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Abstract Direct C–H trifluoromethylation of heterocycles is a valuable
transformation. In particular, nonprecious metal-catalyzed C–H trifluo-
romethylation processes, which do not proceed through CF3 radical
species, have been less developed. In this cluster report, a new copper-
catalyzed aerobic C–H trifluoromethylation of phenanthrolines is de-
scribed. This transformation affords trifluoromethylated phenanthro-
lines that have not been synthesized and preliminary mechanistic stud-
ies suggest that the CF3 group transfer may occur through cooperative
activation.
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Trifluoromethylated arenes and heterocycles are im-
portant building blocks for organic synthesis and pharma-
ceutical research because of their unique electronic and
metabolic properties applicable to drug discovery.2 Among
various catalytic trifluoromethylation methods,3 the direct
C–H trifluoromethylation is a straightforward means to af-
ford trifluoromethylated heterocycles. For example, meth-
ods for arene C–H trifluoromethylation initiated by CF3 rad-
ical species has received much attention: MacMillan, Baran,
and Sanford have each independently discovered radical-
based methods for heterocycle trifluoromethylation.4 In
parallel, nonradical-based methods for C–H trifluorometh-
ylation offer complementary synthetic utilities. Yu, Sanford,
and Liu have reported the palladium-catalyzed C–H trifluo-
romethylation methods of heterocycles.5 However, nonpre-
cious metal-catalyzed direct C–H trifluoromethylation
which does not proceed through CF3 radical species has
been less explored.

Recently, Qing disclosed a copper-catalyzed oxidative
trifluoromethylation of heteroarenes under strongly basic
conditions (Scheme 1,A).6 In this reaction, a reductive elimi-
nation step of a CF3 group from the high-valent copper cen-
ter has been proposed as the key step for the C–H trifluoro-
methylation. Since phenanthrolines are widely used ligands
in synthetic chemistry and to the best of our knowledge,
the synthesis of trifluoromethylated phenanthrolines has
not been reported,7 we herein describe a Cu(OAc)2-cata-

lyzed method for aerobic C–H trifluoromethylation of
phenanthrolines under nearly neutral conditions (Scheme
1,B). Our preliminary studies reveal that the acetate counter-
ion is crucial for this unique reactivity and that the CF3-
group transfer may occur via Lewis acid–Lewis base coop-
erative activation.

Scheme 1  Copper-catalyzed nonradical-based C–H trifluoromethyla-
tion of heteroarenes

We initiated catalyst discovery with 1,10-phenanthro-
line (1) as a model substrate for synthetic and mechanistic
considerations (Table 1).8 When KF was applied to activate
TMSCF3 under O2 (1.013 bar), we observed that 1 was most-
ly recovered in the absence of copper catalyst (Table 1, en-
try 1). CuI and CuBr2 were subsequently determined inef-
fective to promote the desired reaction (Table 1, entries 2
and 3). Interestingly, CuOAc catalyzes the ortho trifluoro-
methylation of 1 at 40 °C (Table 1, entry 4, full conversion,
72% yield), and Cu(OAc)2 is equally active for this reaction
(Table 1, entry 5, 75% yield). After exploring the counterion
effect with a variety of copper(II) salts, we determined that
Cu(OAc)2 is superior to Cu(TFA)2 and that Cu(OTf)2 and
CuSO4 are unreactive (Table 1, entries 6–8). Surprisingly, we
discovered that, in the absence of KF, Cu(OAc)2 catalyzes
this reaction, albeit with a lower yield (Table 1, entry 9, 58%
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yield). Extensive optimization reveals that the combination
of Cu(OAc)2–KOAc or Cu(OAc)2–KOAc–AcOH promotes the
C–H oxidative trifluoromethylation with excellent yield (Ta-
ble 1, entries 10 and 11). It is interesting to note that no bis-
trifluoromethylation products were isolated even when a
large excess amount of TMSCF3 (>5.0 equiv) was applied
and that the reaction under air atmosphere did not proceed
as efficiently as the one that proceeded under O2.

Table 1  Catalyst Discovery for Direct Phenanthroline Trifluoromethyl-
ation

Since the facile conversion of copper(I) to copper(II) un-
der aerobic conditions is well-known, we suspected that
Cu(OAc)2 is the active oxidative species. To test this hypoth-
esis, we conducted the reaction with a stoichiometric
amount of Cu(OAc)2 in the absence of O2 and observed full
recovery of the starting material (Table 2, entry 1). This re-
sult suggests that copper(II) unlikely acts alone as the oxi-
dant. We further explored a range of oxidants, including io-
dine(III), iodine(V), silver(I), DDQ, and TBHP, all of which
proved ineffective for this reaction (Table 2).

