ synthesized by a template-assisted method yielded a high CO₂ conversion and a good C₂-C₄ hydrocarbon selectivity in CO₂ hydrogenation at 15 bar and 627 K with a H_2/CO_2 ratio of 3:1.^[9] In another recent study, MnFeO_x nanocomposites were active and selective toward C₂-C₄ synthesis.^[10] To improve CO₂ conversions and heavy-hydrocarbon selectivity, iron-based catalysts are commonly modified with a metal oxide (α -Al₂O₃ or TiO₂), carbon supports such as N-doped materials, and alkaline promoters.^[8,11] In spite of these efforts, selectivity to liquid products heavier than C_5 (C_{5+}) remained below 40%. Recently, our group reported that a Cu-Fe catalyst derived from delafossite CuFeO₂ could produce C₅₊ products with selectivity greater than 60%.^[12] Since then, the direct conversion of CO₂ to gasoline fuel over Na-Fe₃O₄/HZSM-5 as catalyst was reported.^[13] As these catalysts result in the selective formation of heavy hydro-

These are not the final page numbers! 77

carbons in a similar fashion to the CO FT catalysts, they could be called "CO₂ FT catalysts". The catalysts form Hägg iron carbide (χ -Fe₅C₂) readily through the in situ carburization of Fe during CO₂ hydrogenation, and χ -Fe₅C₂ is the known active phase of iron CO FT catalysts.

In the presented work, we synthesize Na-containing $ZnFe_2O_4$ as a new Fe–Zn catalyst precursor through a simple microwave-assisted hydrothermal method. During the pre-reduction step with H₂, $ZnFe_2O_4$ is reduced to metallic Fe decorated with Zn nanoparticles containing Na residue derived from the synthesis step. The Zn serves as a structural promoter to suppress the growth of Fe particles, whereas the Na serves as an electronic promoter to modify the catalytic activity and selectivity of the Fe particles for CO₂ hydrogenation. The beneficial effect of the Zn and Na promoters results in the facile in situ formation of the χ -Fe₅C₂ phase. As a result, our new Fe–Zn catalyst derived from ZnFe₂O₄ (ex-ZnFe₂O₄) overcomes the common barriers of CO₂ FT catalysts, and high CO₂ conversions as well as high selectivities to liquid fuels can be achieved.

Results and Discussion

Physicochemical properties of the catalysts

We synthesized ZnFe₂O₄ by a microwave-assisted hydrothermal method to obtain small particle sizes and high surface areas, as described in the Experimental Section. As reference catalyst precursors, Fe₂O₃, a ZnO-Fe₂O₃ physical mixture (Zn/Fe molar ratio 1:2), and Na-free ZnFe₂O₄ were also synthesized. The powder XRD patterns (Figure 1a) exhibit intense diffraction peaks at $2\theta = 34$ and 36° for Fe₂O₃ and broad peaks at $2\theta = 30$ and 35° for the spinel $ZnFe_2O_4$ phase. The physically mixed Fe₂O₃-ZnO sample shows the peaks of both ZnO and Fe₂O₃. All catalyst precursors were pre-reduced in a H_2 flow at 400 $^{\circ}C$ for 2 h immediately before the reactions (Figure S1, Supporting Information). They showed different degrees of reduction to metallic Fe and Zn phases. The ex-ZnFe₂O₄ and ZnO-Fe₂O₃-derived (ex-ZnO-Fe₂O₃) catalysts both reveal metallic Fe and FeO at $2\theta = 41.7$ and 44.6° , respectively. The XRD pattern of the reduced Fe₂O₃ sample (ex-Fe₂O₃) indicates the formation of pure iron metal. An interaction between iron and zinc apparently suppresses the complete reduction of the oxide precursors under the reduction conditions.

