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Abstract: The palladium/copper cocatalyzed sila-Sonogashira re-
action of (hetero)arylethynysilanes with (hetero)aryl bromides in
toluene and water at 40 °C under PTC conditions gave the required
di(hetero)arylethynes in moderate to high yields. Activated, deacti-
vated and ortho-substituted (hetero)aryl bromides are well tolerat-
ed. This protocol also allowed the preparation of symmetrical
diarylethynes by double arylation of 1,2-bis(trimethylsilyl)ethyne.

Key words: Sonogashira reaction, palladium, alkynylsilanes, di-
arylethynes, copper, phase-transfer catalysis

Symmetrical and unsymmetrical di(hetero)arylethynes
represent important scaffolds for the assembly of new ma-
terials such as molecular electronic devices,1 dendrimers,2

foldamers,3 or polymers.4 The most important synthetic
strategies for the preparation of this class of molecules are
undoubtedly based on the palladium/copper cocatalyzed
cross-coupling reactions of (hetero)aryl halides or
pseudohalides with terminal alkynes in the presence of a
base (Sonogashira reaction).5 The original protocol pub-
lished by Sonogashira, Tohda, and Hagihara in 1975,6

which required a Pd/Cu(I) catalyst system for the Csp–
Csp2 coupling, has been repeatedly modified and im-
proved to overcome several drawbacks.7 In particular,
copper-free (Cassar–Heck alkynylation),8,9 silver10 or
zinc11 cocatalyzed, the use of palladacycles as precata-
lysts,12 the use of ionic liquids as reaction media,13 or mi-
crowave heating14 have been reported to increase the
efficiency of this reaction by limiting the undesired for-
mation of alkyne homocoupling Glaser-type products.15

However, despite these improvements the use of Sono-
gashira reactions to prepare di(hetero)aryl alkynes often
requires systematic silane protection–deprotection to af-
ford the terminal alkyne coupling partner, and this stage
generally precedes the cross-coupling step.5,7 In order to
overcome the necessity of protecting-group removal and
to avoid the use of acetylene, trimethylsilylalkynes and si-
lylated acetylene equivalents such as ethynyltrimethylsi-
lane (ETS) or 1,2-bis(trimethylsilyl)ethyne (BTSE) have
been directly used as nucleophilic partners in the so-called
sila-Sonogashira reaction.16,17 A further distinct advan-
tage of the use of TMS-protected alkynes instead of un-
protected terminal alkynes resides in the suppression of
the formation of diynes and enynes, which, as stated

above, are typical byproducts of classical Sonogashira
protocols.7,15 However, these methods are generally limit-
ed to the use of (hetero)aryl iodides16a–c,f–j,m,n or activated
(hetero)aryl bromides16i as coupling partners and require
high reaction temperatures,16b,d,e,j–m or the use of commer-
cially unavailable palladium precatalysts.16j–k

In this paper, we report a mild protocol for the Pd/Cu co-
catalyzed sila-Sonogashira cross-coupling reaction of
(hetero)arylethynylsilanes and BTSE with a variety of ac-
tivated and deactivated (hetero)aryl bromides in a mixture
of toluene and water in the presence of benzyl(tri-n-
butyl)ammoniun chloride which acts as a phase-transfer
catalyst (PTC).18 Our need for an efficient synthesis of
di(hetero)arylethynes was dictated by our very recent in-
terest in preparing new organic fluorophores for nonlinear
optical (NLO) materials.

At the onset of our studies, we tested a diverse array of
bases as promoters for the sila-Sonogashira coupling reac-
tion of trimethyl(phenylethynyl)silane (1a) with 2-bro-
mothiophene (2a, 1.1 equiv) in the presence of
PdCl2(PhCN)2 (5 mol%), CuI (10 mol%) as the cocatalyst,
t-Bu3PHBF4 (10 mol%) as the palladium ligand, and
Bn(n-Bu)3NCl (20 mol%) as the phase-transfer catalyst in
a mixture of toluene and water (Scheme 1).

Scheme 1

The choice of these specific reaction conditions deserves
comment. In particular, we decided to perform the reac-
tion in a biphasic system because we guessed that the high
temperatures frequently reported in the literature for sim-
ilar sila-Sonogashira reactions may be, at least in part, a
result of the poor solubility of inorganic bases in common
organic solvents. Moreover, t-Bu3P (as its air-stable phos-
phonium tetrafluoroborate salt) was selected because it
has been reported to be an effective ligand for palladium
when aryl bromides are employed as electrophiles in clas-
sical Sonogashira reactions.19

As shown in Table 1, the use of three equivalents of KF or
K2CO3 did not gave any of the required 2-(phenylethy-
nyl)thiophene (3a, Table 1, entries 1 and 2), and even af-
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ter four days at 80 °C the GLC yields of 3a were
unsatisfactory (Table 1, entries 3 and 4). No reaction was
also observed when the amount of KF or K2CO3 was in-
creased to ten equivalents (Table 1, entries 5 and 6). It is
worth mentioning that 1a was quantitatively recovered
from the crude reaction mixtures when KF or K2CO3 were
employed at 40 °C (Table 1, entries 1, 2, 5, and 6), even
though these bases have been routinely used for the depro-
tection of trimethylsilylalkynes in organic solvents.20 In
contrast, when three equivalents of NaOH were used to
promote the coupling of 1a with 2a, compound 3a was ob-
tained in 47% GC yield (Table 1, entry 7). We were then
pleased to find that when ten equivalents of NaOH were
used, the coupling of 1a with 2a afforded 3a in a satisfac-
tory 88% isolated yield (Table 1, entry 8).

