Reductive Amination of 2-Propanol to Monoisopropylamine Over Ni/γ -Al₂O₃ Catalysts

Jun Hee Cho · Jung-Hyun Park · Tae-Sun Chang · Jin-Eok Kim · Chae-Ho Shin

Received: 18 April 2013/Accepted: 14 August 2013/Published online: 4 September 2013 © Springer Science+Business Media New York 2013

Abstract Ni/ γ -Al₂O₃ catalysts with different nickel loadings (4–27 wt%) were used for the synthesis of monoisopropylamine by the reductive amination of 2-propanol in the presence of hydrogen and ammonia. H₂chemisorption analysis indicated that the highly reduced nickel metal surface area could be correlated with the enhancement of the 2-propanol conversion. During the reaction, the catalyst was progressively deactivated in the absence of hydrogen but its initial activity was completely recovered by re-exposure to the feed containing hydrogen. The deactivation was due to the formation of surface nickel nitride and excess hydrogen hindered the phase transition of the nickel metal to the corresponding nitride, ultimately preventing deactivation.

Electronic supplementary material The online version of this article (doi:10.1007/s10562-013-1086-3) contains supplementary material, which is available to authorized users.

J. H. Cho · J.-H. Park · C.-H. Shin (⊠) Department of Chemical Engineering, Chungbuk National University, Chungbuk 361-763, Korea e-mail: chshin@chungbuk.ac.kr

J. H. Cho e-mail: dnvk@nate.com

J.-H. Park e-mail: wonga1@chungbuk.ac.kr

T.-S. Chang

Environment & Resources Research Center, Korea Research Institute of Chemical Technology, Teajon 305-353, Korea e-mail: tschang@krict.re.kr

J.-E. Kim

Specialty Chemicals Research Team, Kumho Petrochemical R&BD Center, Teajon 305-348, Korea e-mail: jekim@kkpc.com **Keywords** 2-Propanol · Acetone · Reductive amination · Nickel · Monoisopropylamine

1 Introduction

Alkyl amines are an important class of compounds, which find uses as intermediates in a variety of applications including the synthesis of herbicides, insecticides, pharmaceutical chemicals, corrosion inhibitors, plastics, and rubber chemicals. One of the most widely practiced routes is the reaction of alcohol with ammonia at relatively high operating temperature and pressure [1-3]. The reductive amination of aliphatic alcohols proceeds in the presence of hydrogenation-dehydrogenation catalysts such as nickel, cobalt, copper, and solid acids [4-7]. The metal-catalyzed synthesis of monoisopropylamine (MIPA) from 2-propanol includes the dehydrogenation of the alcohol to acetone; condensation with ammonia to form an imine, and hydrogenation to MIPA. Each intermediate and the product amine can take part in various side reactions such as condensation, decarbonylation, disproportionation, and hydrogenolysis. Proper reaction conditions for the amination reaction can result in a primary amine as the desired product in high yield [8, 9]. Other methods of reductive amination have also been developed, e.g., by Cho and Kang [10] and Johansson et al. [11], in which sodium borohydride and borane-dimethyl sulphide complex were used as reducing agents. However, these processes are only convenient on the laboratory scale due to the high cost of the reducing agents. Also, MIPA is industrially prepared by the amination of acetone with ammonia using heterogeneous catalysts [12].

Nickel-based catalysts have received extensive attention because they are more easily available and less expensive

than are noble metals; further, their properties are well suited for applications in reforming, hydrogenation, and hydrotreating reactions [13–16]. Nouwen et al. [12] claimed that the activity of supported nickel catalysts was very high in the amination of acetone to produce MIPA. However, the amination reaction of acetone was carried out at very high pressure (35-200 bar). In addition, Vedage et al. [17] demonstrated the reductive amination of 2-propanol over zeolite supported potassium-cobalt catalysts at high pressures (~ 17 bar) in an autoclave. However, in batch-type reductive amination, industrial separation and recycling of catalyst and by-product are difficult. The reductive amination of alcohols has been widely investigated. However, most of the studies focused on methanol, ethanol, and cyclohexanol [18-20]. There are few reports regarding the influence of reaction parameters on the reductive amination of 2-propanol. Here, we describe the catalytic properties of Ni/y-Al₂O₃ catalysts for the reductive amination of 2-propanol in the presence of ammonia and hydrogen at atmospheric pressure. The effects of the reaction temperature, the partial pressures of ammonia and hydrogen, and space velocity were examined. 2-Propanol conversions and selectivities for MIPA, acetone, diisopropylamine (DIPA), and diisopropyl ether (DIPE) when using Ni/y-Al₂O₃ catalysts with different nickel loadings were compared. The calcined and reduced catalysts were extensively characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), H₂-temperatureprogrammed reduction (H₂-TPR), N₂-sorption, and H₂chemisorption.

