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We have prepared and characterized two ruthenium(II) complexes supported by phosphine-functionalized
N-heterocyclic (NHC) ligands. One of the complexes (2a) underwent ortho-metalation of the N-phenyl moiety
giving rise to a tridentate PCNHCC− coordinating ligand whereas 2b bears anN-mesityl group in order to prevent
C–H activation of the aryl ring thereby enforcing a PCNHC bidentate bindingmode. Both 2a and 2bwere shown to
catalyze transfer hydrogenation of ketones at 82 °C in 2-propanol in the presence of KOtBu albeit with vastly dif-
ferent catalytic activities. Catalytic transfer hydrogenation by 2bwas shown to proceed at room temperature and
in air using unpurified 2-propanol as solvent and hydrogen donor. Time studies revealed unique kinetic profiles
for the two precatalysts; this may shed light on the difference in their catalytic activities.

© 2013 Elsevier B.V. All rights reserved.
Arduengo's discovery demonstrating that N-heterocyclic carbenes
(NHCs) are isolable using common air- and moisture-free techniques
[1] led early pioneers like Herrmann [2–5], Enders [6,7], Dixneuf,
Çetinkaya [8], Nolan [9], and Grubbs [10,11] to employ NHCs as ligands
supporting catalytically competent transition metal centers during the
mid to late 1990s. Since this time the number of catalytic applications
using metal–NHC complexes has increased rapidly. Due to their strong
σ-donating ability, NHCs effectively stabilize numerous transition metal
centers [12]. However, several common decomposition pathways exist
for metal–NHC complexes; this limits the ability of monodentate
NHC ligands to effectively stabilize metal centers at the high temper-
atures employed in some catalytic applications. Chelating, donor-
functionalized NHCs have been developed to circumvent decomposition
and have expanded the utility of metal–NHC catalysts for use in higher
temperature applications [13].

The transfer hydrogenation of aldehydes, ketones, and imines is an
industrially relevant reaction often conducted in refluxing 2-propanol
or formic acid using ruthenium-based catalysts [14,15]. Under these
conditions the ability of chelating, donor-functionalized NHCs to stabi-
lize metal centers while preventing decomposition is quite valuable.
Examples of ruthenium complexes supported by chelating, donor-
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functionalized NHCs have been reported and their efficacy as transfer
hydrogenation catalysts has been explored. Thus far ruthenium com-
plexes supported by chelating NHC ligands bearing nitrogen [16–27],
anionic carbon [28,29], oxygen [30,31], phosphorous [32,33], arene
[34–36], and alkene [30] donors have been used as transfer hydrogena-
tion catalysts. Compared to other donor-functionalizedNHC complexes,
phosphine-functionalized NHC ruthenium(II) complexes are under-
developed. To our knowledge, there have been only two reports of
transfer hydrogenation catalyzed by ruthenium complexes of
phosphine-functionalized chelating NHCs. Chiu and Lee [32] have re-
ported on the synthesis and catalytic behavior of tridentate PCNHCP
complexes of ruthenium(II), and Miranda-Soto and co-workers
[33] have reported on a ruthenium(II) cyclopentadienyl complex
supported by a phosphine-functionalized NHC bearing an N–H moiety.
We set out to explore ruthenium(II) complexes supported by bidentate
phosphine-functionalized NHCs bearing N-aryl groups and unexpectedly
generated a ruthenium(II) complex supported by a tridentate PCNHCC−

ligand as a result of intramolecular C–H activation of the N-phenyl
group (2a, Scheme 1). In order to explore the effects of ortho-metalation
on catalytic transfer hydrogenation activity, we prepared the N-mesityl
analogue (2b) and evaluated both 2a and 2b as catalysts for the transfer
hydrogenation of several ketones.

The phosphine-functionalized bisimidazolium salts (1a,b) were
prepared according to the method reported by Zhou and co-workers
[37] with one minor modification; in the coupling reaction between
o-(diphenylphosphino)benzyl chloride and 1-arylimidazoles, N,N-
dimethylformamide was used as the solvent and the reaction was
heated to 90 °C. In our hands, this modification allowed us to avoid
the complicating factors introduced when ethanol was used as
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Scheme 1. Preparation of 2a and 2b.