The textures catalyst were examined by scanning electron microscopy (SEM) and N₂ sorption (Figure S2 and Table S1). The Fe₂O₃ and ZnO–Fe₂O₃ catalysts are composed of small nanoparticles of approximately 200–300 nm (SEM images) with low surface areas (8 and 20.4 m²g⁻¹, respectively) and small pore volumes (0.17 and 0.19 cm³g⁻¹, respectively; Figure S3). The SEM image of reduced Fe₂O₃ shows severe agglomeration (Figure S4a). As a result of the addition of ZnO to Fe₂O₃, the Fe₂O₃ particle size becomes smaller and the agglomeration caused by reduction is not significant (Figures S3 b and S4b). The ZnFe₂O₄ synthesized by a microwave-assisted hydrothermal method has a much higher surface area (119 m²g⁻¹) and pore volume (0.33 cm³g⁻¹). Its SEM image (Figure 1c) shows clusters of small ZnFe₂O₄ particles, and the small size is almost

CHEMSUSCHEM Full Papers

Figure 1. a) Powder XRD patterns of Fe₂O₃, ZnO–Fe₂O₃, ZnFe₂O₄, and Na-free ZnFe₂O₄, b) XRD patterns of the catalysts after the CO₂ FT reaction for 48 h. SEM images of ZnFe₂O₄ c) before and d) after the reaction.

maintained after the reduction (Figure 4c). This microwave-assisted hydrothermal method allows the swift synthesis of small and stable $ZnFe_2O_4$ particles at a much lower temperature of 180°C compared with those for other methods involving a high-temperature calcination step.^[14]

Catalytic CO₂ hydrogenation

The CO₂ hydrogenations over the prepared catalysts were performed in a fixed-bed reactor with a continuous feed of H₂/ CO₂ (3:1) and a gas hourly space velocity (GHSV) of 1800 mLg⁻¹h⁻¹ at 340 °C and 10 bar. ZnO alone as a reference catalyst caused no CO₂ conversion. As shown in Table 1 and Figure 2, reduced Fe₂O₃ shows a performance typical of iron FT catalysts in CO₂ hydrogenation with a good CO₂ conversion and fair selectivity to C_2 - C_4 hydrocarbons. The catalyst derived from the ZnO-Fe₂O₃ mixture exhibits a 36% increase in CO₂ conversion from that for bare Fe₂O₃. The increased CO₂ conversion accompanies increased methane formation at the expense of heavier hydrocarbons. Our new catalyst derived from ZnFe₂O₄ synthesized by the microwave-assisted hydrothermal method exhibits a further improved CO₂ conversion (by 86% relative to that of bare Fe_2O_3). In terms of the reaction rates [expressed as Fe time yield (FTY), i.e., moles of CO₂ converted per g of Fe in the catalyst per second], the ZnFe₂O₄-derived catalyst shows a significantly higher FTY (3.1 μ mol g_{Fe}⁻¹s⁻¹) than those of the catalysts derived from bare Fe₂O₃ $(1.3 \,\mu\text{mol}\,g_{Fe}^{-1}\,s^{-1})$ and ZnO–Fe₂O₃ (2.7 μ mol $g_{Fe}^{-1}\,s^{-1}$). However, the most conspicuous characteristic of the ZnFe₂O₄-derived catalyst is the selectivity pattern of the hydrocarbon products

CHEMSUSCHEM Full Papers

Table 1. Steady-state FTY, CO2 conversion, and product selectivity of various catalysts in CO2 hydrogenation.											
Precursor	FTY ^[b]	CO ₂ conversion	CO selectivity	CO-free HC selectivity [%]					O/P		
		[%]	[%]	C ₁	C ₂	C ₃	C ₄	C_{5+}			
Fe ₂ O ₃	1.3	18.2	20.5	40.5	21.4	19.4	10.1	8.6	0.16		
ZnO-Fe ₂ O ₃	2.7	24.7	23.2	53.1	26.0	13.5	4.5	2.9	0.09		
ZnFe ₂ O ₄ , Na-free	3.0	27.8	21.9	43.6	18.6	17.8	10.5	9.5	0.4		
ZnFe ₂ O ₄ ^[c]	3.7	34.0	11.7	9.7	8.0	13.0	10.8	58.5	11.3		
[a] Reaction conditions: 340 °C, 10 bar, 1800 mL g ⁻¹ h ⁻¹ , H ₂ /CO ₂ = 3. [b] FTY in μ mol _{CO2} g _{Fe} ⁻¹ s ⁻¹ . [c] ZnFe ₂ O ₄ containing 0.08 wt% of Na.											