2 Experimental

2.1 Catalyst Preparation

Ni/ γ -Al₂O₃ catalysts with different nickel loadings from 4 to 27 wt% were prepared by incipient wetness impregnation method with Ni(NO₃)₂·6H₂O (Sigma-Aldrich) solution on a commercial γ -Al₂O₃ (Procatalyse, 194 m² g⁻¹). The impregnated catalyst samples were dried at 100 °C for 24 h and subsequently calcined at 500 °C for 2 h in a muffle furnace under flowing air (200 cm³ min⁻¹). The final catalysts are denoted as Ni(x)/Al₂O₃, where x (x = 4, 11, 17, 23 and 27) represents the weight percent of Ni metal.

2.2 Catalyst Characterization

The surface area, pore volume, and pore size distribution were determined by N₂ physisorption at -196 °C using a Micromeritics ASAP 2020 apparatus. The samples were degassed at 250 °C for 6 h. The surface area was calculated in the relative pressure range of 0.05–0.2. The pore size

distribution was calculated from the desorption branch using the Barrett–Joyner–Halenda (BJH) formula. The XRD patterns were obtained on a Rigaku diffractometer using Cu K α radiation operating at 40 kV and 50 mA with a scanning rate of 2° min⁻¹ from 30 to 80°. The particle size of metallic Ni was determined from the broadening of the diffraction peak of the Ni (111) plane using Scherrer's equation. The Ni/ γ -Al₂O₃ catalysts were also characterized by TEM (TECNAI G2 instrument). The binding energies of nickel and nitrogen were determined by X-ray photoelectron spectroscopy (XPS) with a VG ESCALAB 210 spectrometer employing Mg K α X-ray source (1253.6 eV). All the binding energies are referenced to the C 1s from adventitious carbon.

Micromeritics AutoChem 2920 instrument was used to perform H₂-TPR experiments in order to determine the reducibility of nickel oxides on NiO/y-Al₂O₃ catalysts. Prior to the TPR studies, each catalyst was pretreated under flowing helium (50 cm³ min⁻¹) at 400 °C for 1 h. After pretreatment, the sample was cooled to ambient temperature. Then, the reducing gas containing 5 % H_2 in argon as the diluent gas was passed over the samples at a flow rate of 50 cm³ min⁻¹ with heating at the rate of 10 °C min⁻¹ up to 900 °C; the temperature was then kept constant for 0.5 h. The effluent gas was analyzed by a Balzers QMS200 quadrupole mass spectrometer (QMS). To identify the species adsorbed over the 17 wt% Ni/y-Al₂O₃ catalyst and to investigate the deactivation phenomenon during the amination reaction, H2-TPR experiments were also carried out under flowing 5 % H₂/Ar (50 cm³ min⁻¹) from 50 to 400 °C with 10 °C min⁻¹ heating. The evolution of NH_3 (m/e = 17) and H₂ (m/e = 2) were recorded during H₂-TPR. Prior to the H₂-TPR experiment, the sample was reduced under flowing H₂ (50 cm³ min⁻¹) at 600 °C for 3 h; the reduced Ni/ γ -Al₂O₃ catalysts were successively pretreated under flowing 20 % NH₃/N₂ (50 cm³ min⁻¹) or 4 % NH₃/16 % H₂/N₂ (50 cm³ min⁻¹) at 170 °C for 12 h and then cooled to 50 °C.

The metal dispersion and surface area were measured by H_2 chemisorption at 100 °C using a Micrometrics ASAP2020C instrument equipped with a high vacuum pump providing a vacuum of 10^{-6} Torr. Prior to the adsorption experiments, the sample (0.3 g) was reduced at 600 °C for 3 h under flowing H_2 (50 cm³ min⁻¹). H_2 -chemisorption uptakes were separately determined as the difference between two successive measured isotherms. The metal dispersion and nickel metal surface area were calculated by assuming that H/Ni stoichiometry was one. The reduction degree was determined by the O₂ titration method and the particle size of the nickel metal was then corrected by considering the reduction degree. The reduction degree was determined by the following equation: [the amount of O₂ consumption]/[the theoretical amount of H₂ consumption]

with the assumption of fully reduced nickel oxides (mmol H_2 ; NiO + $H_2 \rightarrow Ni + 2H^+$)] × 100 [21, 22].