Table 1
Crystal data and structure refinement for 2a.

Empirical formula C31H24Cl3N2O2PRu

Formula weight 694.91
Temperature [K] 210(2)
Wavelength [Å] 0.71073
Crystal system, space group Triclinic, P−1

Unit cell dimensions a = 8.1600(9) Å α = 100.109(5)°
b = 12.1940(13) Å β = 93.560(5)° c
= 14.9713(16) Å
γ = 93.469(5)°

Volume [Å3] 1459.9(3)
Z, Calculated density [mg/m3] 2, 1.581
Absorption coefficient [mm−1] 0.899
F(000) 700
Crystal size [mm] 0.17 x 0.08 x 0.03
θ range for data collection [°] 2.77 to 27.84
Limiting indices −10 ≤ h ≤ 10, −16 ≤ k ≤ 15,

−19 ≤ l ≤ 19
Reflections collected/unique 24,026/6906 [Rint = 0.0481]
Completeness to θ = 27.84 99.5 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9735 and 0.8622
Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 6906/22/383
Goodness-of-fit on F2 1.009
Final R indices [I N 2σ (I)] R1 = 0.0417,wR2 = 0.0742
R indices (all data) R1 = 0.0773,wR2 = 0.0863
Largest diff. peak and hole [e/Å] 0.656 and −0.644

Table 2
Crystal data and structure refinement for 2b.

Empirical formula C34H31Cl4N2O2PRu

Formula weight 773.45
Temperature [K] 190(2)
Wavelength [Å] 0.71073
Crystal system, space group Monoclinic, C 2/c

Unit cell dimensions a = 22.539(3) Å α = 90°
b = 16.4065(17) Å β = 111.004(5)°
c = 19.852(2) Å γ = 90°

Volume [Å3] 6853.2(13)
Z, Calculated density [mg/m3] 8, 1.499
Absorption coefficient [mm−1] 0.849
F(000) 3136
Crystal size [mm] 0.21 × 0.20 × 0.19
θ range for data collection [°] 2.97 to 27.50°
Limiting indices −29 ≤ h ≤ 29, −20 ≤ k ≤ 21,

−25 ≤ l ≤ 25
Reflections collected/unique 53,042/7865 [Rint = 0.0433]
Completeness to θ = 27.50 99.9 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.8553 and 0.8418
Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 7865/0/402
Goodness-of-fit on F2 1.077
Final R indices [I N 2σ (I)] R1 = 0.0378, wR2 = 0.0860
R indices (all data) R1 = 0.0568, wR2 = 0.0966
Largest diff. peak and hole [e/Å] 0.983 and −0.994
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solvent. Specifically, ethanol acts as a competitive nucleophile for o-
(diphenylphosphino)benzyl chloride thereby leading to an undesired
side product and requiring chromatographic purification of the desired
imidazolium salt [38]. The ruthenium(II) complexes were prepared via
transmetalation from the Ag–NHC complex to [Ru(CO)3Cl2]2 dimer
(Scheme 1.) The orthometalated N-phenyl complex (2a) [39] furnished
a disappointing 5.4% yield while the N-mesityl complex (2b) [40] was
isolated as a crystalline solid in 49.9% yield. The low yield of 2a may
be due to its higher solubility in the crystallization solvent system
since crude yields were higher (ca. 70%).

Single crystals suitable for X-ray diffraction studies of both 2a and 2b
were grown via vapor diffusion of diethyl ether into a saturated dichloro-
methane solution of the product isolated after column chromatography.
The full details of the X-ray diffraction studies have been reported previ-
ously by Domski and co-workers [41,42]. Crystal data, refinement, and
data collection details are presented in Tables 1 (2a) and 2 (2b). Selected
bond length and bond angle data are presented in Tables 3 (2a) and 4
(2b). The unit cell of both compounds includes one dicholoromethane
molecule of crystallization. Both compounds adopt distorted octahedral
coordination geometry in the solid state (Figs. 1; 2a and 2; 2b). For 2a
the bond angles of the cis-substituents at ruthenium range from 77.19°
to 95.70°. For 2b the bond angles of the cis-substituents at ruthenium
Table 3
Selected bond lengths (Å) and angles (°) for 2a.