Figure 2. a) FTY versus time on stream for Fe₂O₃, ZnFe₂O₄, and Na-free ZnFe₂O₄ catalysts. Reaction conditions: 340 °C, 10 bar, 1800 mL g⁻¹ h⁻¹, H₂/CO₂=3. Inset: stability test of ZnFe₂O₄ up to 95 h. b) O/P ratios and CO selectivity versus sodium content in ZnFe₂O₄. c) CO-free hydrocarbon selectivity of Fe₂O₃, ZnO-Fe₂O₃, ZnFe₂O₄, and Na-free ZnFe₂O₄ catalysts. d) Carbon-number distribution of the liquid products of CO₂ hydrogenation with the ZnFe₂O₄-derived catalyst, as determined by a simulated distillation method (ASTM D2887).

from CO₂ hydrogenation. Methane formation is suppressed greatly (40.5 \rightarrow 9.7%), and the formation of C₅₊ liquid products increases dramatically (8.6 \rightarrow 58%). The collected liquid products were analyzed by a GC simulated distillation method (ASTM D2887) and a detailed hydrocarbon analysis method (ASTM D6729). The products were mostly in the gasoline and diesel range of hydrocarbons (Figure 2 d). The product distribution is almost the same as that for typical CO Fischer–Tropsch synthesis over iron-based catalysts.^[15] The detailed analysis of the hydrocarbon distribution of the liquid (C₅–C₁₁) products shows that aromatic components represent the largest fraction (\approx 40.5 wt%), and the olefin fraction is also high (\approx 26.2 wt%, Figure S5). The performance of the ZnFe₂O₄-derived catalyst remained stable in terms of both CO₂ conversion and selectivity over a 95 h stability test (Figure 2 a, inset).

Another unique characteristic of our ex-ZnFe₂O₄ catalyst in CO₂ hydrogenation is the high olefin/paraffin ratio (O/P) of the C₂-C₄ products of 11.3, which is 70 times higher than that of the ex-Fe₂O₃ catalyst (0.16). For FT synthesis over iron-based catalysts, the alkaline content of the catalyst is generally the most important parameter for the determination of the O/ P ratio.^[16] The hydrothermal reaction solution for the preparation of the ZnFe₂O₄ catalyst contained NaOH to produce basic conditions, and the prepared catalyst contains Na residue. To study the effect of Na, the residual Na content was varied systematically through the variation of the amount of washing after the hydrothermal step. Thus, inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of the prepared catalyst indicate that the Na content decreased from 0.7 wt% (mild washing with 500 mL of water) to an undetectable level (0%, thorough washing with 6 L of water). As demonstrated in Figure 2b, considerable changes to the O/P ratio and CO selectivity occurred at 0.08 wt % Na. The results are consistent with the well-established roles of Na as (i) an electronic promoter for Fe FT catalysts to shift product distributions to heavier hydrocarbons, (ii) a promotor of CO₂ adsorption through the provision of basic sites,^[17] and (iii) an inhibitor of surface hydrogenation.^[16, 18, 19] The Na-free (Na < 0.03 wt%) ZnFe₂O₄-derived catalyst shows a decreased CO₂ conversion, a lower C₅₊ selectivity, and a smaller O/P ratio than the Na-containing ex-ZnFe₂O₄ (Table 1 and

Figure 2 c). The CO selectivity also increases if the Na is removed. The RWGS reaction poses a thermodynamic barrier for CO_2 hydrogenation. Alkaline promoters such as Na can donate electrons to Fe metal to promote CO adsorption^[20] and accelerate the subsequent CO conversion to hydrocarbons.