2.3 Catalytic Activity Tests

All catalytic experiments were performed at atmospheric pressure under continuous flow in a fixed-bed microreactor. To establish a standard operating procedure, prior to testing, the catalysts were activated at 600 °C for 3 h under flowing H_2 (50 cm³ min⁻¹) and kept at the desired temperature, allowing time for the product distribution to stabilize. Weight hourly space velocity (WHSV) was defined as the weight ratio of catalyst (g) to the 2-propanol feed rate $(g h^{-1})$. Standard reaction conditions were as follows: catalyst = 0.1 g; T = 170 °C; WHSV = 4.29 h⁻¹; and feed composition of 2-propanol/NH₃/H₂/N₂ = 1:4:6:22.8. The partial pressure of 2-propanol and the WHSV were constant at 3 kPa and 4.29 h^{-1} (total flow rate = 90 cm³ min⁻¹), respectively. To investigate the effects of the experimental parameters, the molar ratios of H₂/2-propanol and NH₃/ 2-propanol were varied in the ranges 2-12 and 2-16, respectively, and the reaction temperatures were varied between 140 and 200 °C. The effect of WHSV was also examined in the range 1.43-4.29 h⁻¹ (total flow rate = $30-90 \text{ cm}^3 \text{ min}^{-1}$) at 170 °C with the feed composition of 2-propanol/NH₃/H₂/N₂ = 1:8:6:18.8. The reaction products were analyzed on-line with a Chrompack-CP-9001 gas chromatograph equipped with a CP-Volamine capillary column (60 m \times 0.32 mm) and a flame ionization detector.

The conversion of 2-propanol and selectivity for MIPA was defined as follows:

Conversion (%)

$$=\frac{2\text{-propanol}_{fed} (mol) - 2\text{-propanol}_{unreacted} (mol)}{2\text{-propanol}_{fed} (mol)} \times 100$$

Selectivity (%)

$$=\frac{\text{MIPA}_{\text{produced}} \text{ (mol)}}{2\text{-propanol}_{\text{fed}} \text{ (mol)} - 2\text{-propanol}_{\text{unreacted}} \text{ (mol)}} \times 100$$

3 Results and Discussion

3.1 Characterization

The physical properties of the calcined Ni/ γ -Al₂O₃ catalysts are summarized in Table 1. The BET surface areas, pore volumes, and pore sizes of the catalysts progressively decreased as the nickel loading increased. This may be due to the partial blockage of the Al₂O₃ pores by the impregnation and successive calcination of the corresponding catalysts.

The XRD patterns of the various Ni/ γ -Al₂O₃ catalysts calcined at 500 °C and reduced at 600 °C are shown in

Table 1 Physical properties of Ni/ $\gamma\text{-Al}_2O_3$ catalysts calcined at 500 °C for 2 h

Ni loading (wt%)	Surface area $(m^2 g^{-1})$	Pore volume $(cm^3 g^{-1})$	Pore size (nm)	
4	177	0.627	14	
11	163	0.548	13	
17	154	0.461	12	
23	137	0.381	11	
27	123	0.352	11	

Fig. 1 XRD patterns of Ni/ γ -Al₂O₃ catalysts with various nickel loadings: **a** calcined at 500 °C for 2 h and **b** reduced at 600 °C for 3 h

Fig. 1. The diffraction peaks at $2\theta = 37.6^{\circ}$, 45.8° , and 66.8° were attributed to crystalline γ -Al₂O₃ (JCPDS 29-0063). The XRD pattern of the calcined catalysts exhibited a characteristic reflection peak at $2\theta = 43.2^{\circ}$ due to the presence of the NiO (JCPDS 47-1049) phase. The results suggested that there was no new compound formed by reaction between nickel oxide and alumina. The reduced Ni/ γ -Al₂O₃ catalysts showed the characteristics peaks for metallic Ni (JCPDS 04-0850) and γ -Al₂O₃. The sizes of the metallic Ni particles (Table 2) were determined from the broadening of the diffraction peaks, by using Scherrer's

Ni loading (wt%)	XRD		O ₂ titration	H ₂ chemisorption				H ₂ -TPR peak temperature (°C)			
	Particle	Particle	Reduction degree (%) ^a	Uncorrected		Corrected		Metallic	Peak 1	Peak 2	Peak 3
	size of NiO (nm)	size of Ni (nm)		Dispersion (%)	Particle size (nm)	Dispersion (%) ^b	Particle size (nm) ^c	surface area $(m^2 g_{cat}^{-1})$	(Area, %)	(Area, %)	(Area, %)
4	_	9.5	34.6	3.5	28.9	10.1	10.0	0.9	-	670 (77)	788 (23)
11	8.1	8.2	47.6	5.3	19.2	11.0	9.2	3.9	441 (3)	617 (88)	787 (9)
17	8.8	9.9	49.1	4.4	22.8	9.0	11.2	5.0	434 (12)	604 (71)	742 (17)
23	14.8	16.1	51.4	3.0	33.3	5.9	17.1	4.7	414 (11)	591 (75)	758 (14)
27	15.2	18.4	51.6	2.8	35.7	5.7	17.4	5.1	411 (10)	575 (80)	745 (10)