Bond lengths (Å) Bond angles (°)

Ru(1)–C(1) 1.858(4) C(1)-Ru(1)–C(2) 91.18(14)
Ru(1)–C(2) 1.933(4) C(1)–Ru(1)–C(3) 87.44(13)
Ru(1)–C(3) 2.066(3) C(1)–Ru(1)–C(11) 89.85(12)
Ru(1)–C(11) 2.129(3) C(2)–Ru(1)–C(11) 93.56(13)
Ru(1)–P(1) 2.4267(8) C(3)–Ru(1)–C(11) 77.77(12)
Ru(1)–Cl(1) 2.4735(8) C(1)–Ru(1)–P(1) 95.28(10)

C(2)–Ru(1)–P(1) 93.05(10)
C(3)–Ru(1)–P(1) 95.72(9)
C(2)–Ru(1)–Cl(1) 92.23(10)
C(3)–Ru(1)–Cl(1) 88.50(8)
C(11)–Ru(1)–Cl(1) 85.40(8)
P(1)–Ru(1)–Cl(1) 89.08(3)

Table 4
Selected bond lengths (Å) and angles (°) for 2b.

Bond lengths (Å) Bond angles (°)

Ru(1)–C(1) 1.849(3) C(1)–Ru(1)–C(2) 88.15(13)
Ru(1)–C(2) 1.934(3) C(1)–Ru(1)–C(3) 92.46(11)
Ru(1)–C(3) 2.071(3) C(2)–Ru(1)–C(3) 97.13(11)
Ru(1)–P(1) 2.4325(8) C(1)–Ru(1)–P(1) 89.86(9)
Ru(1)–Cl(1) 2.4515(7) C(3)–Ru(1)–P(1) 96.87(7)
Ru(1)–Cl(2) 2.4529(8) C(2)–Ru(1)–Cl(1) 85.46(9)

C(3)–Ru(1)–Cl(1) 84.81(7)
P(1)–Ru(1)–Cl(1) 97.20(3)
C(1)–Ru(1)–Cl(2) 93.92(9)
C(2)–Ru(1)–Cl(2) 82.72(9)
P(1)–Ru(1)–Cl(2) 83.52(3)
Cl(1)–Ru(1)–Cl(2) 88.80(3)



Fig. 1. ORTEP diagram of 2a; thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms and dichloromethane molecule of crystallization omitted for clarity.
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range from 82.72 to 97.20°. For both complexes the Ru–CO bond lengths
are inequivalent. In the structure of 2a the Ru–C1 bond is 0.072 Å shorter
than the Ru–C2 bond which is in agreement with the stronger trans-
influence of the NHC compared to the chloride ligand. For 2b the Ru–
C1 bond is 0.085 Å shorter than the Ru–C2 bond in agreement with the
stronger trans-influence of phosphines compared to chloride ligands.
The Ru–C11 bond distance (2.129 Å) in 2a is well within the range of
a Ru–C covalent bond. The Ru–C11 bond is retained in solution as
evidenced by the doublet centered at 154.44 ppm in the 13C NMR spec-
trum; the splitting of this signal is consistent with 13C –31P coupling.

The 1H NMR spectrum of 2a is difficult to interpret due to extensive
overlapping of peaks in the aromatic region. One noteworthy feature is
Fig. 2. ORTEP diagram of 2b; thermal ellipsoids are shown at the 50% probability level. H
that the signal for the methylene protons appears as two doublets due
to the fact that these protons are diastereotopic. The 1H NMR spectrum
of 2b exhibits an identical signature for themethylene protons. Addition-
ally, the protons of the ortho-methyl groups on themesityl ring resonate
at different frequencies suggesting that rotation about the N–CMes bond
is restricted in solution.

Both 2a and 2b catalyzed the transfer hydrogenation of acetophenone
at 82 °C with 2-propanol as solvent and hydrogen donor in the presence
of KOtBu [43]. Since 2b was isolated in a much higher yield than 2a, the
majority of catalytic trials were conducted using 2b; the results of these
trials are reported in Table 5. At loadings of 213:1 ([ketone]:[[2]b]) at
82 °C under a dry nitrogen atmosphere, acetophenone, cyclohexanone,
ydrogen atoms and dichloromethane molecule of crystallization omitted for clarity.