The ex-ZnFe₂O₄ catalyst was tested for CO hydrogenation (H₂/CO=3, 340 °C, 10 bar) to determine its performance under typical CO FT conditions. As shown in Table S2, the ex-ZnFe₂O₄ catalyst shows 100% CO conversion (FTY > 11.1 μ mol_{CO₂} g_{Fe}⁻¹s⁻¹), 45.7% of C₅₊ selectivity, and a high O/P ratio (7.6). The slightly lower C₅₊ selectivity and O/P ratio relative to those for CO₂ hydrogenation seem to originate from the almost complete CO₂ conversion.

Thus, our ex-ZnFe $_2O_4$ catalyst is much more active in CO hydrogenation but similarly selective for C $_{5+}$ hydrocarbons and

hemPubSoc

CHEMSUSCHEM Full Papers

olefins. The lower rates of CO₂ hydrogenation are attributed to the reversible RWGS reaction and the competitive adsorption of water.

Role of Na-containing ZnFe₂O₄ as efficient CO₂ hydrogenation catalyst precursor

To understand the unique performance of the Na-containing ZnFe₂O₄-derived catalyst in the reaction of CO₂ and H₂, the reduction processes of the catalyst precursors were studied through temperature-programmed reduction with H₂ (H₂-TPR). For bare Fe_2O_3 , the reduction starts at 270 °C (Figure 3). This

Figure 3. H₂-TPR of Fe₂O₃, ZnO-Fe₂O₃, and ZnFe₂O₄.

temperature is substantially lower than that for Fe₂O₃ synthesized by a precipitation method (\approx 330 $^{\circ}$ C), probably because of the smaller particle size and the omission of the calcination step. If Fe₂O₃ is combined with ZnO, the reduction temperature increases from 330 to 360 °C. Compared with those for bare Fe₂O₃, the reduction-peak intensities of ZnO-Fe₂O₃ decrease and the peaks are shifted to higher temperatures above 700 °C, because ZnO retards the reduction of Fe₂O₃. The reduction of iron in $ZnO-Fe_2O_3$ and Fe_2O_3 produces Fe_3O_4 at low temperatures and then metallic Fe at high temperatures. The

reduction of ZnFe₂O₄ begins at a lower temperature than those for the two reference samples and occurs over a wider temperature range up to 800 °C. These results indicate that a strong interaction between Fe and ZnO retards the reduction of Fe₂O₃. This behavior is also consistent with the XRD pattern in Figure S1, which shows that both ZnO-Fe₂O₃ and ZnFe₂O₄ contain the FeO phase after H₂ treatment at 400 °C. Thus, the reduction behavior of the catalysts does not have a significant effect on the catalytic performance.

Next, we performed postreaction analyses of the catalysts after reactions at 340 °C and 10 bar for 48 h. After the reaction, the ex-Fe₂O₃ catalyst shows severe particle aggregation (as shown by the SEM and TEM images in Figures S3 c and S6), which results in a lowsurface-area catalyst. The ex-ZnO-Fe₂O₃ catalyst does not show significant morphological changes, and

separate rod-type ZnO particles and spherical Fe₃O₄ particles can be observed (Figures S3d and S7). However, the ex-ZnFe₂O₄ catalyst exhibits a dramatically changed morphology; the ZnFe₂O₄ precursor decomposes and is reduced into ZnO and metallic Fe particles after the reduction steps (Figures 1 c, d and S4). After the CO₂ hydrogenation reaction, the high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) mapping images (Figure 4) show that small ZnO particles decorate the surfaces of spherical Fe or Fe₃O₄ particles (<120 nm). The images demonstrate how ZnO works as a structural promoter of Fe; it decorates the surface of Fe or Fe₃O₄ particles to suppress the crystal growth of the Fe particles. If the ZnO and Fe are derived from ZnFe₂O₄, the structural promotion effect is more effective than that for the ZnO-Fe₂O₃ physical mixture because of the atomic mixing of Zn and Fe in the ZnFe₂O₄ precursor. The XRD pattern in Figure 1 b shows that the main phases of the ex-Fe₂O₃ and ex-ZnO-Fe₂O₃ catalysts are Fe₃O₄ and metallic Fe. Fe₃O₄ is an active phase of the RWGS reaction^[21] and must be formed through the partial oxidation of Fe metal by the byproduct water. In contrast, the $ZnFe_2O_4$ catalyst forms the χ -Fe₅C₂ phase through the in situ carburization of iron during the CO₂ hydrogenation, and χ -Fe₅C₂ is the active phase of iron FT catalysts for hydrocarbon synthesis. However, Na-free ZnFe₂O₄ shows only Fe₃O₄ and metallic iron phases without the carbide phase after the reaction, and this result highlights the critical role of the small amount of Na residue (\approx 0.08 wt% in this case) as an electronic promoter.