Table 2 Physico-chemical properties of Ni/γ-Al₂O₃ catalysts calcined at 500 °C for 2 h and successive reduction at 600 °C for 3 h

^a Calculated from O₂ uptake

^b Corrected dispersion (D) = surface Ni⁰ atom/total reduced Ni⁰ atom \times 100 = surface Ni⁰ atom/(total Ni atom \times reduced fraction) \times 100

^c Corrected Ni diameter = uncorrected Ni diameter \times reduced Ni fraction

equation. The calcined NiO/ γ -Al₂O₃ showed NiO particles that increased in size from 8 to 15 nm as the Ni loading increased. High-temperature reduction at 600 °C resulted in metallic Ni particle sizes between 8 and 18 nm. The size of the metallic Ni particles increased with higher Ni loading in the Ni/ γ -Al₂O₃ catalysts. Among the catalysts examined, the Ni(11)/Al₂O₃ catalyst exhibited the smallest Ni particle size of 8.2 nm, whereas the Ni(27)/Al₂O₃ catalyst had the largest Ni particle size of 18.4 nm. The Ni species were more likely to be sintered to form larger Ni particles as the nickel loading increased. This result appears to be in good agreement with the data on the degree of metal dispersion (Table 2).

Figure 2 shows the TPR profiles of calcined Ni/ γ -Al₂O₃ catalysts. The TPR profiles of the Ni/ γ -Al₂O₃ catalyst calcined at 500 °C revealed three main reduction peaks in the temperature ranges of 300-450, 450-650, and 650-750 °C, with broad reduction profiles. The first peak at ca. 430 °C was generally attributed to the reduction of bulk NiO or of NiO weakly interacting with the support. The broad hightemperature reduction peak at ca. 600 °C could be ascribed to the reduction of NiO species strongly interacting with the support. The peak at ca. 760 °C was attributed to the reduction of surface nickel aluminate, which was not observed by XRD analysis [23]. In the case of the aluminasupported nickel catalyst, it has been reported that nickel aluminate may form, which hinders the complete reduction of the nickel species [24]. Thus, the peak at ca. 760 °C can be associated with the nickel oxide layer that contacts the alumina surface [25]. As the nickel loading in the Ni/ γ -Al₂O₃ catalyst increased, the intensities and areas of both the first and second reduction peaks also increased, and the peaks shifted to lower temperatures (Table 2). This indicates that the interaction between NiO and the γ -Al₂O₃ support decreased as the nickel loading increased. However, Monti and Baiker observed that TPR peaks of pure nickel oxide

Fig. 2 $\,H_2\text{-}TPR$ profiles of Ni/ $\gamma\text{-}Al_2O_3$ catalysts calcined at 500 °C for 2 h

shift to higher temperature when the loading of the reducible component increases [26]. In addition, the higher peak intensity means more favorable reduction for the bigger particles of the Ni/ γ -Al₂O₃ catalyst within the size range of 8.1–15.2 nm determined by XRD analysis. It is therefore appropriate to suggest that different particle sizes and nickel loadings lead to different degrees of reduction due to the differences in their interaction with alumina.

The H₂ chemisorption on Ni/ γ -Al₂O₃ catalysts provides valuable and quantitative information such as the number of nickel metal sites, nickel dispersion, and the average nickel particle size. The results of the H₂ chemisorption, corrected by the reduction degree measured by O₂ titration, are presented in Table 2. The smallest nickel particle size, when corrected by considering the degree of reduction, was in Ni(11)/Al₂O₃ (ca. 9.2 nm). The particle size increased from 9.2 to 17.4 nm as the nickel loading increased. The nickel particle sizes were in good agreement with the results of the XRD analysis, which showed that the minimum Ni particle size was in Ni(11)/Al₂O₃ (8.2 nm), and the maximum was in Ni(27)/Al₂O₃ (18.4 nm). By comparing the O₂ titration of nickel oxide on alumina support for different nickel loadings, it can be seen that the reduction degree increased with increasing nickel loading. This was in agreement with the H2-TPR results obtained with increased nickel loading, which showed shifts in the first and second peaks, corresponding to the reduction of the nickel oxide, towards lower temperatures. The low reduction degree of the Ni/ γ -Al₂O₃ catalyst can be attributed to the small nickel oxide particles that can easily form nickel aluminate during calcination or the reduction process [27]. Furthermore, reduction of the nickel aluminate is difficult and impractical at the adopted experimental temperature, and therefore, it remains inactive during the reductive amination. Excluding the Ni(27)/Al₂O₃ catalyst, the