Table 5
Results of catalytic trials with 2b.

Triala Ketone [ketone]:[Ru] Temperature
(°C)

Conversionb

(%)
TOFc

(h−1)

1 213:1 82 93.7 199

2d 213:1 82 90.5 192

3
e

1000:1 82 45.8 456

4 213:1 25 25.6 54.3

5 213:1 82 96.7 206

6 213:1 82 61.3 130

7 213:1 82 53.6 114

8 213:1 82 62.3 133

9 213:1 82 99.5 211

a General conditions: 2b (16 μmol)was dissolved in 5.0 mL of dry, degassed 2-propanol
along with KOtBu (99 μmol) in an N2 atmosphere. The ketone (3.4 mmol) was added to
the reaction flask then the reaction mixture was heated to 82 °C with stirring. The reaction
duration in each case was 60 min. bDetermined via gas chromatography. cmol alcohol/mole
Ru/h. dThis reaction was conducted using unpurified solvents in air. e16.0 mmol of ketone
was used.
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quency (TOF) vs. time for 2a and 2b.
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and 2-methylacetophenone were converted to the corresponding
alcohols with ≥93.7% conversion in 60 min (entries 1, 5, and 9).
The turn over frequency (TOF) for the conversion of acetophenone to 1-
phenylethanol with 2b was at least 1.6 times higher than previously re-
ported examples of transfer hydrogenation catalyzed by ruthenium(II)
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Fig. 3. Transfer hydrogenation of acetophenone to form1-phenylethanol: % conversion vs.
time for 2a and 2b.
complexes supported by phosphine-functionalized NHCs under similar
conditions [32,33].

Somewhat unexpectedly, given the high steric demand near the
carbonyl moiety, transfer hydrogenation of 2-methylacetophenone led
to the highest conversion among the acetophenones. It is possible that
the ortho-methyl group forces the ketone to adopt a conformation
that decreases the steric interactions between the ketone and the ligand
as the ketone approaches the Ru(II)-center. Substitution at the para-
position led to lower catalytic activity (entries 6 – 8); the electron do-
nating or withdrawing nature of the para-substituent did not seem to
have a significant effect on catalytic activity (entry 6 vs. 8).

Other noteworthy features of 2b's catalytic behavior include: its abil-
ity to catalyze the transfer hydrogenation of acetophenone at ambient
temperature (entry 4) and in air using unpurified 2-propanol with
only a minor loss of catalytic activity (entry 2). In the solid state and in
solution, 2b is stable for at least one week and likely longer. These two
observations combined suggest that 2b is a robust pre-catalyst for trans-
fer hydrogenation.

The percent conversion of acetophenone to 1-phenylethanol was
monitored over time for 2a and 2b; the results of the time studies are
summarized in Figs. 3 and 4. The data in Fig. 3 reveal that 2b initiates rap-
idly and that the reaction reaches 90% conversion within 20 min while
the activity of 2a under identical conditions is much lower. As expected
the TOF for 2b diminishes over time as acetophenone is consumed
(Fig. 4). Interestingly, the TOF of 2a increases steadily from 20 min to
150 min suggesting that initiation of 2a is slow (Fig. 4). One potential
explanation for this observation is that the tridentate ligand of 2a exerts
extra steric demand at the active site thereby slowing initiation.

We have prepared and characterized two ruthenium(II) complexes
supported by phosphine-functionalized NHC ligands and have evaluated
their behavior as transfer hydrogenation catalysts. To our knowledge, this
is the first report of transfer hydrogenation catalyzed by a ruthenium(II)
complex supported by an ortho-metalated, phosphine-functionalized
NHC ligand. The ortho-metalated complex, 2a, showed low catalytic
activity and an increase in TOF over time suggesting slow initiation.
Notably, 2b showedmuch higher activity catalyzing the transfer hydro-
genation of several ketones to high conversion. Additionally, 2b was
shown to be a viable pre-catalyst at room temperature and in the pres-
ence of air using unpurified 2-propanol as the solvent and hydrogen
donor.
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