The postreaction X-ray photoelectron spectroscopy (XPS) analysis (Figure 5) shows that all samples reveal Fe2p_{3/2} and Fe2p_{1/2} peaks at binding energies (BEs) of 711.0 and 723.5 eV, indicating that oxidized Fe species form on the surface because of the water byproduct.^[22] This observation matches well with the XRD patterns in Figure 1b. However, the ZnFe₂O₄-derived catalysts show an additional well-defined peak at BE = 707 eV, which could be assigned to iron carbide.^[23] The Na-free ZnFe₂O₄ also shows the carbide XPS peak but only as a small shoulder peak, which indicates that a much smaller quantity is present than that in the regular ZnFe₂O₄ catalyst containing Na.

Figure 4. a) HRTEM images of the ZnFe₂O₄ catalyst after CO₂ hydrogenation for 48 h. b) Fe, C) O, d) Zn, and e) Na EELS mapping images.

CHEMSUSCHEM Full Papers

Figure 5. Fe 2p XPS spectra for a) ex-Fe₂O₃, b) ex-ZnO-Fe₂O₃, c) ex-ZnFe₂O₄ (Na 0.08 wt%), and d) Na-free ex-ZnFe₂O₄ after 48 h of reaction. The iron carbide peaks are highlighted in (c) and (d).

X-ray absorption near-edge structure (XANES) spectroscopy was applied to Fe_2O_3 , $ZnO-Fe_2O_3$, $ZnFe_2O_4$, and Na-free $ZnFe_2O_4$ used for 48 h of CO_2 hydrogenation. The Fe K-edge XANES spectra of the used catalysts as well as that of the reference Fe_5C_2 prepared by a previously reported method are shown in Figure 6a.^[24,25] All samples show different shapes for the edge-rising portion in the energy range from 7114 to 7130 eV owing to their different electronic structures. In particular, $ZnFe_2O_4$ and Na-free $ZnFe_2O_4$ present significantly different spectra, which indicate their different chemical states. Only the spectrum of regular (Na-containing) $ZnFe_2O_4$ has a similar pre-edge shape and position to those of the Fe_5C_2 reference at energies of 7114 and 7117 eV. To show the characteristics of the XANES spectra more clearly, the derivative spectra of normalized absorbance are provided in Figure 6 b. Again, only ex- $ZnFe_2O_4$ has a spectrum similar to that of the Fe_5C_2 reference.

As mentioned above, ZnO is a structural promoter that retards the sintering of the Fe particle size and, thus, increases the exposure of the active Fe metal surface. Usually, ZnO has a strong interaction with iron particles under FT or CO hydroge-

Figure 6. a) Fe K-edge XANES profiles of Fe₂O₃, ZnO-Fe₂O₃, ZnFe₂O₄, and Na-free ZnFe₂O₄ with the reference Hägg iron carbide. b) Fe K-edge XANES derivative spectra.