Fig. 3 TEM images of a Ni(17)/Al_2O_3 and b Ni(27)/Al_2O_3 catalysts reduced at 600 °C for 3 h

reduced metal surface area of nickel was largest in the case of the Ni(17)/Al₂O₃ catalyst (around 5.0 m² g⁻¹_{catalyst}). A highly reduced nickel metal surface area corresponds to the enhancement in the 2-propanol conversion. The reduced metal surface area of nickel was largest in the case of the Ni(27)/Al₂O₃ catalyst (around 5.1 m² g⁻¹_{catalyst}), but its surface area was not correlated with the conversion of 2-propanol (Fig. 4). This is probably because this catalyst shows the lowest dispersion and has large nickel particles.

Figure 3 shows the TEM images of Ni(17)/Al₂O₃ and Ni(27)/Al₂O₃ catalysts reduced at 600 °C for 3 h. As opposed to the Ni(27)/Al₂O₃ catalyst, the Ni(17)/Al₂O₃ catalyst had finely dispersed metallic species on γ -Al₂O₃, which was consistent with the H₂-chemisorption results of the reduced catalysts. In contrast, the nickel particles of the Ni(27)/Al₂O₃ catalyst had irregular shapes and were not uniform.

3.2 Reductive Amination of 2-propanol

Figure 4 shows the effect of nickel loading in the reductive amination of 2-propanol over Ni/ γ -Al₂O₃ catalysts. The conversions and selectivities obtained after 30 min on stream were considered as intrinsic activities; the catalysts did not show deactivation during this time. A maximum yield of MIPA was obtained over 17 wt% Ni/ γ -Al₂O₃ catalyst. Although the conversion was not directly proportional to the metallic surface area of the Ni/Al₂O₃ catalyst, the observed variation in the conversion could be correlated to the difference in the reduced metallic surface area of the catalysts. Despite the highest metallic surface area in Ni(27)/Al₂O₃ catalyst, the conversion was rather

Fig. 4 Influence of nickel loading on the reductive amination of 2-propanol over Ni/ γ -Al₂O₃ catalysts. Reaction conditions: T = 170 °C; WHSV = 4.29 h⁻¹; feed composition of 2-propanol/NH₃/H₂ (mol%) = 1:4:6

less than that of catalysts having the lower loadings of nickel (11–23 wt% Ni). This may be due to the variation in the reducibility and nickel metal dispersion accompanying the various levels of nickel loading, which can be shown from H₂ chemisorption (Table 2). The sums of the selectivities to MIPA, acetone, and DIPA were almost constant at ca. 99 % under the tested operating conditions. Various by-products formed by condensation, decarbonylation, disproportionation, and hydrogenolysis of 2-propanol under these operating conditions, which could possibly be C_1-C_3 compounds and di-isoprophyether, were negligible in the reductive amination of 2-propanol.

Acetone is first formed by the dehydrogenation of 2-propanol, small quantities of DIPA may be formed by the consecutive reaction of MIPA with 2-propanol, and DIPE could result from the condensation/dehydration of 2-propanol. The MIPA selectivity slightly decreased with increased nickel loading, accompanied by an increase of DIPA selectivity. The pattern of selectivity was found to be similar to reductive amination over Co/SiO₂ catalysts [28].

Effects of reaction parameters on the reductive amination of 2-propanol over $Ni(17)/Al_2O_3$ catalyst were examined in Supporting Information as a function of hydrogen partial pressure, ammonia partial pressure, space velocity, and reaction temperature (see Fig. S1).

3.3 Deactivation Behavior of Ni/Al₂O₃ Catalyst

To gain more insight into the effect of catalyst deactivation, the evolution of 2-propanol conversion and selectivities for MIPA, DIPA, and acetone products were investigated as functions of time on stream in the presence or absence of H_2 , for the reductive amination of 2-propanol over Ni(17)/Al₂O₃ catalyst. Figure 5 shows the deactivation behavior of the $Ni(17)/Al_2O_3$ catalyst as observed during the reductive amination of 2-propanol. During the reaction, the flow of H_2 was stopped and then the initial flow composition was restored. When the amination reaction was performed with the initial feed composition of 2-propanol/NH₃/H₂/N₂ (mol ratio) = 1:8:6:18.8, the 2-propanol conversion and selectivities for MIPA, DIPA, and acetone were 97, 78, 15.5, and 6.5 %, respectively. After the H_2 flow in the reactant stream was stopped, the catalyst rapidly deactivated. The 97 % conversion of 2-propanol in the presence of hydrogen decreased to 25 % conversion within 5 h on stream. The selectivities for MIPA and acetone showed contrasting trends. The selectivity for MIPA decreased from 79 to 60%and that for acetone increased from 7 to 35 %. After reexposure to the initial feed compositions of hydrogen, the initial conversion and selectivities were obtained within 1 h on stream. Verhaak et al. [29] observed the rapid deactivation of a supported nickel catalyst in the disproportionation of *n*-propylamine when hydrogen in the feed was replaced by