Under optimized conditions, we evaluated a series of
symmetric and desymmetric phenanthrolines for the ortho
trifluoromethylation (Table 3). Symmetric 4,7-diphenyl
phenanthroline proves an excellent substrate (Table 3, entry

2, 92% yield); however, 4,7-dimethylphenanthroline has a
lower reactivity with a decreased yield (Table 3, entry 3,
61% yield). Desymmetric 3-phenylphenanthroline is an ac-
ceptable substrate for the ortho trifluoromethylation at the
C-2 position (Table 3, entry 4, 64% yield) and symmetric
3,8-diphenylphenanthroline provides the trifluoromethyla-
tion product in a moderate yield (Table 3, entry 5, 52%). The
trifluoromethylation of 5-nitrophenanthroline provides
two readily separable products with a decent combined
yield (Table 3, entry 6).

Intrigued by the dominant ortho selectivity and the fact
that the catalytic cycle turns over in the absence of any flu-
oride-based activator, we then carried out several control
experiments to probe for a possible mechanism (Scheme 2).
First, when a stoichiometric amount of TEMPO was applied
to the standard conditions, the product was isolated with a
good yield (71% yield). At the same time, we did not detect
any TEMPO–CF3 adduct (Scheme 2,A). This result suggests
that the CF3 radical is unlikely to be involved in this reac-
tion. Next, when we subjected 1 to catalytic conditions un-
der an argon atmosphere, a trifluoromethyl-group addition
product 1,2-dihydrophenanthroline 3 was isolated after 24
hours albeit with a low yield (Scheme 2,B). Subsequently,
we tested the reactivity of an aniline-derived ketoimine 4
with an ortho-pyridyl moiety under an argon atmosphere
and observed the imine trifluoromethylation product 5
with an acceptable yield (Scheme 2,C). These results sug-
gest that an N,N-bidentate directing group is crucial for the
copper-catalyzed CF3-group transfer.

Entrya Catalyst Additive (equiv) Conversion 
(%)b

Yield (%)c

1 none KF (3.0) <5 <5

2 CuI KF (3.0) <5 <5

3 CuBr2 KF (3.0) <5 <5

4 CuOAc KF (3.0) >95 72

5 Cu(OAc)2 KF (3.0) >95 75

6 Cu(TFA)2 KF (3.0) 78 56

7 Cu(OTf)2 KF (3.0) <5 <5

8 Cu(SO4)2 KF (3.0) <5 <5

9 Cu(OAc)2 none 100 58

10 Cu(OAc)2 KOAc (1.0) 100 78

11 Cu(OAc)2 KOAc (0.5)
AcOH (0.5) 100 80

a Reactions were carried out under O2 at 40 °C, unless stated otherwise.
b Conversions were determined by 1H NMR analysis with 1,3,5-trimethoxy-
benzene as an internal standard.
c Isolated yield.
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Table 2  Oxidant Sreening for the Cu(OAc)2-Catalyzed Phenanthroline 
Trifluoromethylation

Entry Oxidant Conversion (%) Yield (%)

1 none <5 <5

2 O2 >95 80

3 PhI(OAc)2 56 42

4 AgOAc <5 <5

5 DDQa 15 10

6 DMPb 35 22

7 TBHPc <5 <5
a DDQ: 2,3-dichloro-5,6-dicyano-1,4-benzoquinone.
b DMP: Dess–Martin periodinane.
c TBHP: tert-butyl hydroperoxide.
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Based on the collective results from the control experi-
ments, we propose the following mechanistic working hy-
pothesis (Scheme 3). Since copper(II) is known to coordi-
nate with 1 and generate the tetrahedral complex 6,9 the
acetate ligand may be activated by the substrate 1. Subse-

quently, the acetate ligand may then activate the CF3 group
from TMSCF3 through a hypervalent silicon species. From
this anionic metathesis, a Cu(CF3)(OAc)(phenanthroline) in-
termediate 7 can be generated. Since the C=N bond of a
phenanthroline is prone to nucleophilic addition,10 the co-

Table 3  Substrate Scope for the Copper-Catalyzed Trifluoromethylation of Phenanthrolines

Entry Substrate Product Yield (%)

1 80

2 92

3 61

4 64

5 52

6 17

54
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ordination of the substrate to the Lewis acidic copper(II)
presumably activates the C=N bond to nucleophilic addi-
tion.11 At the same time, the coordination of the Lewis basic
substrate may cooperatively enhance the nucleophilicity of
the CF3 group. The addition product 8, a 1,2-dihydro-
phenanthroline derivative can then undergo aerobic oxida-
tion in the presence of O2 to furnish 2.12,13

In summary, we have discovered a new copper-cata-
lyzed aerobic C–H trifluoromethylation of phenanthrolines.
Our preliminary mechanistic studies revealed that a Lewis
acid–Lewis base cooperative activation mechanism may be
involved and that the reaction does not proceed through a
CF3 radical species. Further exploration with this new tri-
fluoromethylation mechanism is ongoing.
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