5

ChemSusChem 2017, 10, 1 – 8 www.chemsuschem.org

These are not the final page numbers! **77**

nation conditions.^[26] In contrast, Na is an electronic promoter that provides electrons to form reduced iron species as the active catalytic sites. Iron metal and Fe₃O₄ are active sites for the formation of hydrocarbons and RWGS reactions, respectively, in FT synthesis.^[21,27] Both ZnO-Fe₂O₃ and Na-free ZnFe₂O₄ contain Fe and Fe₃O₄ in addition to ZnO (as shown by XRD), which results in the formation of the undesired products methane and short-chain light hydrocarbons. However, ZnFe₂O₄ promoted with residual Na as well as Zn can form χ - Fe_5C_2 readily through the insitu carburization of iron during CO₂ hydrogenation. This Hägg iron carbide is the known active phase of iron-based FT catalysts for CO hydrogenation. Our results demonstrate that this phase is also the active phase in CO_2 hydrogenation for the formation of C_{5+} liquid hydrocarbons. Thus, the catalyst presents interesting selectivity for C_{5+} liquid products, high O/P ratios, and high hydrocarbon yields in CO_2 hydrogenation at 340 °C and 10 bar. The evolution of the catalyst structure and the mechanistic idea of a doubly promoted χ -Fe₅C₂ catalyst with electronic (Na) and structural (ZnO) promoters are illustrated in Scheme 1.

 $\label{eq:Scheme 1. Structural evolution and mechanistic idea of ZnFe_2O_4-derived catalyst for the selective synthesis of C_{S+} liquid fuels by CO_2 hydrogenation.$

Conclusions

Sodium-containing ZnFe₂O₄ synthesized by a microwave-assisted hydrothermal method becomes an effective catalyst precursor that gives rise to a high CO₂ conversion, an improved liquid-fuel selectivity (\approx 58%), and a high olefin-to-paraffin ratio (\approx 11) in CO₂ hydrogenation with the assistance of Zn as a structural promoter and Na as an electronic promoter. The combination of Zn and Na with Fe increases the CO₂ adsorption properties and promotes the in situ formation of Hägg iron carbide, which is the active phase for the formation of heavy hydrocarbons in CO₂ hydrogenation.

Experimental Section

Catalyst preparation

ZnFe₂O₄ was synthesized by a microwave-assisted hydrothermal method. Fe(NO₃)₃·9H₂O (Kanto, 2.02 g) and Zn(NO₃)₂·6H₂O (Zn/Fe = 1:1 molar ratio, 1.47 g) were dissolved in distilled water (40 mL), and NaOH (0.1 mol) was added to the mixture to ensure that it was basic. An excess of the Zn source over the stoichiometry (1:2) was needed to prepare the pure-phase ZnFe₂O₄ After a few minutes, propionaldehyde (0.5 mL) was added. The solution was transferred to a 100 mL Teflon tube, which was then placed in a microwave oven (CEM MARS-5, 300 W) for 2 h at 180 °C for the synthesis reaction. After the sample cooled to ambient temperature, it was washed with distilled water (0.5-1.5 L) to control the amount of residual Na. If the samples were washed with more than 6 L of water, the amount of Na residue was negligible, and Na-free ZnFe₂O₄ samples were obtained. The Fe₂O₃ reference was also synthesized by a similar microwave-assisted hydrothermal method with only Fe(NO₃)₃·9H₂O. For the ZnO-Fe₂O₃ physical mixture, commercial ZnO (Sigma-Aldrich) and Fe₂O₃ (Kanto) were mixed in a mortar with a Zn/Fe molar ratio of 1:2.

Catalytic CO₂ hydrogenation

The CO₂ hydrogenation was performed in a fixed-bed reactor at a CO_2/H_2 ratio of 1:3. All samples were pre-reduced in a pure H_2 flow [100 mLmin⁻¹, standard temperature and pressure (STP)] at 400 °C for 2 h. After the reduction step, the reactor was purged with Ar to remove the H_2 , and then CO_2 , H_2 , and N_2 (7.69 vol% as an internal reference for GC analysis) entered the reactor at 10 bar and 340 $^\circ$ C with a gas hourly space velocity (GHSV) of 1800 $mL\,g^{-1}\,h^{-1}.$ The CO₂, H₂, and N₂ products were analyzed by online GC (Agilent 7890A) with a thermal conductivity detector (TCD, Carboxen 1000 packed column). Hydrocarbons from C₁ to C₆ were analyzed continuously using the same GC instrument with a flame ionization detector (FID, alumina sulfate PLOT capillary column). The heavy-hydrocarbon liquid products were collected in a cold trap. The products were analyzed through simulated distillation (SIMDIS) and detailed hydrocarbon analysis (DHA) based on their carbon-number distributions (ASTM D2887 and D6729).^[28]