Fig. 5 Evolution of 2-propanol conversion and MIPA selectivity as a function of time on stream in the presence or absence of hydrogen for the reductive amination of 2-propanol over Ni(17)/Al₂O₃ catalyst. During the reaction, the composition of the N₂ + H₂ mixture was changed to pure N₂ and then the initial composition was restored. Reaction conditions: T = 170 °C; WHSV = 2.38 h⁻¹; feed compositions of 2-propanol/NH₃/H₂/N₂ (mol%) = 1:8:6:18.8 and 1:8:0/24.8

nitrogen. They ascribed this deactivation is due to the formation of metal nitride during the amination reaction and concluded that the formation of metal nitride was a main factor in the deactivation of metallic catalysts for reductive amination [30]. The feed of excess hydrogen could efficiently hinder the phase transition of metallic catalyst to form nitride during the reaction, and therefore, prevent catalyst deactivation.

To evaluate the nature of the adsorbed species during the amination reaction and to evaluate the origin of deactivation, NH₃-TPD and simultaneous NH₃-TPD and H₂-TPR experiments were conducted using a quadrupole mass spectrometer and argon gas or a hydrogen/argon mixture. Prior to each experiment, the sample was reduced under H₂ flow at 600 °C for 3 h at a heating rate of 10 °C \cdot min⁻¹. Figure 6 shows the evolution of NH₃ and H₂ during TPD/ TPR using Ni(17)/Al₂O₃ catalyst under H₂/Ar and Ar flows. The reduced samples were pretreated under flowing 20 % NH₃/N₂ or 4 % NH₃/16 % H₂/N₂ at 170 °C for 12 h, and subsequently, pure Ar was passed through the reactor for 30 min. NH₃ desorption and H₂ consumption were recorded under flowing 5 % H₂/Ar for the sample pretreated with 20 % NH₃/N₂ (Fig. 6 A(a), (b). H₂-TPR profiles of the sample pretreated with 20 % NH₃/Ar revealed two main peaks at 100 °C and 145 °C, and broad peaks up to 400 °C. The first peak corresponded to the desorption of weakly adsorbed ammonia on the surface of the metal phase and the alumina support, and the second peak corresponded to the desorption of the ammonia strongly adsorbed on the nickel, which may be due to the formation of surface nickel nitride [31, 32]. In addition, the hydrogen

consumption peak was detected at 145 °C, and it indicated the removal of strongly adsorbed nitrogen-containing surface species in the presence of hydrogen. This means that the simple removal of strongly adsorbed nitrogen-containing surface species was possible in the presence of hydrogen. Figure 6 A(a), (b) show NH_3 desorption and H_2 consumption for the sample pretreated with 4 % NH₃/16 % H₂/N₂. H₂ evolution was not detected during H₂-TPR (Fig. 6 A(c), (d). Evolutions of NH₃ and H₂ were not observed over the sample pretreated with 4 % NH₃/16 % H_2/N_2 (Fig. 6 A(c), (d). The deactivation of metallic catalysts as copper, cobalt and nickel during the amination reaction of alcohols have been widely studied [29–36]. The main factor of deactivation could be concluded due to the formation of corresponding metal nitride. Baiker et al. [32-34] reported that the deactivation of metallic nickel and copper catalysts by nitride formation originating from ammonia can be suppressed by hydrogen. To investigate

the role of hydrogen in the amination of 2-propanol, NH₃-TPD was performed under flowing Ar in the absence of hydrogen (Fig. 6B). Under these conditions, the result showed the typical NH₃-TPD profile, indicating only the acid sites of the catalyst.