Interestingly, when the reaction was carried out without
copper, no reaction was observed, and only ethynylben-
zene was detected in the crude reaction mixture (Table 1,
entry 9).

Taking into account these results and previous reports in
the literature,16 we proposed that the mechanism should
feature an in situ NaOH-promoted protiodesilylation,21 af-
fording reactive silicon-free alkyne intermediates in low
concentrations and thus suppressing the formation of
Glaser-type dimerization byproducts. This step should
then be followed by a classical Pd/Cu-cocatalyzed Sono-
gashira-type coupling. However, from our data, a direct
silicon-to-copper transmetalation promoted by NaOH, in
analogy to that suggested by Halbes and Pale for their

Pd/Ag cocatalyzed base-promoted sila-Sonogashira pro-
tocol,16g cannot be totally ruled out.

Having successfully demonstrated the feasibility of the
Pd/Cu-catalyzed sila-Sonogashira cross-coupling under
PTC conditions of 1a with 2a, we then tested the scope
and limitations of this coupling by applying the reaction
conditions of entry 8 (Table 1) to the synthesis of com-
pounds 3 starting from (hetero)arylethynyltrimethylsi-
lanes 1 and commercially available (hetero)aryl bromides
2 (Scheme 2).22–24

Scheme 2

The reactions involving (hetero)arylethynyltrimethylsi-
lanes 1a–e and (hetero)aryl bromides 2a–e and 2g–l
proved to be clean and, as shown in Table 2, gave the re-
quired diaryl substituted ethynes 3a–e and 3g–m in mod-
erate to high yields (Table 2, entries 1–5 and 7–13).

In particular, yields higher than 90% were observed when
activated aryl bromides were used as electrophilic part-
ners (Table 2, entries 2 and 8), but the reaction also
worked well when alkynyltrimethylsilanes 1 were cou-
pled with unactivated or deactivated (hetero)aryl bro-
mides (Table 2, entries 1, 3–5, 7, and 10). This system
also proves to be tolerant of sterically hindered substrates
and 2-substituted aryl bromides 2h and 2j smoothly react-
ed with TMS-protected alkynes 1c and 1e affording the
desired cross-coupled products 3i and 3k in 63% and 64%
yield, respectively (Table 2, entries 9 and 11), while a
lower yield was observed when a typical deactivated
ortho-substituted bromide, 2-bromoanisole (2l), was used
as the coupling partner (Table 2, entry 13). A low chemi-
cal yield also resulted from the coupling involving the
strongly deactivated 4-bromoveratrole (2k, Table 2, entry
12). Remarkably, base-sensitive groups such as the
formyl or the carboxyalkyl groups are well tolerated
(Table 2, entries 7–9), and the presence of basic pyridyl or
amino groups did not interfere with the outcome of the
coupling (Table 2, entries 3 and 10–13). Nevertheless, the
Pd/Cu cocatalyzed cross coupling of 1a with 4-bromophe-
nol (2e) did not produce the required alkyne 1f (Table 2,
entry 5); on the contrary, a small amount of the Glaser-
type homocoupled diyne and of ethynylbenzene were ob-
served in the crude reaction mixture. In our opinion, this
lack of reaction could be ascribed at least in part to the
quantitative conversion of 2e into the corresponding sodi-
um salt which is probably confined into the aqueous phase
and is unable to give an efficient oxidative addition to the
Pd(0)Ln catalyst.

Having secured good access to compounds 3, we then
turned our attention to the preparation of some typical
symmetrically substituted diarylethynes 4 starting from
1,2-bistrimethylsilylethyne (BTSE). We were pleased to