Characterization and analysis

Powder XRD was performed with a PANalytical X'pert diffractometer with CuK_a radiation (40 mA, 30 kV). H₂-TPR was performed with a Micromeritics AutoChem II apparatus (model 2920). HRTEM and SEM were performed with JEOL JEM-2200FS and Philips Electron Optics XL30S FEG instruments, respectively. The BET surface areas and pore-size distributions were determined from the N₂ sorption isotherms measured at liquid N₂ temperature (Mirae SI, Nanoporosity-XQ). The X-ray absorption fine structure (XAFS) measurements were performed at the 7D beamline of the Pohang Accelerator Laboratory (PLS-II, 3.0 GeV, 400 mA). The synchrotron radiation was monochromatized with Si(111) double crystal monochromators. Under ambient conditions, the Fe K-edge ($E_0 = 7112 \text{ eV}$) spectra were collected in transmission mode with He- and N₂-filled IC SPEC ionization chambers. The incident beam was detuned by 30% for the Fe K-edge to reduce contamination by higher harmonics. The spectrum of the Fe foil reference was recorded to enable the calibration of the energy in the spectrum of the sample to the K-edge energy of Fe metal. The AHENA program in the IFEFFIT suite of programs was used to analyze the obtained data to determine the

www.chemsuschem.org

local structures of the Fe atoms in $ZnFe_2O_4,\ Fe_2O_3,$ and $ZnO-Fe_2O_3^{(29)}$

Acknowledgements

This work was supported by the Climate Change Response project (2015M1A2A2074663, 2015M1A2A2056824), the Basic Science Grant (NRF-2015R1A2A1A10054346), Korea Center for Artificial Photosynthesis (KCAP, No. 2009-0093880) funded by MSIP, and MOTIE of Republic of Korea (Project Nos. 10050509 and KIAT N0001754).

Conflict of interest

The authors declare no conflict of interest.

Keywords: carbon dioxide \cdot fischer–tropsch synthesis \cdot fuels \cdot hydrogenation \cdot spinel phases

- [1] R. W. Dorner, D. R. Hardy, F. W. Williams, H. D. Willauer, *Energy Environ. Sci.* 2010, 3, 884–890.
- [2] J. Patricio, A. Angelis-Dimakis, A. Castillo-Castillo, Y. Kalmykova, L. Rosado, J. CO₂ Util. 2017, 17, 50-59.
- [3] Y. J. Jang, I. Jeong, J. Lee, J. Lee, M. J. Ko, J. S. Lee, ACS Nano 2016, 10, 6980–6987.
- [4] J. Wang, S.-M. Lu, J. Li, C. Li, Chem. Commun. 2015, 51, 17615-17618.
- [5] T. Witoon, T. Permsirivanich, N. Kanjanasoontorn, C. Akkaraphataworn, A. Seubsai, K. Faungnawakij, C. Warakulwit, M. Chareonpanich, J. Limtrakul, *Catal. Sci. Technol.* **2015**, *5*, 2347–2357.
- [6] S. Saeidi, N. A. S. Amin, M. R. Rahimpour, J. CO₂ Util. **2014**, *5*, 66–81.
- [7] W. Wang, S. Wang, X. Ma, J. Gong, Chem. Soc. Rev. 2011, 40, 3703-3727.
- [8] M. D. Porosoff, B. Yan, J. G. Chen, Energy Environ. Sci. 2016, 9, 62-73.
- [9] M. Albrecht, U. Rodemerck, M. Schneider, M. Bröring, D. Baabe, E. V. Kondratenko, Appl. Catal. B 2017, 204, 119–126.
- [10] M. Al-Dossary, A. A. Ismail, J. L. G. Fierro, H. Bouzid, S. A. Al-Sayari, Appl. Catal. B 2015, 165, 651-660.
- [11] L. M. Chew, P. Kangvansura, H. Ruland, H. J. Schulte, C. Somsen, W. Xia, G. Eggeler, A. Worayingyong, M. Muhler, *Appl. Catal. A* 2014, 482, 163– 170.