To investigate the changes in the surface of the Ni(17)/ Al_2O_3 catalyst during the amination of 2-propanol, XPS experiments were performed on samples retrieved at different reaction stages (Fig. 7). The presence of N was not detected in the spectrum for the H₂-treated catalyst, but the sample treated under deactivation conditions showed a peak corresponding to a binding energy of 398.8 eV. This peak is due to the nitrogen trapped in the metal lattice [37, 38]. Also, N 1s peak from physically adsorbed NH₃ was seen at ca. 402–404 eV [37]. In addition, Soares et al. [39]

Fig. 6 Evolution of NH₃ and H₂ during TPR/TPD for Ni(17)/Al₂O₃ catalyst under flowing **a** 5 % H₂/Ar and **b** Ar. The samples reduced were pretreated under flowing **a** (*a*), (*b*) 20 % NH₃/N₂ and (*c*), (*d*) 4 % NH₃/16 % H₂/N₂ at 170 °C for 12 h, **b** (*a*), (*b*) 20 % NH₃/N₂ at 170 °C for 12 h

Fig. 7 XPS spectra of Ni(17)/Al₂O₃ catalyst at different reaction stages: *a* catalyst pretreated at 600 °C for 3 h in H₂ (50 cm³ min⁻¹); *b* catalyst after reaction under the deactivation conditions of T = 170 °C, WHSV = 2.38 h⁻¹, feed composition of 2-propanol/ NH₃/H₂/N₂ (mol %) = 1:8:0:24.8; *c* catalyst after reaction under the deactivation conditions and re-exposed to H₂ (50 cm³ min⁻¹) at 170 °C for 1 h

reported that the binding energy of N 1s in N-O-metal bonding was ca. 402 eV. The absence of peaks around 402 and 404 eV indicated that the peak corresponding to 398.8 eV was consistent with nitride formation [37, 38, 40]. In many investigations [29], metal nitride formation was observed under similar reaction conditions as the major route for catalyst deactivation. In addition, after reaction under the deactivation condition re-exposed the H₂ $(50 \text{ cm}^3 \text{ min}^{-1})$ catalyst was not detected the presence of N. In the absence of hydrogen, a reversible deactivation phenomenon that can be ascribed to ammonia-nickel interactions resulting from the strong chemisorption of ammonia is observed. In addition, Fig. 8 shows the Ni 2p spectra of the Ni(17)/Al₂O₃ catalyst measured at different reaction stages. After treatment under deactivation conditions, the Ni 2p peak position of the Ni(17)/Al₂O₃ catalyst shifted slightly to a higher binding energy. Vega and Cruz [41] suggested that the binding energy shifts could be interpreted as the result of charge transfer between metal and nitrogen atoms. In addition, the slight changes in intensity were due to modifications of the relative atomic concentrations between Ni and N [42]. The XPS spectra of N 1s and Ni 2p were exhibited due to nickel nitride formation caused by strong adsorption of ammonia on the surface of the nickel metal phase. We speculated that a feed of excess hydrogen could efficiently hinder the phase transition of catalyst to metal nitride formation during the reaction and prevent catalyst deactivation.

3.4 Long-Term Stability of Ni/Al₂O₃ Catalyst on the Amination Reaction

The long-term stability of the $Ni(17)/Al_2O_3$ catalyst during the reductive amination of 2-propanol is shown in Fig. 8.

Fig. 8 Long-term stability of Ni(17)/Al₂O₃ catalyst for the reductive amination of 2-propanol to MIPA at 170 °C. Reaction conditions: WHSV = 2.38 h^{-1} ; feed composition of 2-propanol/NH₃/H₂/N₂ (mol%) = 1:8:6:18.8

The reductive amination of 2-propanol was performed for 100 h using the optimum reaction conditions. The conversion of 2-propanol was 94.1 % at 170 °C and the selectivities to MIPA, DIPA, and acetone were 80.6, 12.0, and 7.4 %, respectively. The Ni(17)/Al₂O₃ catalyst showed high activity and stability, and its excellent performance make it economically viable.

4 Conclusions

Ni/y-Al₂O₃ catalysts with different nickel loadings (4-27 wt%) were prepared by the incipient wetness impregnation method. Particle size increased with the increase in the nickel loading on Ni/y-Al₂O₃, from 8 to 15 nm. Larger nickel oxide particles could be reduced easily due to weak interaction with the support. With the exception of the Ni(27)/Al₂O₃ catalyst, the reduced metal surface area of nickel was largest for the Ni(17)/Al₂O₃ catalyst at ca. 5.0 m² $g_{catalyst}^{-1}$. The highly reduced nickel metal surface area could be correlated with the enhancement of the 2-propanol conversion. Excess ammonia was effective in promoting the 2-propanol conversion and MIPA selectivity. Excess hydrogen could efficiently hinder the phase transition of the catalyst to form the metal nitride during the reaction, and ultimately, could prevent catalyst deactivation. The Ni(17)/Al₂O₃ catalyst exhibited not only the highest catalytic performance but also the greatest longterm stability of up to 100 h on stream.

Acknowledgments This work was financially supported by a Grant from the Industrial Source Technology Development Programs (2008-10031908) of the Ministry of Knowledge Economy (MKE) of Korea.