Table 1 Effect of the Base on the Sila-Sonogashira Cross-Coupling 
of 1a with 2a

Entrya Base (equiv) Temp (°C) Time (h) Yield of 3a (%)b

1 KF (3) 40 48 0c

2 K2CO3 (3) 40 24 0c

3 KF (3) 80 96 20

4 K2CO3 (3) 80 96 38

5 KF (10) 40 48 0c

6 K2CO3 (10) 40 48 0c

7 NaOH (3) 40 24 47

8 NaOH (10) 40 17 93 (88)

9d NaOH (10) 40 17 0e

a Unless otherwise mentioned, the reactions were carried out using 1a 
(1.0 mmol), 2a (1.1 equiv), PdCl2(PhCN)2 (5 mol%), t-Bu3PHBF4 (10 
mol%), CuI (10 mol%), Bn(n-Bu)3NCl (20 mol%), toluene/H2O (1:1, 
8 mL).
b GC yield. Isolated yield is given in parentheses.
c Trimethyl(phenylethynyl)silane (1a) was quantitatively recovered 
from the crude reaction mixture.
d This reaction was carried out in the absence of CuI.
e Only ethynylbenzene was detected by GC and GC–MS analyses of 
the crude reaction mixture.
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find that the reaction conditions of entry 8 (Table 1) also
proved to be suitable for the double arylation of BTSE
with aryl bromides 2.22 As shown in Scheme 3, a molar
excess of representative deactivated, activated, and ortho-
substituted aryl bromides was successfully reacted with
BTSE under Pd/Cu cocatalysis in toluene and water at
40 °C for 22 hours, furnishing the required alkynes 4 in
good yields.

Scheme 3

In conclusion, in this study we have demonstrated that un-
symmetrical di(hetero)arylethynes can be efficiently pre-
pared in moderate to good yields by the Pd/Cu-
cocatalyzed cross coupling of activated and deactivated
(hetero)aryl bromides with (hetero)arylethynylsilanes in
the presence of Bn(n-Bu)3NCl as the phase-transfer cata-

lyst and NaOH in a biphasic toluene/water reaction medi-
um. Sterically hindered bromides are tolerated, as well as
base-labile functional groups such as formyl and carboxy-
alkyl groups. Moreover, symmetrical diarylethynes can
be prepared in good isolated yields by reaction of aryl bro-
mides with BTSE. It is proposed that the coupling pro-
ceeds by a mechanism involving a NaOH-promoted
protiodesilylation and a subsequent classical Pd/Cu cocat-
alyzed Sonogashira coupling. Studies on the application
of this simple protocol, which compares favorably with
those previously described in the literature,16 to the prep-
aration of highly conjugated (hetero)arylethynes are now
in progress.
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then extracted with EtOAc (4 × 10 mL). The organic extracts 
were washed with H2O (2 × 5 mL), dried and concentrated 
under reduced pressure, and the residue was purified by flash 
cromatography on silica gel. This procedure was employed 
to prepare di(hetero)arylethynes 3a–e,g–m (Table 2, entries 
1–5 and 7–10,). The same procedure, but employing BTSE 
(0.23 mL, 0.17 g, 1.0 mmol) and aryl bromide 2 (2.2 mmol), 
was also applied to the synthesis of symmetrically 
substituted diarylethynes 4a–c (Scheme 3).
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(23) Representative Data for New Compounds
4-(Thiophen-2-ylethynyl)benzaldehyde (3g)
Mp 110–112 °C. 1H NMR (300 MHz, CDCl3): d = 7.03 (dd, 
J = 3.7, 5.0 Hz, 1 H), 7.34 (m, 2 H), 7.63 (d, J = 9.0 Hz, 2 H), 
7.84 (d, J = 9.0 Hz, 2 H), 9.99 (s, 1 H). 13C NMR (75 MHz, 
CDCl3): d = 86.87, 92.37, 122.43, 127.40, 128.43, 129.20, 
129.62 (2 C), 131.79 (2 C), 132.93, 135.40, 191.39. MS: 
m/z (%) = 212 (100) [M+], 211 (60), 183 (13), 139 (35), 91 
(6). Anal. Calcd for C13H8OS (212.27): C, 73.56; H, 3.80. 
Found: C, 73.84; H, 3.78.
3-[(3,4-Dimethoxyphenyl)ethynyl]pyridine (3l)
Mp 53–55 °C. 1H NMR (300 MHz, CDCl3): d = 3.89 (m, 

6 H), 6.83 (d, J = 9 Hz, 1 H), 7.05 (s, 1 H), 7.16 (d, J = 6 Hz, 
1 H), 7.25 (m, 1 H), 7.77 (d, J = 9 Hz, 1 H), 8.55 (s, 1 H), 
8.79 (s, 1 H). 13C NMR (75 MHz, CDCl3): d = 55.67, 55.70, 
84.48, 92.75, 110.83, 113.99, 114.40, 120.57, 122.91, 
124.94, 137.98, 148.06, 148.46, 149.67, 151.85. MS: m/z 
(%) = 239 (100) [M+], 224 (18), 196 (16), 167 (27), 1543 
(12), 127 (12). Anal. Calcd for C15H13NO2 (239.27): C, 
75.30; H, 5.48. Found: C, 75.61; H, 5.52.

(24) Recently, a classical Sonogashira cross-coupling protocol 
for the synthesis of compounds 3 was published: Moulton, 
B. E.; Whitwood, A. C.; Duhme-Klair, A. K.; Lynam, J. M.; 
Fairlamb, I. J. S. J. Org. Chem. 2011, 76, 5320.
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