[12] Y. H. Choi, Y. J. Jang, H. Park, W. Y. Kim, Y. H. Lee, S. H. Choi, J. S. Lee, *Appl. Catal. B* **2017**, 202, 605–610.

CHEMSUSCHEM

Full Papers

- [13] J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, J. Sun, Nat. Commun. 2017, 8, 15174.
- [14] M. Zhang, R. Lan, J. Liu, X. Chen, W. Zhou, J. Chem. Soc. Faraday Trans. 1992, 88, 637–644.
- [15] J. C. Park, D. H. Chun, J.-I. Yang, H.-T. Lee, S. Hong, G. B. Rhim, S. Jang, H. Jung, *RSC Adv.* 2015, *5*, 44211–44217.
- [16] H. M. Torres Galvis, J. H. Bitter, C. B. Khare, M. Ruitenbeek, A. I. Dugulan, K. P. de Jong, *Science* **2012**, *335*, 835–838.
- [17] R. Satthawong, N. Koizumi, C. Song, P. Prasassarakich, *Catal. Today* 2015, 251, 34–40.
- [18] C. G. Visconti, M. Martinelli, L. Falbo, A. Infantes-Molina, L. Lietti, P. Forzatti, G. Iaquaniello, E. Palo, B. Picutti, F. Brignoli, *Appl. Catal. B* 2017, 200, 530-542.
- [19] M. Amoyal, R. Vidruk-Nehemya, M. V. Landau, M. Herskowitz, J. Catal. 2017, 348, 29–39.
- [20] B. Graf, M. Muhler, Phys. Chem. Chem. Phys. 2011, 13, 3701-3710.
- [21] T. Riedel, H. Schulz, G. Schaub, K.-W. Jun, J.-S. Hwang, K.-W. Lee, Top. Catal. 2003, 26, 41–54.
- [22] A. M. Hilmen, D. Schanke, K. F. Hanssen, A. Holmen, Appl. Catal. A 1999, 186, 169-188.
- [23] K. Cheng, V. V. Ordomsky, M. Virginie, B. Legras, P. A. Chernavskii, V. O. Kazak, C. Cordier, S. Paul, Y. Wang, A. Y. Khodakov, *Appl. Catal. A* 2014, 488, 66–77.
- [24] C. Yang, H. Zhao, Y. Hou, D. Ma, J. Am. Chem. Soc. 2012, 134, 15814– 15821.
- [25] H. Park, D. H. Youn, J. Y. Kim, W. Y. Kim, Y. H. Choi, Y. H. Lee, S. H. Choi, J. S. Lee, *ChemCatChem* **2015**, *7*, 3488-3494.
- [26] M. K. Gnanamani, H. H. Hamdeh, G. Jacobs, D. Qian, F. Liu, S. D. Hopps, G. A. Thomas, W. D. Shafer, Q. Xiao, Y. Hu, B. H. Davis, *RSC Adv.* 2016, 6, 62356–62367.
- [27] H. Schulz, T. Riedel, G. Schaub, Top. Catal. 2005, 32, 117-124.
- [28] C. Wang, R. Firor, Simulated Distillation System for ASTM D2887 Based on the Agilent 6890n GC, 2005, Agilent Technologies publication 5989-2726EN, https://www.agilent.com/cs/library/applications/5989-2726EN.pdf.
- [29] B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537-541.

Manuscript received: August 3, 2017 Version of record online:

www.chemsuschem.org

7

ChemSusChem 2017, 10, 1-8

FULL PAPERS

Y. H. Choi, E. C. Ra, E. H. Kim, K. Y. Kim, Y. J. Jang, K.-N. Kang, S. H. Choi, J.-H. Jang, J. S. Lee*

Sodium-Containing Spinel Zinc Ferrite as a Catalyst Precursor for the Selective Synthesis of Liquid Hydrocarbon Fuels

It's a gas: A catalyst derived from spinel ZnFe₂O₄ containing Na residue displays high CO₂ hydrogenation activity and liquid-fuel selectivity in the gasoline and diesel range with high olefin-to-paraffin ratios.