References

- 1. Hayes KS (2001) Appl Catal A 221:187
- 2. Corbin DR, Schwarz S, Sonnichsen GC (1997) Catal Today 37:71
- 3. Vultier R, Baiker A, Wokaun A (1987) Appl Catal 30:167
- Jeon HY, Shin CH, Jung HJ, Hong SB (2006) Appl Catal A 305:70
- Tijsebaert B, Yilmaz B, Muller U, Gies H, Zhang W, Bao X, Xiao FS, Tatsumi T, Vos DD (2011) J Catal 278:246
- 6. Fischer A, Mallat T, Baiker A (1999) J Mol Catal A 149:197
- 7. Vedage GA, Emig LA, Li HX, Armor JN (1999) US Patent 5,932,769
- Fischer A, Maciejewski M, Burgi T, Mallat T, Baiker A (1999) J Catal 183:373
- 9. Fischer A, Mallat T, Baiker A (1997) Catal Today 37:167
- 10. Cho BT, Kang SK (2005) Tetrahedron 61:5725
- 11. Johansson A, Lindstedt EL, Olson T (1997) Acta Chem Scand 51:351
- Nouwen J, Kashammer S, Horn A, Funke F, Melder JP, Gutschoven F, Buskens P (2003) US Patent 6,563,004 B2

- 13. Park SH, Chun BH, Kim SH (2011) Korean J Chem Eng 28:402
- Narayanan S, Unnikrishnan R (1998) J Chem Soc, Faraday Trans 94:1123
- 15. Pant KK, Jain R, Jain S (2011) Korean J Chem Eng 28:1859
- 16. Yang R, Wu J, Li X, Zhang X, Zhanga Z, Guo J (2010) Appl Catal A 383:112
- 17. Vedage GA, Imig LA, Li HX, Armor JN (1999) US Patent 5,917,092
- 18. Sewell G, O'Connor C, Steen E (1995) Appl Catal A 125:99
- 19. Chary KVR, Seel KK, Naresh D, Ramakanth P (2008) Catal Comm 9:75
- 20. Veefkind VA, Grundling C, Lercher JA (1998) J Mol Catal A 134:111
- Wang L, Li D, Koike M, Koso S, Nakagawa Y, Xu Y, Tomishige K (2011) Appl Catal A 392:248
- 22. Bae JW, Kim SM, Kang SH, Chary KVR, Lee YJ, Kim HJ, Jun KW (2009) J Mol Catal A 311:7
- 23. Akande AJ, Idem RO, Dalai AK (2005) Appl Catal A 287:159
- 24. Li C, Chen YW (1995) Thermochim Acta 256:457
- 25. Yang R, Li X, Wu J, Zhang X, Zhang Z, Cheng Y, Guo J (2009) Appl Catal A 368:105
- 26. Monti DAM, Baiker A (1983) J Catal 83:323
- Zhang L, Dong L, Yu W, Liu L, Deng Y, Liu B, Wana H, Gao F, Sun K, Dong L (2011) J Colloid Interface Sci 355:464
- 28. Rausch AK, Steen E, Roessner F (2008) J Catal 253:111

- 29. Verhaak MJFM, van Dillen AJ, Geus JW (1994) Appl Catal A 109:263
- 30. Verhaak MJFM, van Dillen AJ, Geus JW (1993) J Catal 143:187
- 31. Baiker A, Kijenski J (1985) Catal Rev Sci Eng 27:653
- 32. Baiker A (1981) Ind Eng Chem Prod Res Dev 20:615
- 33. Baiker A, Monti D (1983) Ber Bunsenges Phys Chem 87:602
- 34. Baiker A, Maciejewskij M (1984) J Chem Soc, Faraday Trans I(80):2331
- Kritzenberger, Jobson JE, Wokaun A, Baikun A, Baiker A (1990) Catal Lett 5:73
- Cho JH, Park JH, Chang TS, Seo G, Shin C-H (2012) Appl Catal A 417:313
- Milad IK, Smith KJ, Wong PC, Mitchell KAR (1998) Catal Lett 52:113
- Milosev I, Strehbtow HH, Navinsek B (1997) Thin Solid Films 303:246
- Soares GV, Bastos KP, Pezzi RP, Miotti L, Driemeier C, Baumvol IJR, Hinkle C, Lucovsky G (2004) Appl Phys Lett 24:4992
- 40. Song HJ, Shin HJ, Chung Y, Lee JC, Lee MK (2005) J Appl Phys 97:113711
- 41. Vega CG, Cruz W (2006) Appl Surf Sci 252:8001
- Soto G, de la Cruz W, Castillon FF, Diaz JA, Machorro R, Farias MH (2003) Appl Surf Sci 214:58